In [1]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
fake_depth = np.linspace(100, 150, 101)
fake_log = np.array([np.random.choice([0, 1]) for _ in fake_depth])
plt.figure(figsize=(15, 1))
plt.plot(fake_depth, fake_log, 'o-')
Out[1]:
In [2]:
from striplog import Striplog, Component
In [3]:
comps = [
Component({'pay': True}),
Component({'pay': False})
]
In [4]:
s = Striplog.from_log(fake_log, cutoff=0.5, components=comps, basis=fake_depth)
In [5]:
s[-1].base.middle = 150.5 # Adjust the bottom thickness... not sure if this is a bug.
Each Interval in the striplog looks like:
In [6]:
s[0]
Out[6]:
We can generate a random legend:
In [7]:
from striplog import Legend
legend = Legend.random(comps)
legend.get_decor(comps[-1]).width = 0.2
legend.plot()
Or we can make one with a bit more control:
In [8]:
legend_csv = """colour,hatch,width,component pay
#48cc0e,None,1,True
#5779e2,None,0.2,False"""
legend = Legend.from_csv(text=legend_csv)
legend.plot()
In [9]:
s.plot(legend=legend, aspect=5)
In [10]:
pruned = s.prune(limit=1.0, keep_ends=True)
Now we can anneal the gaps:
In [11]:
annealed = pruned.anneal()
Then merge the adjacent intervals that are alike...
In [12]:
merged = annealed.merge_neighbours() # Anneal works on a copy
We could have chained these commands:
merged = s.prune(limit=1.0, keep_ends=True).anneal().merge_neighbours()
Let's plot all these steps, just for illustration:
In [13]:
fig, axs = plt.subplots(ncols=4, figsize=(6, 10))
axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5)
axs[0].set_title('Original')
axs[1] = pruned.plot(legend=legend, ax=axs[1], lw=1, aspect=5)
axs[1].set_yticklabels([])
axs[1].set_title('Pruned')
axs[2] = annealed.plot(legend=legend, ax=axs[2], lw=1, aspect=5)
axs[2].set_yticklabels([])
axs[2].set_title('Annealed')
axs[3] = merged.plot(legend=legend, ax=axs[3], lw=1, aspect=5)
axs[3].set_yticklabels([])
axs[3].set_title('Merged')
plt.show()
This would be a binary thing, at least for now. I made an issue for this: https://github.com/agile-geoscience/striplog/issues/95
You need to be on striplog v 0.8.1 at least for this to work.
In [15]:
fig, axs = plt.subplots(ncols=4, figsize=(6, 10))
opening = s.binary_morphology('pay', 'opening', step=0.1, p=7)
closing = s.binary_morphology('pay', 'closing', step=0.1, p=7)
axs[0] = s.plot(legend=legend, ax=axs[0], lw=1, aspect=5)
ntg = s.net_to_gross('pay')
axs[0].set_title(f'Original\n{ntg:.2f}')
axs[1] = merged.plot(legend=legend, ax=axs[1], lw=1, aspect=5)
axs[1].set_yticklabels([])
ntg = merged.net_to_gross('pay')
axs[1].set_title(f'PAM\n{ntg:.2f}') # Prune-anneal-merge
axs[2] = opening.plot(legend=legend, ax=axs[2], lw=1, aspect=5)
axs[2].set_yticklabels([])
ntg = opening.net_to_gross('pay')
axs[2].set_title(f'Opening\n{ntg:.2f}')
axs[3] = closing.plot(legend=legend, ax=axs[3], lw=1, aspect=5)
axs[3].set_yticklabels([])
ntg = closing.net_to_gross('pay')
axs[3].set_title(f'Closing\n{ntg:.2f}')
plt.show()
In [22]:
s.unique
Out[22]:
We can get at the thickest (and thinnest, with .thinnest()) intervals:
In [23]:
s.thickest()
Out[23]:
These functions optionally take an integer argument n specifying how many of the thickest or thinnest intervals you want to see. If n is greater than 1, a Striplog object is returned so you can see the positions of those items:
In [24]:
s.thickest(5).plot(legend=legend, lw=1, aspect=5)
We can make a bar plot of the layers:
In [25]:
s.bar(legend=legend)
Out[25]:
More interesting is to sort the thicknesses:
In [26]:
s.bar(legend=legend, sort=True)
Out[26]:
Finally, we can make a thickness histogram of the various types of component present in the log.
In [27]:
n, ents, ax = s.hist(legend=legend)
In [28]:
s
Out[28]:
In [29]:
legend
Out[29]:
In [30]:
data = [c[1] for c in s.unique]
colors = [c['_colour'] for c in legend.table]
fig, axs = plt.subplots(ncols=2,
gridspec_kw={'width_ratios': [1, 3]})
axs[0] = s.plot(ax=axs[0], legend=legend)
axs[0].set_title("Striplog")
axs[1].pie(data, colors=colors)
axs[1].set_title("Pay proportions")
plt.show()