This is a dataset of Assisted Living, Nursing and Residential Care facilities in Oregon, open as of January, 2017. For each, we have:
In [1]:
import pandas as pd
import numpy as np
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
In [2]:
df = pd.read_csv('/Users/fzarkhin/OneDrive - Advance Central Services, Inc/fproj/github/database-story/data/processed/facilities.csv')
Those that have no offline records.
In [3]:
df[(df['offline'].isnull())].count()[0]
Out[3]:
Those that have offline records.
In [4]:
df[(df['offline'].notnull())].count()[0]
Out[4]:
In [5]:
df[(df['offline']>df['online']) & (df['online'].notnull())].count()[0]
Out[5]:
In [6]:
df[(df['online'].isnull()) & (df['offline'].notnull())].count()[0]
Out[6]:
In [7]:
df[(df['online'].notnull()) & (df['offline'].isnull())].count()[0]
Out[7]:
In [8]:
df[(df['online'].notnull()) | df['offline'].notnull()].count()[0]
Out[8]:
In [9]:
df[(df['offline'].isnull())].count()[0]/df.count()[0]*100
Out[9]:
In [10]:
df[df['offline'].notnull()].sum()['fac_capacity']
Out[10]:
In [11]:
df[df['fac_capacity'].isnull()]
Out[11]:
In [12]:
#df#['fac_capacity'].sum()
In [ ]: