This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).
Input:
add_edge(source, destination, weight)
graph.add_edge(0, 1, 5)
graph.add_edge(0, 4, 3)
graph.add_edge(0, 5, 2)
graph.add_edge(1, 3, 5)
graph.add_edge(1, 4, 4)
graph.add_edge(2, 1, 6)
graph.add_edge(3, 2, 7)
graph.add_edge(3, 4, 8)
Result:
To determine if there is a path, we can use either breadth-first or depth-first search.
Breadth-first search can also be used to determine the shortest path. Depth-first search is easier to implement with just straight recursion, but often results in a longer path.
We'll use a breadth-first search approach:
Complexity:
In [1]:
%run ../graph/graph.py
In [2]:
from collections import deque
def path_exists(start, end):
if start is None or end is None:
return False
if start is end:
return True
queue = deque()
queue.append(start)
start.visited = True
while queue:
node = queue.popleft()
if node is None:
continue
if node is end:
return True
for adj_node in node.adjacent:
if not adj_node.visited:
queue.append(adj_node)
adj_node.visited = True
return False
In [3]:
%%writefile test_path_exists.py
from nose.tools import assert_equal
class TestPathExists(object):
def test_path_exists(self):
nodes = []
graph = Graph()
for id in range(0, 6):
nodes.append(graph.add_node(id))
graph.add_edge(0, 1, 5)
graph.add_edge(0, 4, 3)
graph.add_edge(0, 5, 2)
graph.add_edge(1, 3, 5)
graph.add_edge(1, 4, 4)
graph.add_edge(2, 1, 6)
graph.add_edge(3, 2, 7)
graph.add_edge(3, 4, 8)
assert_equal(path_exists(nodes[0], nodes[2]), True)
assert_equal(path_exists(nodes[0], nodes[0]), True)
assert_equal(path_exists(nodes[4], nodes[5]), False)
print('Success: test_path_exists')
def main():
test = TestPathExists()
test.test_path_exists()
if __name__ == '__main__':
main()
In [4]:
%run -i test_path_exists.py