Parameter values for iteration 1 : phi = 0.859203 sigma = 0.701132
Scores for iteration 1 : train_rmse = 0.500410 valid_rmse = 0.465150 train_loss = 7.882710 valid_loss = 7.847450
Parameter values for iteration 2 : phi = 0.866380 sigma = 0.721055
Scores for iteration 2 : train_rmse = 0.500150 valid_rmse = 0.465534 train_loss = 8.006292 valid_loss = 7.971676
Parameter values for iteration 3 : phi = 0.866383 sigma = 0.721063
Scores for iteration 3 : train_rmse = 0.499920 valid_rmse = 0.465908 train_loss = 8.006115 valid_loss = 7.972103
Parameter values for iteration 4 : phi = 0.866353 sigma = 0.720983
Scores for iteration 4 : train_rmse = 0.499716 valid_rmse = 0.466267 train_loss = 8.005386 valid_loss = 7.971936
Resetting phi and sigma
Parameter values for iteration 5 : phi = 0.866265 sigma = 0.720735
Scores for iteration 5 : train_rmse = 0.499534 valid_rmse = 0.466605 train_loss = 8.003693 valid_loss = 7.970764
Parameter values for iteration 6 : phi = 0.866129 sigma = 0.720338
Scores for iteration 6 : train_rmse = 0.499370 valid_rmse = 0.466918 train_loss = 8.001155 valid_loss = 7.968704
Parameter values for iteration 7 : phi = 0.866048 sigma = 0.720096
Scores for iteration 7 : train_rmse = 0.499218 valid_rmse = 0.467202 train_loss = 7.999602 valid_loss = 7.967586
Parameter values for iteration 8 : phi = 0.866044 sigma = 0.720082
Scores for iteration 8 : train_rmse = 0.499076 valid_rmse = 0.467453 train_loss = 7.999390 valid_loss = 7.967768
Parameter values for iteration 9 : phi = 0.865907 sigma = 0.719702
Scores for iteration 9 : train_rmse = 0.498938 valid_rmse = 0.467668 train_loss = 7.996879 valid_loss = 7.965609
Resetting phi and sigma
Parameter values for iteration 10 : phi = 0.867525 sigma = 0.724099
Scores for iteration 10 : train_rmse = 0.498802 valid_rmse = 0.467846 train_loss = 8.024799 valid_loss = 7.993843
Parameter values for iteration 11 : phi = 0.865727 sigma = 0.719181
Scores for iteration 11 : train_rmse = 0.498663 valid_rmse = 0.467983 train_loss = 7.993490 valid_loss = 7.962810
Parameter values for iteration 12 : phi = 0.865718 sigma = 0.719159
Scores for iteration 12 : train_rmse = 0.498517 valid_rmse = 0.468079 train_loss = 7.993186 valid_loss = 7.962747
Parameter values for iteration 13 : phi = 0.865715 sigma = 0.719141
Scores for iteration 13 : train_rmse = 0.498361 valid_rmse = 0.468132 train_loss = 7.992989 valid_loss = 7.962759
Parameter values for iteration 14 : phi = 0.865711 sigma = 0.719121
Scores for iteration 14 : train_rmse = 0.498191 valid_rmse = 0.468141 train_loss = 7.992746 valid_loss = 7.962696
Resetting phi and sigma
Parameter values for iteration 15 : phi = 0.865739 sigma = 0.719147
Scores for iteration 15 : train_rmse = 0.498001 valid_rmse = 0.468104 train_loss = 7.993039 valid_loss = 7.963142
Parameter values for iteration 16 : phi = 0.865636 sigma = 0.718894
Scores for iteration 16 : train_rmse = 0.497786 valid_rmse = 0.468020 train_loss = 7.991039 valid_loss = 7.961273
Parameter values for iteration 17 : phi = 0.865434 sigma = 0.718318
Scores for iteration 17 : train_rmse = 0.497540 valid_rmse = 0.467885 train_loss = 7.987299 valid_loss = 7.957643
Parameter values for iteration 18 : phi = 0.865357 sigma = 0.718091
Scores for iteration 18 : train_rmse = 0.497256 valid_rmse = 0.467695 train_loss = 7.985691 valid_loss = 7.956130
Parameter values for iteration 19 : phi = 0.865355 sigma = 0.718080
Scores for iteration 19 : train_rmse = 0.496924 valid_rmse = 0.467446 train_loss = 7.985311 valid_loss = 7.955832
Resetting phi and sigma
Parameter values for iteration 20 : phi = 0.864364 sigma = 0.715535
Scores for iteration 20 : train_rmse = 0.496533 valid_rmse = 0.467127 train_loss = 7.967782 valid_loss = 7.938376
Parameter values for iteration 21 : phi = 0.864548 sigma = 0.715657
Scores for iteration 21 : train_rmse = 0.496067 valid_rmse = 0.466729 train_loss = 7.970496 valid_loss = 7.941158
Parameter values for iteration 22 : phi = 0.864669 sigma = 0.716148
Scores for iteration 22 : train_rmse = 0.495508 valid_rmse = 0.466235 train_loss = 7.972031 valid_loss = 7.942758
Parameter values for iteration 23 : phi = 0.864702 sigma = 0.716209
Scores for iteration 23 : train_rmse = 0.494830 valid_rmse = 0.465626 train_loss = 7.971933 valid_loss = 7.942728
Parameter values for iteration 24 : phi = 0.864690 sigma = 0.716154
Scores for iteration 24 : train_rmse = 0.494003 valid_rmse = 0.464872 train_loss = 7.970898 valid_loss = 7.941766
Resetting phi and sigma
Parameter values for iteration 25 : phi = 0.862020 sigma = 0.708066
Scores for iteration 25 : train_rmse = 0.492984 valid_rmse = 0.463936 train_loss = 7.923777 valid_loss = 7.894729
Parameter values for iteration 26 : phi = 0.862476 sigma = 0.709876
Scores for iteration 26 : train_rmse = 0.491717 valid_rmse = 0.462768 train_loss = 7.930363 valid_loss = 7.901413
Parameter values for iteration 27 : phi = 0.862791 sigma = 0.710828
Scores for iteration 27 : train_rmse = 0.490129 valid_rmse = 0.461301 train_loss = 7.934211 valid_loss = 7.905382
Parameter values for iteration 28 : phi = 0.863146 sigma = 0.711765
Scores for iteration 28 : train_rmse = 0.488120 valid_rmse = 0.459442 train_loss = 7.938334 valid_loss = 7.909655
Parameter values for iteration 29 : phi = 0.862977 sigma = 0.711271
Scores for iteration 29 : train_rmse = 0.485557 valid_rmse = 0.457068 train_loss = 7.932857 valid_loss = 7.904369
Resetting phi and sigma
Parameter values for iteration 30 : phi = 0.858859 sigma = 0.700454
Scores for iteration 30 : train_rmse = 0.482256 valid_rmse = 0.454011 train_loss = 7.858638 valid_loss = 7.830393
Parameter values for iteration 31 : phi = 0.858991 sigma = 0.700661
Scores for iteration 31 : train_rmse = 0.477970 valid_rmse = 0.450041 train_loss = 7.856631 valid_loss = 7.828702
Parameter values for iteration 32 : phi = 0.859723 sigma = 0.702368
Scores for iteration 32 : train_rmse = 0.472358 valid_rmse = 0.444843 train_loss = 7.863602 valid_loss = 7.836086
Parameter values for iteration 33 : phi = 0.858682 sigma = 0.699631
Scores for iteration 33 : train_rmse = 0.464955 valid_rmse = 0.437984 train_loss = 7.838295 valid_loss = 7.811325
Parameter values for iteration 34 : phi = 0.858564 sigma = 0.699520
Scores for iteration 34 : train_rmse = 0.455126 valid_rmse = 0.428879 train_loss = 7.826453 valid_loss = 7.800206
Resetting phi and sigma
Parameter values for iteration 35 : phi = 0.849477 sigma = 0.677266
Scores for iteration 35 : train_rmse = 0.442019 valid_rmse = 0.416737 train_loss = 7.658128 valid_loss = 7.632846
Parameter values for iteration 36 : phi = 0.849983 sigma = 0.678118
Scores for iteration 36 : train_rmse = 0.424513 valid_rmse = 0.400520 train_loss = 7.649226 valid_loss = 7.625233
Parameter values for iteration 37 : phi = 0.846834 sigma = 0.672010
Scores for iteration 37 : train_rmse = 0.401207 valid_rmse = 0.378931 train_loss = 7.572490 valid_loss = 7.550213
Parameter values for iteration 38 : phi = 0.838583 sigma = 0.655294
Scores for iteration 38 : train_rmse = 0.370501 valid_rmse = 0.350487 train_loss = 7.402716 valid_loss = 7.382703
Parameter values for iteration 39 : phi = 0.822697 sigma = 0.626415
Scores for iteration 39 : train_rmse = 0.330900 valid_rmse = 0.313811 train_loss = 7.099202 valid_loss = 7.082113
Resetting phi and sigma
Parameter values for iteration 40 : phi = 0.796590 sigma = 0.586340
Scores for iteration 40 : train_rmse = 0.281745 valid_rmse = 0.268299 train_loss = 6.627295 valid_loss = 6.613849
Parameter values for iteration 41 : phi = 0.757845 sigma = 0.544080
Scores for iteration 41 : train_rmse = 0.224521 valid_rmse = 0.215349 train_loss = 5.967816 valid_loss = 5.958644
Parameter values for iteration 42 : phi = 0.687461 sigma = 0.486737
Scores for iteration 42 : train_rmse = 0.164453 valid_rmse = 0.159844 train_loss = 4.890485 valid_loss = 4.885876
Parameter values for iteration 43 : phi = 0.567851 sigma = 0.421439
Scores for iteration 43 : train_rmse = 0.110867 valid_rmse = 0.110486 train_loss = 3.335420 valid_loss = 3.335039
Parameter values for iteration 44 : phi = 0.382257 sigma = 0.355181
Scores for iteration 44 : train_rmse = 0.073502 valid_rmse = 0.076331 train_loss = 1.534703 valid_loss = 1.537532
Resetting phi and sigma
Parameter values for iteration 45 : phi = 0.163170 sigma = 0.294476
Scores for iteration 45 : train_rmse = 0.055078 valid_rmse = 0.059808 train_loss = 0.321324 valid_loss = 0.326054
Parameter values for iteration 46 : phi = 0.030844 sigma = 0.251968
Scores for iteration 46 : train_rmse = 0.049042 valid_rmse = 0.054640 train_loss = 0.058555 valid_loss = 0.064154
Parameter values for iteration 47 : phi = 0.003511 sigma = 0.232620
Scores for iteration 47 : train_rmse = 0.047458 valid_rmse = 0.053366 train_loss = 0.047581 valid_loss = 0.053490
Parameter values for iteration 48 : phi = nan sigma = nan
Scores for iteration 48 : train_rmse = 0.046759 valid_rmse = 0.052746 train_loss = nan valid_loss = nan
Parameter values for iteration 49 : phi = nan sigma = nan
Scores for iteration 49 : train_rmse = 0.046166 valid_rmse = 0.052154 train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 50 : phi = nan sigma = nan
Scores for iteration 50 : train_rmse = 0.045584 valid_rmse = 0.051548 train_loss = nan valid_loss = nan
Parameter values for iteration 51 : phi = nan sigma = nan
Scores for iteration 51 : train_rmse = 0.045005 valid_rmse = 0.050940 train_loss = nan valid_loss = nan
Parameter values for iteration 52 : phi = nan sigma = nan
Scores for iteration 52 : train_rmse = 0.044430 valid_rmse = 0.050335 train_loss = nan valid_loss = nan
Parameter values for iteration 53 : phi = nan sigma = nan
Scores for iteration 53 : train_rmse = 0.043859 valid_rmse = 0.049733 train_loss = nan valid_loss = nan
Parameter values for iteration 54 : phi = nan sigma = nan
Scores for iteration 54 : train_rmse = 0.043293 valid_rmse = 0.049135 train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 55 : phi = nan sigma = nan
Scores for iteration 55 : train_rmse = 0.042732 valid_rmse = 0.048543 train_loss = nan valid_loss = nan
Parameter values for iteration 56 : phi = nan sigma = nan
Scores for iteration 56 : train_rmse = 0.042178 valid_rmse = 0.047956 train_loss = nan valid_loss = nan
Parameter values for iteration 57 : phi = nan sigma = nan
Scores for iteration 57 : train_rmse = 0.041630 valid_rmse = 0.047377 train_loss = nan valid_loss = nan
Parameter values for iteration 58 : phi = nan sigma = nan
Scores for iteration 58 : train_rmse = 0.041090 valid_rmse = 0.046802 train_loss = nan valid_loss = nan
Parameter values for iteration 59 : phi = nan sigma = nan
Scores for iteration 59 : train_rmse = 0.040558 valid_rmse = 0.046241 train_loss = nan valid_loss = nan
Resetting phi and sigma
Parameter values for iteration 60 : phi = nan sigma = nan
Scores for iteration 60 : train_rmse = 0.040036 valid_rmse = 0.045675 train_loss = nan valid_loss = nan