In [14]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [22]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
maxima = np.array([])
if a[0] > a[1]:
maxima = np.append(maxima, 0)
for n in range (1, len(a) - 1):
if a[n] > a[n-1] and a[n] > a[n+1]:
maxima = np.append(maxima, n)
if a[len(a) - 1] > a[len(a) - 2]:
maxima = np.append(maxima, len(a) - 1)
return maxima
In [25]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [28]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [51]:
# YOUR CODE HERE
pi_digits_array = np.array([])
for n in range(0, 10000):
pi_digits_array = np.append(pi_digits_array, pi_digits_str[n])
#there may be a more efficient way to do this with arrays, but I couldn't
#find it, and I only need to do it once anyway and it only takes ~2 seconds
pi_maxima = find_peaks(pi_digits_array)
pi_diff = np.diff(pi_maxima)
plt.hist(pi_diff, bins=15, range=(0,15), color="g")
plt.xlabel("Seperation")
Out[51]:
In [ ]:
assert True # use this for grading the pi digits histogram