In [2]:
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib
matplotlib.rcParams.update({'font.size':18})
matplotlib.rcParams.update({'font.family':'serif'})
ftype = '.pdf'
In [3]:
from haystack_fraction_calculator import vol8d
In [4]:
vol8d(verbose=True)
Out[4]:
In [5]:
ztf0, ztf1 = vol8d(hayfile='ZTF_boundaries.txt', searchfile='ZTF_parameters.txt', verbose=True)
Using very simple assumptions/conversions, we see that ZTF offers a factor of 10-1000 better "haystack" coverage compared with the surveys listed in Wright+2018
If Wright+2018 likened their analysis to a large hot tub (8000 L) versus the Earth's oceans (1.335e21 L), then with ZTF we can search a modest above-ground swimming pool using only the r-band data!
In [6]:
lsst0, lsst1 = vol8d(hayfile='ZTF_boundaries.txt', searchfile='LSST_parameters.txt', verbose=True)
In [7]:
evry0, evry1 = vol8d(hayfile='ZTF_boundaries.txt', searchfile='evryscope_parameters.txt', verbose=True)
In [8]:
tess0, tess1 = vol8d(hayfile='ZTF_boundaries.txt', searchfile='TESS_parameters.txt', verbose=True)
In [9]:
In [ ]:
In [24]:
crts0, crts1 = vol8d(hayfile='ZTF_boundaries.txt', searchfile='CRTS_parameters.txt', verbose=True)
In [25]:
np.log10(crts1/crts0)
Out[25]:
In [26]:
plt.figure(figsize=(8,5))
# plt.scatter(np.arange(4), [np.log10(ztf1/ztf0), np.log10(tess1/tess0), np.log10(lsst1/lsst0), np.log10(evry1/evry0)],
# marker='o', s=100, alpha=0.7, c='k')
# plt.xticks(np.arange(4), ['ZTF', 'TESS', 'LSST', 'Evry'])
plt.scatter(np.arange(5), [np.log10(crts1/crts0), np.log10(ztf1/ztf0), np.log10(tess1/tess0),
np.log10(lsst1/lsst0), np.log10(evry1/evry0)],
marker='o', s=100, alpha=0.7, c='k')
plt.xticks(np.arange(5), ['CRTS','ZTF', 'TESS', 'LSST', 'Evry'])
plt.grid(True, alpha=0.3)
plt.ylabel('log $V_{Haystack}$')
plt.savefig('../figures/optical_haystack.pdf', dpi=300, bbox_inches='tight', pad_inches=0.25)
In [ ]: