In [1]:
%cat 0Source_Citation.txt
In [2]:
%matplotlib inline
# %matplotlib notebook # for interactive
For high dpi displays.
In [3]:
%config InlineBackend.figure_format = 'retina'
This example compares pressure calculated from pytheos
and original publication for the gold scale by Yokoo 2009.
In [4]:
import matplotlib.pyplot as plt
import numpy as np
from uncertainties import unumpy as unp
import pytheos as eos
In [5]:
eta = np.linspace(1., 0.60, 21)
print(eta)
In [6]:
yokoo_au = eos.gold.Yokoo2009()
In [7]:
yokoo_au.print_equations()
In [8]:
yokoo_au.print_equations()
In [9]:
yokoo_au.print_parameters()
In [10]:
v0 = 67.84742110765599
In [11]:
yokoo_au.three_r
Out[11]:
In [12]:
v = v0 * (eta)
temp = 3000.
In [13]:
p = yokoo_au.cal_p(v, temp * np.ones_like(v))
In [14]:
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
print("{0: .3f} {1: .2f}".format(eta_i, p_i))
In [15]:
v = yokoo_au.cal_v(p, temp * np.ones_like(p), min_strain=0.6)
print(1.-(v/v0))
I cannot quite reproduce the table values. The mismatch is about 3 GPa at 3000 K and 380 GPa.
This means his parameters may have been rounded.
Therefore, I readjusted the eos parameters from Yokoo to match their table values better. Users have a choice if they use the table values or the parameter values. If reproduce_table
sets to True
, the difference reduces to 0.1 GPa.
In [16]:
yokoo_au = eos.gold.Yokoo2009(reproduce_table=True)
In [17]:
p = yokoo_au.cal_p(v, temp * np.ones_like(v))
In [ ]: