In [1]:
from sympy import *
init_printing()
In [2]:
x = Symbol('x')
y = Symbol('y')
f = (x - y) * (x + y)
f
Out[2]:
In [3]:
f.expand()
Out[3]:
In [4]:
expand(f)
Out[4]:
In [5]:
expand(f**2)
Out[5]:
In [6]:
fe = f.expand()
fe
Out[6]:
In [7]:
fe.factor()
Out[7]:
In [8]:
g = (x**2-y**2)/(x-y)**2
g
Out[8]:
In [9]:
g.ratsimp()
Out[9]:
In [10]:
g.factor()
Out[10]:
In [11]:
g.simplify()
Out[11]:
In [12]:
h = x*x**y
h
Out[12]:
In [13]:
h.powsimp()
Out[13]:
In [14]:
hp = h.simplify()
hp
Out[14]:
In [15]:
hp.expand()
Out[15]:
In [16]:
f = (sin(2*x)+cos(x)) / ((sin(2*x)**2 - cos(x)**2)*(sin(2*x)-cos(x)))
f
Out[16]:
In [17]:
f.ratsimp()
Out[17]:
In [18]:
f.trigsimp()
Out[18]:
In [19]:
f.simplify()
Out[19]:
In [20]:
f.expand()
Out[20]:
In [21]:
f.expand(trig=True)
Out[21]:
In [22]:
f.expand(trig=True, numer=True)
Out[22]:
In [23]:
fe = f.expand(trig=True,numer=True).expand(trig=True,denom=True)
fe
Out[23]:
In [24]:
fe.factor()
Out[24]:
In [25]:
f.expand(gibtsnich=True)
Out[25]:
In [26]:
x = Symbol('x')
a = (9*x**2-5)/((x-2)*(x-3))
a
Out[26]:
In [27]:
a.subs(x, 4)
Out[27]:
In [28]:
y = Symbol('y')
b = (x-y)**3 / (x+y)
b
Out[28]:
In [29]:
b.subs(x, 3).subs(y, 0)
Out[29]:
In [30]:
a
Out[30]:
In [31]:
a.subs(x, 2)
Out[31]:
In [32]:
c = 1/cos(x*pi/2)
c
Out[32]:
In [33]:
c.subs(x,1)
Out[33]:
In [34]:
a
Out[34]:
In [35]:
a.limit(x, 2)
Out[35]:
In [36]:
a.limit(x, 2, dir='-')
Out[36]:
In [37]:
a = cos(pi*x)/(2*x-1)
a
Out[37]:
In [38]:
a.limit(x, Rational(1,2))
Out[38]:
In [39]:
a.subs(x, Rational(1,2))
Out[39]:
In [40]:
n = Symbol('n')
b = factorial(n)*exp(n)/n**n/sqrt(n)
b
Out[40]:
In [41]:
L = Limit(b, n, oo) # Träger Operator
L
Out[41]:
In [42]:
L.doit()
Out[42]:
Stirlingsche Formel
In [43]:
f = x**n
f
Out[43]:
In [44]:
f.diff(x)
Out[44]:
In [45]:
f.diff(x).powsimp()
Out[45]:
In [46]:
f.diff(x,x,x).factor()
Out[46]:
In [47]:
f.diff(x,3).factor()
Out[47]:
In [48]:
f.diff()
In [49]:
f.diff(x,0)
Out[49]:
In [50]:
g = x**2*cos(2*x)
g.diff()
Out[50]:
So ist das Leben.
In [51]:
a
Out[51]:
Wir berechnen den Grenzwert zu Fuß mit der Regel von de l'Hôpital
In [52]:
zaehler = numer(a) # numer ist keine Methode
nenner = denom(a)
zaehler, nenner
Out[52]:
In [53]:
d_zaehler = zaehler.diff(x)
d_nenner = nenner.diff(x)
d_zaehler, d_nenner
Out[53]:
In [54]:
d_zaehler.subs(x, Rational(1,2)) / d_nenner.subs(x, Rational(1,2))
Out[54]:
In [55]:
f
Out[55]:
In [56]:
f.integrate(x)
Out[56]:
In [57]:
f.integrate(x, conds='none')
Out[57]:
In [58]:
f = sin(2*x)*cos(3*x)**2
f
Out[58]:
In [59]:
I1 = f.integrate() # warum darf diese Variable nicht I heißen?
I1
Out[59]:
In [60]:
I1.diff(x)
Out[60]:
In [61]:
I1.diff(x) == f
Out[61]:
In [62]:
g = 1/(1+x**4)
I2 = g.integrate(x)
I2
Out[62]:
In [63]:
I2.diff(x)
Out[63]:
In [64]:
I2.diff() == g
Out[64]:
In [65]:
I2.diff().ratsimp() ==g
Out[65]:
In [66]:
f
Out[66]:
In [67]:
I3 = f.integrate((x,0,pi/4))
I3
Out[67]:
In [68]:
I4 = Integral(f, (x,0,pi/4))
I4
Out[68]:
In [69]:
I4.doit()
Out[69]:
In [70]:
I4.n() # numerische Integration
Out[70]:
In [71]:
I5 = Integral(sqrt(exp(x)+4), (x,0,1))
I5
Out[71]:
In [72]:
I5.doit()
Out[72]:
In [73]:
I5.n()
Out[73]:
Vergleich mit der Methode aus der CompLA (nicht prüfungsrelevant für CompAna)
In [74]:
import numpy as np
from scipy import integrate
In [75]:
def f(x):
return np.sqrt(np.exp(x)+4)
In [76]:
res, err = integrate.quad(f, 0, 1)
res
Out[76]: