Robert Johansson (robert@riken.jp)
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import time
import numpy as np
from numpy import pi
In [2]:
from qutip import *
from qutip.control import *
In [3]:
T = 1
times = np.linspace(0, T, 100)
In [43]:
#theta, phi = np.random.rand(2)
theta = np.pi/2
phi = np.pi/4
In [44]:
# target unitary transformation (random single qubit rotation)
U = rz(phi) * rx(theta); U
Out[44]:
In [45]:
R = 150
H_ops = [sigmax(), sigmay(), sigmaz()]
H_labels = [r'$u_{x}$',
r'$u_{y}$',
r'$u_{z}$',
]
In [46]:
H0 = 0 * pi * sigmaz()
In [27]:
from qutip.control.grape import plot_grape_control_fields, _overlap
from qutip.control.cy_grape import cy_overlap
from qutip.control.grape import cy_grape_unitary, grape_unitary_adaptive
In [28]:
from scipy.interpolate import interp1d
from qutip.ui.progressbar import TextProgressBar
In [29]:
u0 = np.array([np.random.rand(len(times)) * 2 * pi * 0.005 for _ in range(len(H_ops))])
u0 = [np.convolve(np.ones(10)/10, u0[idx,:], mode='same') for idx in range(len(H_ops))]
In [30]:
result = cy_grape_unitary(U, H0, H_ops, R, times, u_start=u0, eps=2*pi/T, phase_sensitive=False,
progress_bar=TextProgressBar())
In [31]:
plot_grape_control_fields(times, result.u[:,:,:] / (2 * pi), H_labels, uniform_axes=True);
In [32]:
# target unitary
U
Out[32]:
In [33]:
# unitary from grape pulse
result.U_f
Out[33]:
In [34]:
# target / result overlap
_overlap(U, result.U_f).real, abs(_overlap(U, result.U_f))**2
Out[34]:
In [35]:
c_ops = []
In [36]:
U_f_numerical = propagator(result.H_t, times[-1], c_ops, args={})
In [37]:
U_f_numerical
Out[37]:
In [38]:
_overlap(U, U_f_numerical)
Out[38]:
In [39]:
psi0 = basis(2, 0)
e_ops = [sigmax(), sigmay(), sigmaz()]
In [42]:
result?
In [40]:
me_result = mesolve(result.H_t, psi0, times, c_ops, e_ops)
In [41]:
b = Bloch()
b.add_points(me_result.expect)
b.add_states(psi0)
b.add_states(U * psi0)
b.render()
In [23]:
op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]]
op_label = [["i", "x", "y", "z"]]
In [24]:
fig = plt.figure(figsize=(8,6))
U_ideal = spre(U) * spost(U.dag())
chi = qpt(U_ideal, op_basis)
fig = qpt_plot_combined(chi, op_label, fig=fig, threshold=0.001)
In [25]:
fig = plt.figure(figsize=(8,6))
U_ideal = spre(result.U_f) * spost(result.U_f.dag())
chi = qpt(U_ideal, op_basis)
fig = qpt_plot_combined(chi, op_label, fig=fig, threshold=0.001)
In [26]:
from qutip.ipynbtools import version_table
version_table()
Out[26]: