Chapter 12 – Distributed TensorFlow
This notebook contains all the sample code and solutions to the exercices in chapter 12.
First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:
In [1]:
# To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals
# Common imports
import numpy as np
import os
# to make this notebook's output stable across runs
def reset_graph(seed=42):
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "distributed"
def save_fig(fig_id, tight_layout=True):
path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format='png', dpi=300)
In [2]:
import tensorflow as tf
In [3]:
c = tf.constant("Hello distributed TensorFlow!")
server = tf.train.Server.create_local_server()
In [4]:
with tf.Session(server.target) as sess:
print(sess.run(c))
In [5]:
cluster_spec = tf.train.ClusterSpec({
"ps": [
"127.0.0.1:2221", # /job:ps/task:0
"127.0.0.1:2222", # /job:ps/task:1
],
"worker": [
"127.0.0.1:2223", # /job:worker/task:0
"127.0.0.1:2224", # /job:worker/task:1
"127.0.0.1:2225", # /job:worker/task:2
]})
In [6]:
task_ps0 = tf.train.Server(cluster_spec, job_name="ps", task_index=0)
task_ps1 = tf.train.Server(cluster_spec, job_name="ps", task_index=1)
task_worker0 = tf.train.Server(cluster_spec, job_name="worker", task_index=0)
task_worker1 = tf.train.Server(cluster_spec, job_name="worker", task_index=1)
task_worker2 = tf.train.Server(cluster_spec, job_name="worker", task_index=2)
In [7]:
reset_graph()
with tf.device("/job:ps"):
a = tf.Variable(1.0, name="a")
with tf.device("/job:worker"):
b = a + 2
with tf.device("/job:worker/task:1"):
c = a + b
In [8]:
with tf.Session("grpc://127.0.0.1:2221") as sess:
sess.run(a.initializer)
print(c.eval())
In [9]:
reset_graph()
with tf.device(tf.train.replica_device_setter(
ps_tasks=2,
ps_device="/job:ps",
worker_device="/job:worker")):
v1 = tf.Variable(1.0, name="v1") # pinned to /job:ps/task:0 (defaults to /cpu:0)
v2 = tf.Variable(2.0, name="v2") # pinned to /job:ps/task:1 (defaults to /cpu:0)
v3 = tf.Variable(3.0, name="v3") # pinned to /job:ps/task:0 (defaults to /cpu:0)
s = v1 + v2 # pinned to /job:worker (defaults to task:0/cpu:0)
with tf.device("/task:1"):
p1 = 2 * s # pinned to /job:worker/task:1 (defaults to /cpu:0)
with tf.device("/cpu:0"):
p2 = 3 * s # pinned to /job:worker/task:1/cpu:0
config = tf.ConfigProto()
config.log_device_placement = True
with tf.Session("grpc://127.0.0.1:2221", config=config) as sess:
v1.initializer.run()
In [10]:
reset_graph()
test_csv = open("my_test.csv", "w")
test_csv.write("x1, x2 , target\n")
test_csv.write("1., , 0\n")
test_csv.write("4., 5. , 1\n")
test_csv.write("7., 8. , 0\n")
test_csv.close()
filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
features = tf.stack([x1, x2])
instance_queue = tf.RandomShuffleQueue(
capacity=10, min_after_dequeue=2,
dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
name="instance_q", shared_name="shared_instance_q")
enqueue_instance = instance_queue.enqueue([features, target])
close_instance_queue = instance_queue.close()
minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)
with tf.Session() as sess:
sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
sess.run(close_filename_queue)
try:
while True:
sess.run(enqueue_instance)
except tf.errors.OutOfRangeError as ex:
print("No more files to read")
sess.run(close_instance_queue)
try:
while True:
print(sess.run([minibatch_instances, minibatch_targets]))
except tf.errors.OutOfRangeError as ex:
print("No more training instances")
In [11]:
#coord = tf.train.Coordinator()
#threads = tf.train.start_queue_runners(coord=coord)
#filename_queue = tf.train.string_input_producer(["test.csv"])
#coord.request_stop()
#coord.join(threads)
In [12]:
reset_graph()
filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
features = tf.stack([x1, x2])
instance_queue = tf.RandomShuffleQueue(
capacity=10, min_after_dequeue=2,
dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
name="instance_q", shared_name="shared_instance_q")
enqueue_instance = instance_queue.enqueue([features, target])
close_instance_queue = instance_queue.close()
minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)
n_threads = 5
queue_runner = tf.train.QueueRunner(instance_queue, [enqueue_instance] * n_threads)
coord = tf.train.Coordinator()
with tf.Session() as sess:
sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
sess.run(close_filename_queue)
enqueue_threads = queue_runner.create_threads(sess, coord=coord, start=True)
try:
while True:
print(sess.run([minibatch_instances, minibatch_targets]))
except tf.errors.OutOfRangeError as ex:
print("No more training instances")
In [13]:
reset_graph()
def read_and_push_instance(filename_queue, instance_queue):
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
features = tf.stack([x1, x2])
enqueue_instance = instance_queue.enqueue([features, target])
return enqueue_instance
filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()
instance_queue = tf.RandomShuffleQueue(
capacity=10, min_after_dequeue=2,
dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
name="instance_q", shared_name="shared_instance_q")
minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)
read_and_enqueue_ops = [read_and_push_instance(filename_queue, instance_queue) for i in range(5)]
queue_runner = tf.train.QueueRunner(instance_queue, read_and_enqueue_ops)
with tf.Session() as sess:
sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
sess.run(close_filename_queue)
coord = tf.train.Coordinator()
enqueue_threads = queue_runner.create_threads(sess, coord=coord, start=True)
try:
while True:
print(sess.run([minibatch_instances, minibatch_targets]))
except tf.errors.OutOfRangeError as ex:
print("No more training instances")
In [14]:
reset_graph()
q = tf.FIFOQueue(capacity=10, dtypes=[tf.float32], shapes=[()])
v = tf.placeholder(tf.float32)
enqueue = q.enqueue([v])
dequeue = q.dequeue()
output = dequeue + 1
config = tf.ConfigProto()
config.operation_timeout_in_ms = 1000
with tf.Session(config=config) as sess:
sess.run(enqueue, feed_dict={v: 1.0})
sess.run(enqueue, feed_dict={v: 2.0})
sess.run(enqueue, feed_dict={v: 3.0})
print(sess.run(output))
print(sess.run(output, feed_dict={dequeue: 5}))
print(sess.run(output))
print(sess.run(output))
try:
print(sess.run(output))
except tf.errors.DeadlineExceededError as ex:
print("Timed out while dequeuing")
Coming soon
In [15]: