In [1]:
%cat 0Source_Citation.txt
In [2]:
%matplotlib inline
# %matplotlib notebook # for interactive
For high dpi displays.
In [3]:
%config InlineBackend.figure_format = 'retina'
This example compares pressure calculated from pytheos
and original publication for the gold scale by Tsuchiya 2003.
In [4]:
import matplotlib.pyplot as plt
import numpy as np
from uncertainties import unumpy as unp
import pytheos as eos
In [5]:
eta = np.linspace(0., 0.34, 18)
print(eta)
In [6]:
tsuchiya_au = eos.gold.Tsuchiya2003()
In [7]:
help(tsuchiya_au)
In [8]:
tsuchiya_au.print_equations()
In [9]:
tsuchiya_au.print_equations()
In [10]:
tsuchiya_au.print_parameters()
In [11]:
v0 = 67.84742110765599
In [12]:
tsuchiya_au.three_r
Out[12]:
In [13]:
v = v0 * (1.-eta)
temp = 2500.
In [14]:
p = tsuchiya_au.cal_p(v, temp * np.ones_like(v))
In [15]:
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
print("{0: .3f} {1: .2f}".format(eta_i, p_i))
In [16]:
v = tsuchiya_au.cal_v(p, temp * np.ones_like(p), min_strain=0.6)
print(1.-(v/v0))
I cannot quite reproduce the table values. The mismatch is about 1 GPa at 2500 K and 240 GPa.
This means his parameters may have been rounded.
Therefore, I readjusted the eos parameters from Tsuchiya to match their table values better. Users have a choice if they use the table values or the parameter values. If reproduce_table
sets to True
, the difference reduces to 0.1 GPa.
In [17]:
tsuchiya_au = eos.gold.Tsuchiya2003(reproduce_table=True)
In [18]:
p = tsuchiya_au.cal_p(v, temp * np.ones_like(v))
In [19]:
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
print("{0: .3f} {1: .2f}".format(eta_i, p_i))
In [ ]:
In [ ]: