Parameter values for iteration 1 : phi = 0.859203   sigma = 0.701132
Scores for iteration 1 : train_rmse = 0.500410   valid_rmse = 0.465150  train_loss = 7.882710 valid_loss = 7.847450
Parameter values for iteration 2 : phi = 0.866380   sigma = 0.721055
Scores for iteration 2 : train_rmse = 0.500150   valid_rmse = 0.465534  train_loss = 8.006292 valid_loss = 7.971676
Parameter values for iteration 3 : phi = 0.866383   sigma = 0.721063
Scores for iteration 3 : train_rmse = 0.499920   valid_rmse = 0.465908  train_loss = 8.006115 valid_loss = 7.972103
Parameter values for iteration 4 : phi = 0.866353   sigma = 0.720983
Scores for iteration 4 : train_rmse = 0.499716   valid_rmse = 0.466267  train_loss = 8.005386 valid_loss = 7.971936
Resetting phi and sigma
Parameter values for iteration 5 : phi = 0.866265   sigma = 0.720735
Scores for iteration 5 : train_rmse = 0.499534   valid_rmse = 0.466605  train_loss = 8.003693 valid_loss = 7.970764
Parameter values for iteration 6 : phi = 0.866129   sigma = 0.720338
Scores for iteration 6 : train_rmse = 0.499370   valid_rmse = 0.466918  train_loss = 8.001155 valid_loss = 7.968704
Parameter values for iteration 7 : phi = 0.866048   sigma = 0.720096
Scores for iteration 7 : train_rmse = 0.499218   valid_rmse = 0.467202  train_loss = 7.999602 valid_loss = 7.967586
Parameter values for iteration 8 : phi = 0.866044   sigma = 0.720082
Scores for iteration 8 : train_rmse = 0.499076   valid_rmse = 0.467453  train_loss = 7.999390 valid_loss = 7.967768
Parameter values for iteration 9 : phi = 0.865907   sigma = 0.719702
Scores for iteration 9 : train_rmse = 0.498938   valid_rmse = 0.467668  train_loss = 7.996879 valid_loss = 7.965609
Resetting phi and sigma
Parameter values for iteration 10 : phi = 0.867525   sigma = 0.724099
Scores for iteration 10 : train_rmse = 0.498802   valid_rmse = 0.467846  train_loss = 8.024799 valid_loss = 7.993843
Parameter values for iteration 11 : phi = 0.865727   sigma = 0.719181
Scores for iteration 11 : train_rmse = 0.498663   valid_rmse = 0.467983  train_loss = 7.993490 valid_loss = 7.962810
Parameter values for iteration 12 : phi = 0.865718   sigma = 0.719159
Scores for iteration 12 : train_rmse = 0.498517   valid_rmse = 0.468079  train_loss = 7.993186 valid_loss = 7.962747
Parameter values for iteration 13 : phi = 0.865715   sigma = 0.719141
Scores for iteration 13 : train_rmse = 0.498361   valid_rmse = 0.468132  train_loss = 7.992989 valid_loss = 7.962759
Parameter values for iteration 14 : phi = 0.865711   sigma = 0.719121
Scores for iteration 14 : train_rmse = 0.498191   valid_rmse = 0.468141  train_loss = 7.992746 valid_loss = 7.962696
Resetting phi and sigma
Parameter values for iteration 15 : phi = 0.865739   sigma = 0.719147
Scores for iteration 15 : train_rmse = 0.498001   valid_rmse = 0.468104  train_loss = 7.993039 valid_loss = 7.963142
Parameter values for iteration 16 : phi = 0.865636   sigma = 0.718894
Scores for iteration 16 : train_rmse = 0.497786   valid_rmse = 0.468020  train_loss = 7.991039 valid_loss = 7.961273
Parameter values for iteration 17 : phi = 0.865434   sigma = 0.718318
Scores for iteration 17 : train_rmse = 0.497540   valid_rmse = 0.467885  train_loss = 7.987299 valid_loss = 7.957643
Parameter values for iteration 18 : phi = 0.865357   sigma = 0.718091
Scores for iteration 18 : train_rmse = 0.497256   valid_rmse = 0.467695  train_loss = 7.985691 valid_loss = 7.956130
Parameter values for iteration 19 : phi = 0.865355   sigma = 0.718080
Scores for iteration 19 : train_rmse = 0.496924   valid_rmse = 0.467446  train_loss = 7.985311 valid_loss = 7.955832
Resetting phi and sigma
Parameter values for iteration 20 : phi = 0.864364   sigma = 0.715535
Scores for iteration 20 : train_rmse = 0.496533   valid_rmse = 0.467127  train_loss = 7.967782 valid_loss = 7.938376
Parameter values for iteration 21 : phi = 0.864548   sigma = 0.715657
Scores for iteration 21 : train_rmse = 0.496067   valid_rmse = 0.466729  train_loss = 7.970496 valid_loss = 7.941158
Parameter values for iteration 22 : phi = 0.864669   sigma = 0.716148
Scores for iteration 22 : train_rmse = 0.495508   valid_rmse = 0.466235  train_loss = 7.972031 valid_loss = 7.942758
Parameter values for iteration 23 : phi = 0.864702   sigma = 0.716209
Scores for iteration 23 : train_rmse = 0.494830   valid_rmse = 0.465626  train_loss = 7.971933 valid_loss = 7.942728
Parameter values for iteration 24 : phi = 0.864690   sigma = 0.716154
Scores for iteration 24 : train_rmse = 0.494003   valid_rmse = 0.464872  train_loss = 7.970898 valid_loss = 7.941766
Resetting phi and sigma
Parameter values for iteration 25 : phi = 0.862020   sigma = 0.708066
Scores for iteration 25 : train_rmse = 0.492984   valid_rmse = 0.463936  train_loss = 7.923777 valid_loss = 7.894729
Parameter values for iteration 26 : phi = 0.862476   sigma = 0.709876
Scores for iteration 26 : train_rmse = 0.491717   valid_rmse = 0.462768  train_loss = 7.930363 valid_loss = 7.901413
Parameter values for iteration 27 : phi = 0.862791   sigma = 0.710828
Scores for iteration 27 : train_rmse = 0.490129   valid_rmse = 0.461301  train_loss = 7.934211 valid_loss = 7.905382
Parameter values for iteration 28 : phi = 0.863146   sigma = 0.711765
Scores for iteration 28 : train_rmse = 0.488120   valid_rmse = 0.459442  train_loss = 7.938334 valid_loss = 7.909655
Parameter values for iteration 29 : phi = 0.862977   sigma = 0.711271
Scores for iteration 29 : train_rmse = 0.485557   valid_rmse = 0.457068  train_loss = 7.932857 valid_loss = 7.904369
Resetting phi and sigma
Parameter values for iteration 30 : phi = 0.858859   sigma = 0.700454
Scores for iteration 30 : train_rmse = 0.482256   valid_rmse = 0.454011  train_loss = 7.858638 valid_loss = 7.830393
Parameter values for iteration 31 : phi = 0.858991   sigma = 0.700661
Scores for iteration 31 : train_rmse = 0.477970   valid_rmse = 0.450041  train_loss = 7.856631 valid_loss = 7.828702
Parameter values for iteration 32 : phi = 0.859723   sigma = 0.702368
Scores for iteration 32 : train_rmse = 0.472358   valid_rmse = 0.444843  train_loss = 7.863602 valid_loss = 7.836086
Parameter values for iteration 33 : phi = 0.858682   sigma = 0.699631
Scores for iteration 33 : train_rmse = 0.464955   valid_rmse = 0.437984  train_loss = 7.838295 valid_loss = 7.811325
Parameter values for iteration 34 : phi = 0.858564   sigma = 0.699520
Scores for iteration 34 : train_rmse = 0.455126   valid_rmse = 0.428879  train_loss = 7.826453 valid_loss = 7.800206
Resetting phi and sigma
Parameter values for iteration 35 : phi = 0.849477   sigma = 0.677266
Scores for iteration 35 : train_rmse = 0.442019   valid_rmse = 0.416737  train_loss = 7.658128 valid_loss = 7.632846
Parameter values for iteration 36 : phi = 0.849983   sigma = 0.678118
Scores for iteration 36 : train_rmse = 0.424513   valid_rmse = 0.400520  train_loss = 7.649226 valid_loss = 7.625233
Parameter values for iteration 37 : phi = 0.846834   sigma = 0.672010
Scores for iteration 37 : train_rmse = 0.401207   valid_rmse = 0.378931  train_loss = 7.572490 valid_loss = 7.550213
Parameter values for iteration 38 : phi = 0.838583   sigma = 0.655294
Scores for iteration 38 : train_rmse = 0.370501   valid_rmse = 0.350487  train_loss = 7.402716 valid_loss = 7.382703
Parameter values for iteration 39 : phi = 0.822697   sigma = 0.626415
Scores for iteration 39 : train_rmse = 0.330900   valid_rmse = 0.313811  train_loss = 7.099202 valid_loss = 7.082113
Resetting phi and sigma
Parameter values for iteration 40 : phi = 0.796590   sigma = 0.586340
Scores for iteration 40 : train_rmse = 0.281745   valid_rmse = 0.268299  train_loss = 6.627295 valid_loss = 6.613849
Parameter values for iteration 41 : phi = 0.757845   sigma = 0.544080
Scores for iteration 41 : train_rmse = 0.224521   valid_rmse = 0.215349  train_loss = 5.967816 valid_loss = 5.958644
Parameter values for iteration 42 : phi = 0.687461   sigma = 0.486737
Scores for iteration 42 : train_rmse = 0.164453   valid_rmse = 0.159844  train_loss = 4.890485 valid_loss = 4.885876
Parameter values for iteration 43 : phi = 0.567851   sigma = 0.421439
Scores for iteration 43 : train_rmse = 0.110867   valid_rmse = 0.110486  train_loss = 3.335420 valid_loss = 3.335039
Parameter values for iteration 44 : phi = 0.382257   sigma = 0.355181
Scores for iteration 44 : train_rmse = 0.073502   valid_rmse = 0.076331  train_loss = 1.534703 valid_loss = 1.537532
Resetting phi and sigma
Parameter values for iteration 45 : phi = 0.163170   sigma = 0.294476
Scores for iteration 45 : train_rmse = 0.055078   valid_rmse = 0.059808  train_loss = 0.321324 valid_loss = 0.326054
Parameter values for iteration 46 : phi = 0.030844   sigma = 0.251968
Scores for iteration 46 : train_rmse = 0.049042   valid_rmse = 0.054640  train_loss = 0.058555 valid_loss = 0.064154
Parameter values for iteration 47 : phi = 0.003511   sigma = 0.232620
Scores for iteration 47 : train_rmse = 0.047458   valid_rmse = 0.053366  train_loss = 0.047581 valid_loss = 0.053490
Parameter values for iteration 48 : phi = nan   sigma = nan
Scores for iteration 48 : train_rmse = 0.046759   valid_rmse = 0.052746  train_loss = nan valid_loss = nan
Parameter values for iteration 49 : phi = nan   sigma = nan
Scores for iteration 49 : train_rmse = 0.046166   valid_rmse = 0.052154  train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 50 : phi = nan   sigma = nan
Scores for iteration 50 : train_rmse = 0.045584   valid_rmse = 0.051548  train_loss = nan valid_loss = nan
Parameter values for iteration 51 : phi = nan   sigma = nan
Scores for iteration 51 : train_rmse = 0.045005   valid_rmse = 0.050940  train_loss = nan valid_loss = nan
Parameter values for iteration 52 : phi = nan   sigma = nan
Scores for iteration 52 : train_rmse = 0.044430   valid_rmse = 0.050335  train_loss = nan valid_loss = nan
Parameter values for iteration 53 : phi = nan   sigma = nan
Scores for iteration 53 : train_rmse = 0.043859   valid_rmse = 0.049733  train_loss = nan valid_loss = nan
Parameter values for iteration 54 : phi = nan   sigma = nan
Scores for iteration 54 : train_rmse = 0.043293   valid_rmse = 0.049135  train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 55 : phi = nan   sigma = nan
Scores for iteration 55 : train_rmse = 0.042732   valid_rmse = 0.048543  train_loss = nan valid_loss = nan
Parameter values for iteration 56 : phi = nan   sigma = nan
Scores for iteration 56 : train_rmse = 0.042178   valid_rmse = 0.047956  train_loss = nan valid_loss = nan
Parameter values for iteration 57 : phi = nan   sigma = nan
Scores for iteration 57 : train_rmse = 0.041630   valid_rmse = 0.047377  train_loss = nan valid_loss = nan
Parameter values for iteration 58 : phi = nan   sigma = nan
Scores for iteration 58 : train_rmse = 0.041090   valid_rmse = 0.046802  train_loss = nan valid_loss = nan
Parameter values for iteration 59 : phi = nan   sigma = nan
Scores for iteration 59 : train_rmse = 0.040558   valid_rmse = 0.046241  train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 60 : phi = nan   sigma = nan
Scores for iteration 60 : train_rmse = 0.040036   valid_rmse = 0.045675  train_loss = nan valid_loss = nan