Extra electron (or extra hole) is attracted to the extra charge of the nucleus.
In H the energy levels are: $$ E_n = - \frac{me^4}{8\pi^2\hbar^3\varepsilon_0n^2} = -R_E /n^2= -\frac{13.6\text{eV}}{n^2}$$
Bohr radius (size of the ground state wave function): $4 \pi \varepsilon_0 \hbar^2/m_{\mathrm{e}} e^2$
In a semiconductor $m\to m_{\text{eff}}$, $\epsilon_0 \to \epsilon\epsilon_0$.
Electron concentration: $$ n_e = V^{-1} \int_0^\infty f(\varepsilon)g_e(\varepsilon) d \varepsilon$$
Result: $$ n_e = N_{\rm C}(T) \exp((E_{\rm F} - E_{\rm G})/kT), \quad n_h = N_{\rm V}(T) \exp(- E_{\rm F}/kT)$$ $$ N_{\rm C}(T) = 2(2\pi m_e kT/h^2)^{3/2} \quad N_{\rm V}(T) = 2(2\pi m_h kT/h^2)^{3/2} $$
Charge conservation: $$n_e - n_h + n_D - n_A = 0$$