Deep Learning (Tensorflow)


Zhiang Chen

June 2016

1. Deep Learning


Book

http://www.deeplearningbook.org/

Tutorial

Udacity

Tensorflow Tutorial

Architectures

ImageNet Competition Winners: LeNet-5, AlexNet, GoogleNet(Inception Model)

2. Tensorflow


Atlas9

Tensorflow 0.8 (Both Python2/Python3, GPU supported) has been installed on atlas9. Currently, Tensorflow has GPU allocation problems. It can be solved by using ‘BFC’ (Best-fit with coalescing), or manually allocating GPUs. Also see comments.

Not-MNIST

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

IPython

http://jupyter.org/

SkFlow

Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning. CNN example.

3. Simple ConvNet Example


Input -> ConvNet(ReLU) -> MaxPool(ReLU) -> FC(ReLU) -> FC -> Softmax

(Stochastic Gradient Descent & No Addtional Regularization)

(1) Import packages


In [1]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range

(2) Load Data


In [2]:
pickle_file = 'notMNIST.pickle'

with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)

(3) Pre-process Data


In [3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale

import numpy as np

def reformat(dataset, labels):
  dataset = dataset.reshape(
    (-1, image_size, image_size, num_channels)).astype(np.float32)
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28, 1) (200000, 10)
Validation set (10000, 28, 28, 1) (10000, 10)
Test set (10000, 28, 28, 1) (10000, 10)

(4) Define Some Functions


In [8]:
# Arithmetic Mean
# compute the accuracy of dataset
def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

(5) Build DNN


Batch: the 'batch' in SGD

Patch: the kernel in ConvNet

Kernel: the kernel in pooling


In [5]:
batch_size = 16
patch_size = 5
kernel_size = 2
depth = 16  # the output of convnet
num_hidden = 64 # the number of hidden units in FC

graph = tf.Graph()

with graph.as_default():

  # Input data.
  tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  # convolution's input is a tensor of shape [batch,in_height,in_width,in_channels]
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  # convolution's weights are called filter in tensorflow
  # it is a tensor of shape [kernel_hight,kernel_width,in_channels,out_channels]
  layer2_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal(
      [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer1_biases)
    
    max_pool = tf.nn.max_pool(hidden,[1,kernel_size,kernel_size,1],[1,2,2,1],'SAME')
    hidden = tf.nn.relu(max_pool+layer2_biases)
    
    # 3D -> 2D
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  # using logist regression as classifier instead of mean square error
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
    
  # Optimizer.
  optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))

(6) Train Network


In [6]:
num_steps = 5000

'''
# use GPU0
# allocate CPU
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.allow_growth = True
config.log_device_placement = True
with tf.Session(graph=graph,config=config) as session:
'''
# use CPU0
with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 500 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
      print('--------------------------------------')
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))


Initialized
Minibatch loss at step 0: 3.877530
Minibatch accuracy: 12.5%
Validation accuracy: 10.0%
--------------------------------------
Minibatch loss at step 500: 0.852288
Minibatch accuracy: 81.2%
Validation accuracy: 71.5%
--------------------------------------
Minibatch loss at step 1000: 0.211242
Minibatch accuracy: 93.8%
Validation accuracy: 81.5%
--------------------------------------
Minibatch loss at step 1500: 1.033734
Minibatch accuracy: 75.0%
Validation accuracy: 82.8%
--------------------------------------
Minibatch loss at step 2000: 0.741278
Minibatch accuracy: 81.2%
Validation accuracy: 83.1%
--------------------------------------
Minibatch loss at step 2500: 0.716399
Minibatch accuracy: 75.0%
Validation accuracy: 83.7%
--------------------------------------
Minibatch loss at step 3000: 0.871448
Minibatch accuracy: 75.0%
Validation accuracy: 84.5%
--------------------------------------
Minibatch loss at step 3500: 0.510083
Minibatch accuracy: 87.5%
Validation accuracy: 85.3%
--------------------------------------
Minibatch loss at step 4000: 0.557072
Minibatch accuracy: 81.2%
Validation accuracy: 86.0%
--------------------------------------
Minibatch loss at step 4500: 0.367312
Minibatch accuracy: 87.5%
Validation accuracy: 85.8%
--------------------------------------
Test accuracy: 92.0%

4. LeNet-5


LeNet-5 & input dropout


In [1]:
'''
LeNet-5 (Tensorflow, CPU)
Zhiang Chen
6/2016
zxc251@case.edu
'''
import time
start_time = time.time()

batch_size = 16
patch_size = 5
kernel_size = 2
depth1 = 6 #the depth of 1st convnet
depth2 = 16 #the depth of 2nd convnet
C5_units = 120
F6_units = 84
F7_units = 10

graph = tf.Graph()

with graph.as_default():
    # Input data
    tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    # convolution's input is a tensor of shape [batch,in_height,in_width,in_channels]
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
    
    # Variables(weights and biases)
    C1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth1], stddev=0.1))
    # convolution's weights are called filter in tensorflow
    # it is a tensor of shape [kernel_hight,kernel_width,in_channels,out_channels]
    C1_biases = tf.Variable(tf.zeros([depth1]))
                            
    # S1_weights # Sub-sampling doesn't need weights and biases
    # S1_biases
    
    C3_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth1, depth2], stddev=0.1))
    C3_biases = tf.Variable(tf.constant(1.0, shape=[depth2]))
                            
    # S4_weights
    # S4_biases
     
    # C5 actually is a fully-connected layer                        
    C5_weights = tf.Variable(tf.truncated_normal([5 * 5 * depth2, C5_units], stddev=0.1))
    C5_biases = tf.Variable(tf.constant(1.0, shape=[C5_units]))
         
    F6_weights = tf.Variable(tf.truncated_normal([C5_units,F6_units], stddev=0.1))
    F6_biases = tf.Variable(tf.constant(1.0, shape=[F6_units]))
                                
    # FC and logistic regression replace RBF
    F7_weights = tf.Variable(tf.truncated_normal([F6_units,F7_units], stddev=0.1))
    F7_biases = tf.Variable(tf.constant(1.0, shape=[F7_units]))

    # Model
    def model(data):
        conv = tf.nn.conv2d(data, C1_weights, [1, 1, 1, 1], padding='SAME')
        hidden = tf.nn.relu(conv + C1_biases) # relu is better than tanh
        
        max_pool = tf.nn.max_pool(hidden,[1,kernel_size,kernel_size,1],[1,2,2,1],'VALID')
        hidden = tf.nn.relu(max_pool)
                                
        conv = tf.nn.conv2d(hidden, C3_weights, [1, 1, 1, 1], padding='VALID')
        hidden = tf.nn.relu(conv + C3_biases)

        max_pool = tf.nn.max_pool(hidden,[1,kernel_size,kernel_size,1],[1,2,2,1],'VALID')
        hidden = tf.nn.relu(max_pool)
                            
        shape = hidden.get_shape().as_list()
        reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, C5_weights) + C5_biases)
                            
        fc = tf.matmul(hidden,F6_weights)
        hidden = tf.nn.relu(fc + F6_biases)
        
        fc = tf.matmul(hidden,F7_weights)
        output = fc + F7_biases
    
        return output

    
    # Training computation.
    tf_train_dataset = tf.nn.dropout(tf_train_dataset,0.8) # input dropout
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
    
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-f48ee380e29e> in <module>()
     17 F7_units = 10
     18 
---> 19 graph = tf.Graph()
     20 
     21 with graph.as_default():

NameError: name 'tf' is not defined