This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).
We generally use breadth-first search to determine the shortest path.
Complexity:
In [1]:
%run ../graph/graph.py
In [2]:
from collections import deque
def bfs(root, visit_func):
if root is None:
return
queue = deque()
queue.append(root)
root.visited = True
while queue:
node = queue.popleft()
visit_func(node)
for adjacent_node in node.adjacent:
if not adjacent_node.visited:
queue.append(adjacent_node)
adjacent_node.visited = True
In [3]:
%run ../utils/results.py
In [4]:
%%writefile test_bfs.py
from nose.tools import assert_equal
class TestBfs(object):
def __init__(self):
self.results = Results()
def test_bfs(self):
nodes = []
graph = Graph()
for id in range(0, 6):
nodes.append(graph.add_node(id))
graph.add_edge(0, 1, 5)
graph.add_edge(0, 4, 3)
graph.add_edge(0, 5, 2)
graph.add_edge(1, 3, 5)
graph.add_edge(1, 4, 4)
graph.add_edge(2, 1, 6)
graph.add_edge(3, 2, 7)
graph.add_edge(3, 4, 8)
bfs(nodes[0], self.results.add_result)
assert_equal(str(self.results), "[0, 1, 4, 5, 3, 2]")
print('Success: test_bfs')
def main():
test = TestBfs()
test.test_bfs()
if __name__ == '__main__':
main()
In [5]:
%run -i test_bfs.py