In [1]:
    
%cat 0Source_Citation.txt
    
    
In [2]:
    
%matplotlib inline
# %matplotlib notebook # for interactive
    
For high dpi displays.
In [3]:
    
%config InlineBackend.figure_format = 'retina'
    
This example compares pressure calculated from pytheos and original publication for the gold scale by Tsuchiya 2003.
In [4]:
    
import matplotlib.pyplot as plt
import numpy as np
from uncertainties import unumpy as unp
import pytheos as eos
    
In [5]:
    
eta = np.linspace(0., 0.34, 18)
print(eta)
    
    
In [6]:
    
tsuchiya_au = eos.gold.Tsuchiya2003()
    
In [7]:
    
help(tsuchiya_au)
    
    
In [8]:
    
tsuchiya_au.print_equations()
    
    
In [9]:
    
tsuchiya_au.print_equations()
    
    
In [10]:
    
tsuchiya_au.print_parameters()
    
    
In [11]:
    
v0 = 67.84742110765599
    
In [12]:
    
tsuchiya_au.three_r
    
    Out[12]:
In [13]:
    
v = v0 * (1.-eta) 
temp = 2500.
    
In [14]:
    
p = tsuchiya_au.cal_p(v, temp * np.ones_like(v))
    
In [15]:
    
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
    print("{0: .3f} {1: .2f}".format(eta_i, p_i))
    
    
In [16]:
    
v = tsuchiya_au.cal_v(p, temp * np.ones_like(p), min_strain=0.6)
print(1.-(v/v0))
    
    
I cannot quite reproduce the table values. The mismatch is about 1 GPa at 2500 K and 240 GPa.
This means his parameters may have been rounded.
Therefore, I readjusted the eos parameters from Tsuchiya to match their table values better.  Users have a choice if they use the table values or the parameter values.  If reproduce_table sets to True, the difference reduces to 0.1 GPa.
In [17]:
    
tsuchiya_au = eos.gold.Tsuchiya2003(reproduce_table=True)
    
In [18]:
    
p = tsuchiya_au.cal_p(v, temp * np.ones_like(v))
    
In [19]:
    
print('for T = ', temp)
for eta_i, p_i in zip(eta, p):
    print("{0: .3f} {1: .2f}".format(eta_i, p_i))
    
    
In [ ]:
    
    
In [ ]: