In [0]:
!wget https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/monet2photo.zip
--2019-08-22 12:55:44-- https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/monet2photo.zip
Resolving people.eecs.berkeley.edu (people.eecs.berkeley.edu)... 128.32.189.73
Connecting to people.eecs.berkeley.edu (people.eecs.berkeley.edu)|128.32.189.73|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 305231073 (291M) [application/zip]
Saving to: ‘monet2photo.zip’
monet2photo.zip 100%[===================>] 291.09M 21.2MB/s in 15s
2019-08-22 12:55:59 (19.6 MB/s) - ‘monet2photo.zip’ saved [305231073/305231073]
In [0]:
!mkdir data
!cd data
!unzip monet2photo.zip
Archive: monet2photo.zip
creating: monet2photo/
creating: monet2photo/trainA/
inflating: monet2photo/trainA/01159.jpg
inflating: monet2photo/trainA/01048.jpg
inflating: monet2photo/trainA/01144.jpg
inflating: monet2photo/trainA/00799.jpg
inflating: monet2photo/trainA/00897.jpg
inflating: monet2photo/trainA/00998.jpg
inflating: monet2photo/trainA/00883.jpg
inflating: monet2photo/trainA/00985.jpg
inflating: monet2photo/trainA/00311.jpg
inflating: monet2photo/trainA/01243.jpg
inflating: monet2photo/trainA/01259.jpg
inflating: monet2photo/trainA/00454.jpg
inflating: monet2photo/trainA/00461.jpg
inflating: monet2photo/trainA/01283.jpg
inflating: monet2photo/trainA/00901.jpg
inflating: monet2photo/trainA/00502.jpg
inflating: monet2photo/trainA/00176.jpg
inflating: monet2photo/trainA/01157.jpg
inflating: monet2photo/trainA/00935.jpg
inflating: monet2photo/trainA/00929.jpg
inflating: monet2photo/trainA/00837.jpg
inflating: monet2photo/trainA/00444.jpg
inflating: monet2photo/trainA/00808.jpg
inflating: monet2photo/trainA/01009.jpg
inflating: monet2photo/trainA/01324.jpg
inflating: monet2photo/trainA/01278.jpg
inflating: monet2photo/trainA/01229.jpg
inflating: monet2photo/trainA/00625.jpg
inflating: monet2photo/trainA/00652.jpg
inflating: monet2photo/trainA/00056.jpg
inflating: monet2photo/trainA/00899.jpg
inflating: monet2photo/trainA/01115.jpg
inflating: monet2photo/trainA/00725.jpg
inflating: monet2photo/trainA/00063.jpg
inflating: monet2photo/trainA/01153.jpg
inflating: monet2photo/trainA/00731.jpg
inflating: monet2photo/trainA/00537.jpg
inflating: monet2photo/trainA/01183.jpg
inflating: monet2photo/trainA/00358.jpg
inflating: monet2photo/trainA/00486.jpg
inflating: monet2photo/trainA/00982.jpg
inflating: monet2photo/trainA/00019.jpg
inflating: monet2photo/trainA/00139.jpg
inflating: monet2photo/trainA/00873.jpg
inflating: monet2photo/trainA/00741.jpg
inflating: monet2photo/trainA/00034.jpg
inflating: monet2photo/trainA/00651.jpg
inflating: monet2photo/trainA/00169.jpg
inflating: monet2photo/trainA/01281.jpg
inflating: monet2photo/trainA/00178.jpg
inflating: monet2photo/trainA/00742.jpg
inflating: monet2photo/trainA/00923.jpg
inflating: monet2photo/trainA/00592.jpg
inflating: monet2photo/trainA/01152.jpg
inflating: monet2photo/trainA/00996.jpg
inflating: monet2photo/trainA/00534.jpg
inflating: monet2photo/trainA/00157.jpg
inflating: monet2photo/trainA/00977.jpg
inflating: monet2photo/trainA/00807.jpg
inflating: monet2photo/trainA/00971.jpg
inflating: monet2photo/trainA/00484.jpg
inflating: monet2photo/trainA/00015.jpg
inflating: monet2photo/trainA/00345.jpg
inflating: monet2photo/trainA/00524.jpg
inflating: monet2photo/trainA/01028.jpg
inflating: monet2photo/trainA/00294.jpg
inflating: monet2photo/trainA/01077.jpg
inflating: monet2photo/trainA/01241.jpg
inflating: monet2photo/trainA/01292.jpg
inflating: monet2photo/trainA/00634.jpg
inflating: monet2photo/trainA/00518.jpg
inflating: monet2photo/trainA/00536.jpg
inflating: monet2photo/trainA/00242.jpg
inflating: monet2photo/trainA/00307.jpg
inflating: monet2photo/trainA/00147.jpg
inflating: monet2photo/trainA/01141.jpg
inflating: monet2photo/trainA/00631.jpg
inflating: monet2photo/trainA/01191.jpg
inflating: monet2photo/trainA/00809.jpg
inflating: monet2photo/trainA/00966.jpg
inflating: monet2photo/trainA/01235.jpg
inflating: monet2photo/trainA/00644.jpg
inflating: monet2photo/trainA/01321.jpg
inflating: monet2photo/trainA/00078.jpg
inflating: monet2photo/trainA/01105.jpg
inflating: monet2photo/trainA/00805.jpg
inflating: monet2photo/trainA/00446.jpg
inflating: monet2photo/trainA/01227.jpg
inflating: monet2photo/trainA/00459.jpg
inflating: monet2photo/trainA/01177.jpg
inflating: monet2photo/trainA/00207.jpg
inflating: monet2photo/trainA/00871.jpg
inflating: monet2photo/trainA/00158.jpg
inflating: monet2photo/trainA/00609.jpg
inflating: monet2photo/trainA/00841.jpg
inflating: monet2photo/trainA/00125.jpg
inflating: monet2photo/trainA/00349.jpg
inflating: monet2photo/trainA/00027.jpg
inflating: monet2photo/trainA/00962.jpg
inflating: monet2photo/trainA/00382.jpg
inflating: monet2photo/trainA/00969.jpg
inflating: monet2photo/trainA/00109.jpg
inflating: monet2photo/trainA/00164.jpg
inflating: monet2photo/trainA/00767.jpg
inflating: monet2photo/trainA/00726.jpg
inflating: monet2photo/trainA/01275.jpg
inflating: monet2photo/trainA/00219.jpg
inflating: monet2photo/trainA/00972.jpg
inflating: monet2photo/trainA/01081.jpg
inflating: monet2photo/trainA/00997.jpg
inflating: monet2photo/trainA/00389.jpg
inflating: monet2photo/trainA/01188.jpg
inflating: monet2photo/trainA/01204.jpg
inflating: monet2photo/trainA/00012.jpg
inflating: monet2photo/trainA/01247.jpg
inflating: monet2photo/trainA/00548.jpg
inflating: monet2photo/trainA/00687.jpg
inflating: monet2photo/trainA/00539.jpg
inflating: monet2photo/trainA/01044.jpg
inflating: monet2photo/trainA/00193.jpg
inflating: monet2photo/trainA/00291.jpg
inflating: monet2photo/trainA/00388.jpg
inflating: monet2photo/trainA/01131.jpg
inflating: monet2photo/trainA/00432.jpg
inflating: monet2photo/trainA/00452.jpg
inflating: monet2photo/trainA/00275.jpg
inflating: monet2photo/trainA/00199.jpg
inflating: monet2photo/trainA/00329.jpg
inflating: monet2photo/trainA/01322.jpg
inflating: monet2photo/trainA/01175.jpg
inflating: monet2photo/trainA/00121.jpg
inflating: monet2photo/trainA/01337.jpg
inflating: monet2photo/trainA/00928.jpg
inflating: monet2photo/trainA/00712.jpg
inflating: monet2photo/trainA/00343.jpg
inflating: monet2photo/trainA/01239.jpg
inflating: monet2photo/trainA/00491.jpg
inflating: monet2photo/trainA/01006.jpg
inflating: monet2photo/trainA/01244.jpg
inflating: monet2photo/trainA/01092.jpg
inflating: monet2photo/trainA/00608.jpg
inflating: monet2photo/trainA/00148.jpg
inflating: monet2photo/trainA/01016.jpg
inflating: monet2photo/trainA/00978.jpg
inflating: monet2photo/trainA/00045.jpg
inflating: monet2photo/trainA/00117.jpg
inflating: monet2photo/trainA/00943.jpg
inflating: monet2photo/trainA/00677.jpg
inflating: monet2photo/trainA/01181.jpg
inflating: monet2photo/trainA/00161.jpg
inflating: monet2photo/trainA/00816.jpg
inflating: monet2photo/trainA/01198.jpg
inflating: monet2photo/trainA/00865.jpg
inflating: monet2photo/trainA/01148.jpg
inflating: monet2photo/trainA/00864.jpg
inflating: monet2photo/trainA/01303.jpg
inflating: monet2photo/trainA/01031.jpg
inflating: monet2photo/trainA/00597.jpg
inflating: monet2photo/trainA/01121.jpg
inflating: monet2photo/trainA/00404.jpg
inflating: monet2photo/trainA/00523.jpg
inflating: monet2photo/trainA/00594.jpg
inflating: monet2photo/trainA/01051.jpg
inflating: monet2photo/trainA/00469.jpg
inflating: monet2photo/trainA/00638.jpg
inflating: monet2photo/trainA/00813.jpg
inflating: monet2photo/trainA/00451.jpg
inflating: monet2photo/trainA/01145.jpg
inflating: monet2photo/trainA/00471.jpg
inflating: monet2photo/trainA/00033.jpg
inflating: monet2photo/trainA/01059.jpg
inflating: monet2photo/trainA/01282.jpg
inflating: monet2photo/trainA/01066.jpg
inflating: monet2photo/trainA/00204.jpg
inflating: monet2photo/trainA/00633.jpg
inflating: monet2photo/trainA/00845.jpg
inflating: monet2photo/trainA/00613.jpg
inflating: monet2photo/trainA/01067.jpg
inflating: monet2photo/trainA/00191.jpg
inflating: monet2photo/trainA/00185.jpg
inflating: monet2photo/trainA/01062.jpg
inflating: monet2photo/trainA/00611.jpg
inflating: monet2photo/trainA/00328.jpg
inflating: monet2photo/trainA/01072.jpg
inflating: monet2photo/trainA/00122.jpg
inflating: monet2photo/trainA/01209.jpg
inflating: monet2photo/trainA/01248.jpg
inflating: monet2photo/trainA/00083.jpg
inflating: monet2photo/trainA/01257.jpg
inflating: monet2photo/trainA/00729.jpg
inflating: monet2photo/trainA/00829.jpg
inflating: monet2photo/trainA/01251.jpg
inflating: monet2photo/trainA/00824.jpg
inflating: monet2photo/trainA/00778.jpg
inflating: monet2photo/trainA/00806.jpg
inflating: monet2photo/trainA/01107.jpg
inflating: monet2photo/trainA/00614.jpg
inflating: monet2photo/trainA/00635.jpg
inflating: monet2photo/trainA/00951.jpg
inflating: monet2photo/trainA/00227.jpg
inflating: monet2photo/trainA/01314.jpg
inflating: monet2photo/trainA/01098.jpg
inflating: monet2photo/trainA/00124.jpg
inflating: monet2photo/trainA/00136.jpg
inflating: monet2photo/trainA/00844.jpg
inflating: monet2photo/trainA/01195.jpg
inflating: monet2photo/trainA/00046.jpg
inflating: monet2photo/trainA/00248.jpg
inflating: monet2photo/trainA/01217.jpg
inflating: monet2photo/trainA/01002.jpg
inflating: monet2photo/trainA/01136.jpg
inflating: monet2photo/trainA/00678.jpg
inflating: monet2photo/trainA/00919.jpg
inflating: monet2photo/trainA/00115.jpg
inflating: monet2photo/trainA/00709.jpg
inflating: monet2photo/trainA/00558.jpg
inflating: monet2photo/trainA/00991.jpg
inflating: monet2photo/trainA/01111.jpg
inflating: monet2photo/trainA/00468.jpg
inflating: monet2photo/trainA/01133.jpg
inflating: monet2photo/trainA/00309.jpg
inflating: monet2photo/trainA/00504.jpg
inflating: monet2photo/trainA/00636.jpg
inflating: monet2photo/trainA/01308.jpg
inflating: monet2photo/trainA/00113.jpg
inflating: monet2photo/trainA/00542.jpg
inflating: monet2photo/trainA/00547.jpg
inflating: monet2photo/trainA/00995.jpg
inflating: monet2photo/trainA/00441.jpg
inflating: monet2photo/trainA/00936.jpg
inflating: monet2photo/trainA/00433.jpg
inflating: monet2photo/trainA/00156.jpg
inflating: monet2photo/trainA/00123.jpg
inflating: monet2photo/trainA/00224.jpg
inflating: monet2photo/trainA/00954.jpg
inflating: monet2photo/trainA/00079.jpg
inflating: monet2photo/trainA/00944.jpg
inflating: monet2photo/trainA/00649.jpg
inflating: monet2photo/trainA/00173.jpg
inflating: monet2photo/trainA/01261.jpg
inflating: monet2photo/trainA/00241.jpg
inflating: monet2photo/trainA/01274.jpg
inflating: monet2photo/trainA/00653.jpg
inflating: monet2photo/trainA/01147.jpg
inflating: monet2photo/trainA/00832.jpg
inflating: monet2photo/trainA/00437.jpg
inflating: monet2photo/trainA/00094.jpg
inflating: monet2photo/trainA/01103.jpg
inflating: monet2photo/trainA/00752.jpg
inflating: monet2photo/trainA/00762.jpg
inflating: monet2photo/trainA/00822.jpg
inflating: monet2photo/trainA/00693.jpg
inflating: monet2photo/trainA/01306.jpg
inflating: monet2photo/trainA/00187.jpg
inflating: monet2photo/trainA/00672.jpg
inflating: monet2photo/trainA/00261.jpg
inflating: monet2photo/trainA/00334.jpg
inflating: monet2photo/trainA/00624.jpg
inflating: monet2photo/trainA/01119.jpg
inflating: monet2photo/trainA/00202.jpg
inflating: monet2photo/trainA/00906.jpg
inflating: monet2photo/trainA/00436.jpg
inflating: monet2photo/trainA/00959.jpg
inflating: monet2photo/trainA/00812.jpg
inflating: monet2photo/trainA/00872.jpg
inflating: monet2photo/trainA/00301.jpg
inflating: monet2photo/trainA/00154.jpg
inflating: monet2photo/trainA/01035.jpg
inflating: monet2photo/trainA/00891.jpg
inflating: monet2photo/trainA/00213.jpg
inflating: monet2photo/trainA/00166.jpg
inflating: monet2photo/trainA/01174.jpg
inflating: monet2photo/trainA/00443.jpg
inflating: monet2photo/trainA/01302.jpg
inflating: monet2photo/trainA/00818.jpg
inflating: monet2photo/trainA/01211.jpg
inflating: monet2photo/trainA/00975.jpg
inflating: monet2photo/trainA/00589.jpg
inflating: monet2photo/trainA/00521.jpg
inflating: monet2photo/trainA/01328.jpg
inflating: monet2photo/trainA/00481.jpg
inflating: monet2photo/trainA/00274.jpg
inflating: monet2photo/trainA/00478.jpg
inflating: monet2photo/trainA/00789.jpg
inflating: monet2photo/trainA/00964.jpg
inflating: monet2photo/trainA/00801.jpg
inflating: monet2photo/trainA/00488.jpg
inflating: monet2photo/trainA/00249.jpg
inflating: monet2photo/trainA/01023.jpg
inflating: monet2photo/trainA/00366.jpg
inflating: monet2photo/trainA/00758.jpg
inflating: monet2photo/trainA/00421.jpg
inflating: monet2photo/trainA/00834.jpg
inflating: monet2photo/trainA/00466.jpg
inflating: monet2photo/trainA/00289.jpg
inflating: monet2photo/trainA/00192.jpg
inflating: monet2photo/trainA/00411.jpg
inflating: monet2photo/trainA/00779.jpg
inflating: monet2photo/trainA/00483.jpg
inflating: monet2photo/trainA/00172.jpg
inflating: monet2photo/trainA/00416.jpg
inflating: monet2photo/trainA/01025.jpg
inflating: monet2photo/trainA/00596.jpg
inflating: monet2photo/trainA/00415.jpg
inflating: monet2photo/trainA/00657.jpg
inflating: monet2photo/trainA/00546.jpg
inflating: monet2photo/trainA/00414.jpg
inflating: monet2photo/trainA/01109.jpg
inflating: monet2photo/trainA/00032.jpg
inflating: monet2photo/trainA/00526.jpg
inflating: monet2photo/trainA/00331.jpg
inflating: monet2photo/trainA/01027.jpg
inflating: monet2photo/trainA/00006.jpg
inflating: monet2photo/trainA/00467.jpg
inflating: monet2photo/trainA/01128.jpg
inflating: monet2photo/trainA/00251.jpg
inflating: monet2photo/trainA/01265.jpg
inflating: monet2photo/trainA/00292.jpg
inflating: monet2photo/trainA/01286.jpg
inflating: monet2photo/trainA/00127.jpg
inflating: monet2photo/trainA/00007.jpg
inflating: monet2photo/trainA/01179.jpg
inflating: monet2photo/trainA/00108.jpg
inflating: monet2photo/trainA/00144.jpg
inflating: monet2photo/trainA/00196.jpg
inflating: monet2photo/trainA/00278.jpg
inflating: monet2photo/trainA/01138.jpg
inflating: monet2photo/trainA/00735.jpg
inflating: monet2photo/trainA/00379.jpg
inflating: monet2photo/trainA/01184.jpg
inflating: monet2photo/trainA/01208.jpg
inflating: monet2photo/trainA/00777.jpg
inflating: monet2photo/trainA/00258.jpg
inflating: monet2photo/trainA/00826.jpg
inflating: monet2photo/trainA/00184.jpg
inflating: monet2photo/trainA/00744.jpg
inflating: monet2photo/trainA/00475.jpg
inflating: monet2photo/trainA/01046.jpg
inflating: monet2photo/trainA/00114.jpg
inflating: monet2photo/trainA/01091.jpg
inflating: monet2photo/trainA/00722.jpg
inflating: monet2photo/trainA/00747.jpg
inflating: monet2photo/trainA/01139.jpg
inflating: monet2photo/trainA/01014.jpg
inflating: monet2photo/trainA/01212.jpg
inflating: monet2photo/trainA/00398.jpg
inflating: monet2photo/trainA/00797.jpg
inflating: monet2photo/trainA/00761.jpg
inflating: monet2photo/trainA/00689.jpg
inflating: monet2photo/trainA/00276.jpg
inflating: monet2photo/trainA/00391.jpg
inflating: monet2photo/trainA/00004.jpg
inflating: monet2photo/trainA/00119.jpg
inflating: monet2photo/trainA/01272.jpg
inflating: monet2photo/trainA/00499.jpg
inflating: monet2photo/trainA/00302.jpg
inflating: monet2photo/trainA/01266.jpg
inflating: monet2photo/trainA/00986.jpg
inflating: monet2photo/trainA/00755.jpg
inflating: monet2photo/trainA/00961.jpg
inflating: monet2photo/trainA/00685.jpg
inflating: monet2photo/trainA/00092.jpg
inflating: monet2photo/trainA/01146.jpg
inflating: monet2photo/trainA/00739.jpg
inflating: monet2photo/trainA/00798.jpg
inflating: monet2photo/trainA/00128.jpg
inflating: monet2photo/trainA/01231.jpg
inflating: monet2photo/trainA/00615.jpg
inflating: monet2photo/trainA/01234.jpg
inflating: monet2photo/trainA/00907.jpg
inflating: monet2photo/trainA/00403.jpg
inflating: monet2photo/trainA/00281.jpg
inflating: monet2photo/trainA/00238.jpg
inflating: monet2photo/trainA/01064.jpg
inflating: monet2photo/trainA/00882.jpg
inflating: monet2photo/trainA/00987.jpg
inflating: monet2photo/trainA/01178.jpg
inflating: monet2photo/trainA/00201.jpg
inflating: monet2photo/trainA/00269.jpg
inflating: monet2photo/trainA/00288.jpg
inflating: monet2photo/trainA/00811.jpg
inflating: monet2photo/trainA/00037.jpg
inflating: monet2photo/trainA/01132.jpg
inflating: monet2photo/trainA/01108.jpg
inflating: monet2photo/trainA/01038.jpg
inflating: monet2photo/trainA/01083.jpg
inflating: monet2photo/trainA/00646.jpg
inflating: monet2photo/trainA/00828.jpg
inflating: monet2photo/trainA/00003.jpg
inflating: monet2photo/trainA/01167.jpg
inflating: monet2photo/trainA/00008.jpg
inflating: monet2photo/trainA/01316.jpg
inflating: monet2photo/trainA/01114.jpg
inflating: monet2photo/trainA/01297.jpg
inflating: monet2photo/trainA/00538.jpg
inflating: monet2photo/trainA/00344.jpg
inflating: monet2photo/trainA/01134.jpg
inflating: monet2photo/trainA/01318.jpg
inflating: monet2photo/trainA/00795.jpg
inflating: monet2photo/trainA/01124.jpg
inflating: monet2photo/trainA/01263.jpg
inflating: monet2photo/trainA/00426.jpg
inflating: monet2photo/trainA/00319.jpg
inflating: monet2photo/trainA/00455.jpg
inflating: monet2photo/trainA/01197.jpg
inflating: monet2photo/trainA/01169.jpg
inflating: monet2photo/trainA/00839.jpg
inflating: monet2photo/trainA/01069.jpg
inflating: monet2photo/trainA/00077.jpg
inflating: monet2photo/trainA/00869.jpg
inflating: monet2photo/trainA/00143.jpg
inflating: monet2photo/trainA/00286.jpg
inflating: monet2photo/trainA/00222.jpg
inflating: monet2photo/trainA/00676.jpg
inflating: monet2photo/trainA/00318.jpg
inflating: monet2photo/trainA/00142.jpg
inflating: monet2photo/trainA/00071.jpg
inflating: monet2photo/trainA/00385.jpg
inflating: monet2photo/trainA/00394.jpg
inflating: monet2photo/trainA/00893.jpg
inflating: monet2photo/trainA/01279.jpg
inflating: monet2photo/trainA/00239.jpg
inflating: monet2photo/trainA/01218.jpg
inflating: monet2photo/trainA/00205.jpg
inflating: monet2photo/trainA/00623.jpg
inflating: monet2photo/trainA/00983.jpg
inflating: monet2photo/trainA/00817.jpg
inflating: monet2photo/trainA/00557.jpg
inflating: monet2photo/trainA/00259.jpg
inflating: monet2photo/trainA/00924.jpg
inflating: monet2photo/trainA/00718.jpg
inflating: monet2photo/trainA/00022.jpg
inflating: monet2photo/trainA/01176.jpg
inflating: monet2photo/trainA/00028.jpg
inflating: monet2photo/trainA/01142.jpg
inflating: monet2photo/trainA/00772.jpg
inflating: monet2photo/trainA/00721.jpg
inflating: monet2photo/trainA/00472.jpg
inflating: monet2photo/trainA/00781.jpg
inflating: monet2photo/trainA/00435.jpg
inflating: monet2photo/trainA/00402.jpg
inflating: monet2photo/trainA/00211.jpg
inflating: monet2photo/trainA/00445.jpg
inflating: monet2photo/trainA/00892.jpg
inflating: monet2photo/trainA/00967.jpg
inflating: monet2photo/trainA/01246.jpg
inflating: monet2photo/trainA/01329.jpg
inflating: monet2photo/trainA/01315.jpg
inflating: monet2photo/trainA/00774.jpg
inflating: monet2photo/trainA/00551.jpg
inflating: monet2photo/trainA/00272.jpg
inflating: monet2photo/trainA/01222.jpg
inflating: monet2photo/trainA/00866.jpg
inflating: monet2photo/trainA/01117.jpg
inflating: monet2photo/trainA/00453.jpg
inflating: monet2photo/trainA/00695.jpg
inflating: monet2photo/trainA/00221.jpg
inflating: monet2photo/trainA/00931.jpg
inflating: monet2photo/trainA/01335.jpg
inflating: monet2photo/trainA/01055.jpg
inflating: monet2photo/trainA/00684.jpg
inflating: monet2photo/trainA/01018.jpg
inflating: monet2photo/trainA/01033.jpg
inflating: monet2photo/trainA/00149.jpg
inflating: monet2photo/trainA/00601.jpg
inflating: monet2photo/trainA/00675.jpg
inflating: monet2photo/trainA/00167.jpg
inflating: monet2photo/trainA/00377.jpg
inflating: monet2photo/trainA/00062.jpg
inflating: monet2photo/trainA/00922.jpg
inflating: monet2photo/trainA/00357.jpg
inflating: monet2photo/trainA/00422.jpg
inflating: monet2photo/trainA/00946.jpg
inflating: monet2photo/trainA/01037.jpg
inflating: monet2photo/trainA/00716.jpg
inflating: monet2photo/trainA/00287.jpg
inflating: monet2photo/trainA/00535.jpg
inflating: monet2photo/trainA/00206.jpg
inflating: monet2photo/trainA/01097.jpg
inflating: monet2photo/trainA/00606.jpg
inflating: monet2photo/trainA/01096.jpg
inflating: monet2photo/trainA/00706.jpg
inflating: monet2photo/trainA/01004.jpg
inflating: monet2photo/trainA/00835.jpg
inflating: monet2photo/trainA/00888.jpg
inflating: monet2photo/trainA/00912.jpg
inflating: monet2photo/trainA/00759.jpg
inflating: monet2photo/trainA/01194.jpg
inflating: monet2photo/trainA/00298.jpg
inflating: monet2photo/trainA/00151.jpg
inflating: monet2photo/trainA/00968.jpg
inflating: monet2photo/trainA/00485.jpg
inflating: monet2photo/trainA/01295.jpg
inflating: monet2photo/trainA/00717.jpg
inflating: monet2photo/trainA/00559.jpg
inflating: monet2photo/trainA/00387.jpg
inflating: monet2photo/trainA/00963.jpg
inflating: monet2photo/trainA/00939.jpg
inflating: monet2photo/trainA/00916.jpg
inflating: monet2photo/trainA/00553.jpg
inflating: monet2photo/trainA/01319.jpg
inflating: monet2photo/trainA/01168.jpg
inflating: monet2photo/trainA/00407.jpg
inflating: monet2photo/trainA/00465.jpg
inflating: monet2photo/trainA/00612.jpg
inflating: monet2photo/trainA/00163.jpg
inflating: monet2photo/trainA/00733.jpg
inflating: monet2photo/trainA/00802.jpg
inflating: monet2photo/trainA/00208.jpg
inflating: monet2photo/trainA/00698.jpg
inflating: monet2photo/trainA/01264.jpg
inflating: monet2photo/trainA/00788.jpg
inflating: monet2photo/trainA/00449.jpg
inflating: monet2photo/trainA/00096.jpg
inflating: monet2photo/trainA/01149.jpg
inflating: monet2photo/trainA/00603.jpg
inflating: monet2photo/trainA/00417.jpg
inflating: monet2photo/trainA/01047.jpg
inflating: monet2photo/trainA/00031.jpg
inflating: monet2photo/trainA/01039.jpg
inflating: monet2photo/trainA/00129.jpg
inflating: monet2photo/trainA/00244.jpg
inflating: monet2photo/trainA/00284.jpg
inflating: monet2photo/trainA/00933.jpg
inflating: monet2photo/trainA/00489.jpg
inflating: monet2photo/trainA/00993.jpg
inflating: monet2photo/trainA/00429.jpg
inflating: monet2photo/trainA/00955.jpg
inflating: monet2photo/trainA/00352.jpg
inflating: monet2photo/trainA/00768.jpg
inflating: monet2photo/trainA/01078.jpg
inflating: monet2photo/trainA/01076.jpg
inflating: monet2photo/trainA/00668.jpg
inflating: monet2photo/trainA/00836.jpg
inflating: monet2photo/trainA/01163.jpg
inflating: monet2photo/trainA/00189.jpg
inflating: monet2photo/trainA/00819.jpg
inflating: monet2photo/trainA/01311.jpg
inflating: monet2photo/trainA/00896.jpg
inflating: monet2photo/trainA/01166.jpg
inflating: monet2photo/trainA/00047.jpg
inflating: monet2photo/trainA/00602.jpg
inflating: monet2photo/trainA/00477.jpg
inflating: monet2photo/trainA/01034.jpg
inflating: monet2photo/trainA/01307.jpg
inflating: monet2photo/trainA/00313.jpg
inflating: monet2photo/trainA/00904.jpg
inflating: monet2photo/trainA/01074.jpg
inflating: monet2photo/trainA/00336.jpg
inflating: monet2photo/trainA/00021.jpg
inflating: monet2photo/trainA/00038.jpg
inflating: monet2photo/trainA/01187.jpg
inflating: monet2photo/trainA/01214.jpg
inflating: monet2photo/trainA/00895.jpg
inflating: monet2photo/trainA/00842.jpg
inflating: monet2photo/trainA/01236.jpg
inflating: monet2photo/trainA/00732.jpg
inflating: monet2photo/trainA/01052.jpg
inflating: monet2photo/trainA/00479.jpg
inflating: monet2photo/trainA/00023.jpg
inflating: monet2photo/trainA/00072.jpg
inflating: monet2photo/trainA/00884.jpg
inflating: monet2photo/trainA/00356.jpg
inflating: monet2photo/trainA/00704.jpg
inflating: monet2photo/trainA/01313.jpg
inflating: monet2photo/trainA/01196.jpg
inflating: monet2photo/trainA/00754.jpg
inflating: monet2photo/trainA/00621.jpg
inflating: monet2photo/trainA/00688.jpg
inflating: monet2photo/trainA/00256.jpg
inflating: monet2photo/trainA/00442.jpg
inflating: monet2photo/trainA/01193.jpg
inflating: monet2photo/trainA/00029.jpg
inflating: monet2photo/trainA/00681.jpg
inflating: monet2photo/trainA/00308.jpg
inflating: monet2photo/trainA/00909.jpg
inflating: monet2photo/trainA/00934.jpg
inflating: monet2photo/trainA/00231.jpg
inflating: monet2photo/trainA/00235.jpg
inflating: monet2photo/trainA/00073.jpg
inflating: monet2photo/trainA/00674.jpg
inflating: monet2photo/trainA/01224.jpg
inflating: monet2photo/trainA/00232.jpg
inflating: monet2photo/trainA/01061.jpg
inflating: monet2photo/trainA/01084.jpg
inflating: monet2photo/trainA/00528.jpg
inflating: monet2photo/trainA/01216.jpg
inflating: monet2photo/trainA/00026.jpg
inflating: monet2photo/trainA/01226.jpg
inflating: monet2photo/trainA/00682.jpg
inflating: monet2photo/trainA/00355.jpg
inflating: monet2photo/trainA/00619.jpg
inflating: monet2photo/trainA/01192.jpg
inflating: monet2photo/trainA/00617.jpg
inflating: monet2photo/trainA/01258.jpg
inflating: monet2photo/trainA/00827.jpg
inflating: monet2photo/trainA/00686.jpg
inflating: monet2photo/trainA/01008.jpg
inflating: monet2photo/trainA/00723.jpg
inflating: monet2photo/trainA/00957.jpg
inflating: monet2photo/trainA/00878.jpg
inflating: monet2photo/trainA/00363.jpg
inflating: monet2photo/trainA/00175.jpg
inflating: monet2photo/trainA/00861.jpg
inflating: monet2photo/trainA/00915.jpg
inflating: monet2photo/trainA/00368.jpg
inflating: monet2photo/trainA/00036.jpg
inflating: monet2photo/trainA/00645.jpg
inflating: monet2photo/trainA/00383.jpg
inflating: monet2photo/trainA/00168.jpg
inflating: monet2photo/trainA/00233.jpg
inflating: monet2photo/trainA/00591.jpg
inflating: monet2photo/trainA/00552.jpg
inflating: monet2photo/trainA/00598.jpg
inflating: monet2photo/trainA/01162.jpg
inflating: monet2photo/trainA/01325.jpg
inflating: monet2photo/trainA/01024.jpg
inflating: monet2photo/trainA/00225.jpg
inflating: monet2photo/trainA/01022.jpg
inflating: monet2photo/trainA/00851.jpg
inflating: monet2photo/trainA/00438.jpg
inflating: monet2photo/trainA/00541.jpg
inflating: monet2photo/trainA/00757.jpg
inflating: monet2photo/trainA/00637.jpg
inflating: monet2photo/trainA/01301.jpg
inflating: monet2photo/trainA/01093.jpg
inflating: monet2photo/trainA/00332.jpg
inflating: monet2photo/trainA/00937.jpg
inflating: monet2photo/trainA/01127.jpg
inflating: monet2photo/trainA/00994.jpg
inflating: monet2photo/trainA/01082.jpg
inflating: monet2photo/trainA/00639.jpg
inflating: monet2photo/trainA/00679.jpg
inflating: monet2photo/trainA/01041.jpg
inflating: monet2photo/trainA/00448.jpg
inflating: monet2photo/trainA/00658.jpg
inflating: monet2photo/trainA/00217.jpg
inflating: monet2photo/trainA/00351.jpg
inflating: monet2photo/trainA/01042.jpg
inflating: monet2photo/trainA/00498.jpg
inflating: monet2photo/trainA/00495.jpg
inflating: monet2photo/trainA/00223.jpg
inflating: monet2photo/trainA/01058.jpg
inflating: monet2photo/trainA/01129.jpg
inflating: monet2photo/trainA/01158.jpg
inflating: monet2photo/trainA/01063.jpg
inflating: monet2photo/trainA/00852.jpg
inflating: monet2photo/trainA/00863.jpg
inflating: monet2photo/trainA/00152.jpg
inflating: monet2photo/trainA/00049.jpg
inflating: monet2photo/trainA/01017.jpg
inflating: monet2photo/trainA/01019.jpg
inflating: monet2photo/trainA/00506.jpg
inflating: monet2photo/trainA/00667.jpg
inflating: monet2photo/trainA/00111.jpg
inflating: monet2photo/trainA/00501.jpg
inflating: monet2photo/trainA/00075.jpg
inflating: monet2photo/trainA/00848.jpg
inflating: monet2photo/trainA/01161.jpg
inflating: monet2photo/trainA/01056.jpg
inflating: monet2photo/trainA/01276.jpg
inflating: monet2photo/trainA/01029.jpg
inflating: monet2photo/trainA/00803.jpg
inflating: monet2photo/trainA/00243.jpg
inflating: monet2photo/trainA/01228.jpg
inflating: monet2photo/trainA/00792.jpg
inflating: monet2photo/trainA/00599.jpg
inflating: monet2photo/trainA/00145.jpg
inflating: monet2photo/trainA/00146.jpg
inflating: monet2photo/trainA/01172.jpg
inflating: monet2photo/trainA/00838.jpg
inflating: monet2photo/trainA/00406.jpg
inflating: monet2photo/trainA/01289.jpg
inflating: monet2photo/trainA/00326.jpg
inflating: monet2photo/trainA/00296.jpg
inflating: monet2photo/trainA/01049.jpg
inflating: monet2photo/trainA/00323.jpg
inflating: monet2photo/trainA/00627.jpg
inflating: monet2photo/trainA/00255.jpg
inflating: monet2photo/trainA/00058.jpg
inflating: monet2photo/trainA/00879.jpg
inflating: monet2photo/trainA/01285.jpg
inflating: monet2photo/trainA/01293.jpg
inflating: monet2photo/trainA/00543.jpg
inflating: monet2photo/trainA/00753.jpg
inflating: monet2photo/trainA/00456.jpg
inflating: monet2photo/trainA/00701.jpg
inflating: monet2photo/trainA/00482.jpg
inflating: monet2photo/trainA/00856.jpg
inflating: monet2photo/trainA/00493.jpg
inflating: monet2photo/trainA/00212.jpg
inflating: monet2photo/trainA/00522.jpg
inflating: monet2photo/trainA/01026.jpg
inflating: monet2photo/trainA/01118.jpg
inflating: monet2photo/trainA/00641.jpg
inflating: monet2photo/trainA/00656.jpg
inflating: monet2photo/trainA/00492.jpg
inflating: monet2photo/trainA/01284.jpg
inflating: monet2photo/trainA/00268.jpg
inflating: monet2photo/trainA/00043.jpg
inflating: monet2photo/trainA/00908.jpg
inflating: monet2photo/trainA/00973.jpg
inflating: monet2photo/trainA/00059.jpg
inflating: monet2photo/trainA/00921.jpg
inflating: monet2photo/trainA/01253.jpg
inflating: monet2photo/trainA/00905.jpg
inflating: monet2photo/trainA/00041.jpg
inflating: monet2photo/trainA/01122.jpg
inflating: monet2photo/trainA/00179.jpg
inflating: monet2photo/trainA/00868.jpg
inflating: monet2photo/trainA/00017.jpg
inflating: monet2photo/trainA/01104.jpg
inflating: monet2photo/trainA/00859.jpg
inflating: monet2photo/trainA/01277.jpg
inflating: monet2photo/trainA/01057.jpg
inflating: monet2photo/trainA/00925.jpg
inflating: monet2photo/trainA/00082.jpg
inflating: monet2photo/trainA/00348.jpg
inflating: monet2photo/trainA/00081.jpg
inflating: monet2photo/trainA/01219.jpg
inflating: monet2photo/trainA/00089.jpg
inflating: monet2photo/trainA/00333.jpg
inflating: monet2photo/trainA/01225.jpg
inflating: monet2photo/trainA/00011.jpg
inflating: monet2photo/trainA/00595.jpg
inflating: monet2photo/trainA/00487.jpg
inflating: monet2photo/trainA/00694.jpg
inflating: monet2photo/trainA/00197.jpg
inflating: monet2photo/trainA/00424.jpg
inflating: monet2photo/trainA/01065.jpg
inflating: monet2photo/trainA/00126.jpg
inflating: monet2photo/trainA/00035.jpg
inflating: monet2photo/trainA/00476.jpg
inflating: monet2photo/trainA/00673.jpg
inflating: monet2photo/trainA/00312.jpg
inflating: monet2photo/trainA/00881.jpg
inflating: monet2photo/trainA/00927.jpg
inflating: monet2photo/trainA/00554.jpg
inflating: monet2photo/trainA/01032.jpg
inflating: monet2photo/trainA/01206.jpg
inflating: monet2photo/trainA/00699.jpg
inflating: monet2photo/trainA/00137.jpg
inflating: monet2photo/trainA/00719.jpg
inflating: monet2photo/trainA/00464.jpg
inflating: monet2photo/trainA/00118.jpg
inflating: monet2photo/trainA/00324.jpg
inflating: monet2photo/trainA/01252.jpg
inflating: monet2photo/trainA/00497.jpg
inflating: monet2photo/trainA/00188.jpg
inflating: monet2photo/trainA/01271.jpg
inflating: monet2photo/trainA/00395.jpg
inflating: monet2photo/trainA/01327.jpg
inflating: monet2photo/trainA/00793.jpg
inflating: monet2photo/trainA/00749.jpg
inflating: monet2photo/trainA/00361.jpg
inflating: monet2photo/trainA/01333.jpg
inflating: monet2photo/trainA/00947.jpg
inflating: monet2photo/trainA/00321.jpg
inflating: monet2photo/trainA/00024.jpg
inflating: monet2photo/trainA/00091.jpg
inflating: monet2photo/trainA/00116.jpg
inflating: monet2photo/trainA/00048.jpg
inflating: monet2photo/trainA/00194.jpg
inflating: monet2photo/trainA/01233.jpg
inflating: monet2photo/trainA/01317.jpg
inflating: monet2photo/trainA/00315.jpg
inflating: monet2photo/trainA/01036.jpg
inflating: monet2photo/trainA/00507.jpg
inflating: monet2photo/trainA/00756.jpg
inflating: monet2photo/trainA/00262.jpg
inflating: monet2photo/trainA/00141.jpg
inflating: monet2photo/trainA/00171.jpg
inflating: monet2photo/trainA/00016.jpg
inflating: monet2photo/trainA/01137.jpg
inflating: monet2photo/trainA/01186.jpg
inflating: monet2photo/trainA/00209.jpg
inflating: monet2photo/trainA/01334.jpg
inflating: monet2photo/trainA/01112.jpg
inflating: monet2photo/trainA/01094.jpg
inflating: monet2photo/trainA/00283.jpg
inflating: monet2photo/trainA/00195.jpg
inflating: monet2photo/trainA/01299.jpg
inflating: monet2photo/trainA/00867.jpg
inflating: monet2photo/trainA/01156.jpg
inflating: monet2photo/trainA/01116.jpg
inflating: monet2photo/trainA/00877.jpg
inflating: monet2photo/trainA/00981.jpg
inflating: monet2photo/trainA/00392.jpg
inflating: monet2photo/trainA/00386.jpg
inflating: monet2photo/trainA/00815.jpg
inflating: monet2photo/trainA/00299.jpg
inflating: monet2photo/trainA/00857.jpg
inflating: monet2photo/trainA/00527.jpg
inflating: monet2photo/trainA/00234.jpg
inflating: monet2photo/trainA/00988.jpg
inflating: monet2photo/trainA/00632.jpg
inflating: monet2photo/trainA/00447.jpg
inflating: monet2photo/trainA/01291.jpg
inflating: monet2photo/trainA/00155.jpg
inflating: monet2photo/trainA/00714.jpg
inflating: monet2photo/trainA/00669.jpg
inflating: monet2photo/trainA/00786.jpg
inflating: monet2photo/trainA/00396.jpg
inflating: monet2photo/trainA/00408.jpg
inflating: monet2photo/trainA/00593.jpg
inflating: monet2photo/trainA/00378.jpg
inflating: monet2photo/trainA/00252.jpg
inflating: monet2photo/trainA/00796.jpg
inflating: monet2photo/trainA/00775.jpg
inflating: monet2photo/trainA/00862.jpg
inflating: monet2photo/trainA/00525.jpg
inflating: monet2photo/trainA/00494.jpg
inflating: monet2photo/trainA/01273.jpg
inflating: monet2photo/trainA/00894.jpg
inflating: monet2photo/trainA/01003.jpg
inflating: monet2photo/trainA/00555.jpg
inflating: monet2photo/trainA/00064.jpg
inflating: monet2photo/trainA/01123.jpg
inflating: monet2photo/trainA/00831.jpg
inflating: monet2photo/trainA/01331.jpg
inflating: monet2photo/trainA/00001.jpg
inflating: monet2photo/trainA/00965.jpg
inflating: monet2photo/trainA/00009.jpg
inflating: monet2photo/trainA/01312.jpg
inflating: monet2photo/trainA/00399.jpg
inflating: monet2photo/trainA/00642.jpg
inflating: monet2photo/trainA/00654.jpg
inflating: monet2photo/trainA/00616.jpg
inflating: monet2photo/trainA/00876.jpg
inflating: monet2photo/trainA/00412.jpg
inflating: monet2photo/trainA/01205.jpg
inflating: monet2photo/trainA/01071.jpg
inflating: monet2photo/trainA/00989.jpg
inflating: monet2photo/trainA/00505.jpg
inflating: monet2photo/trainA/00776.jpg
inflating: monet2photo/trainA/00769.jpg
inflating: monet2photo/trainA/00737.jpg
inflating: monet2photo/trainA/00787.jpg
inflating: monet2photo/trainA/01238.jpg
inflating: monet2photo/trainA/01207.jpg
inflating: monet2photo/trainA/01223.jpg
inflating: monet2photo/trainA/00503.jpg
inflating: monet2photo/trainA/00713.jpg
inflating: monet2photo/trainA/00067.jpg
inflating: monet2photo/trainA/01043.jpg
inflating: monet2photo/trainA/01164.jpg
inflating: monet2photo/trainA/00153.jpg
inflating: monet2photo/trainA/00265.jpg
inflating: monet2photo/trainA/00226.jpg
inflating: monet2photo/trainA/00875.jpg
inflating: monet2photo/trainA/00607.jpg
inflating: monet2photo/trainA/00218.jpg
inflating: monet2photo/trainA/00724.jpg
inflating: monet2photo/trainA/00068.jpg
inflating: monet2photo/trainA/00066.jpg
inflating: monet2photo/trainA/00549.jpg
inflating: monet2photo/trainA/00659.jpg
inflating: monet2photo/trainA/01106.jpg
inflating: monet2photo/trainA/01305.jpg
inflating: monet2photo/trainA/00463.jpg
inflating: monet2photo/trainA/00159.jpg
inflating: monet2photo/trainA/00917.jpg
inflating: monet2photo/trainA/01288.jpg
inflating: monet2photo/trainA/01102.jpg
inflating: monet2photo/trainA/00362.jpg
inflating: monet2photo/trainA/01189.jpg
inflating: monet2photo/trainA/00177.jpg
inflating: monet2photo/trainA/00018.jpg
inflating: monet2photo/trainA/00306.jpg
inflating: monet2photo/trainA/00245.jpg
inflating: monet2photo/trainA/00462.jpg
inflating: monet2photo/trainA/01001.jpg
inflating: monet2photo/trainA/00833.jpg
inflating: monet2photo/trainA/00708.jpg
inflating: monet2photo/trainA/00823.jpg
inflating: monet2photo/trainA/01237.jpg
inflating: monet2photo/trainA/00727.jpg
inflating: monet2photo/trainA/00186.jpg
inflating: monet2photo/trainA/00325.jpg
inflating: monet2photo/trainA/00903.jpg
inflating: monet2photo/trainA/00273.jpg
inflating: monet2photo/trainA/00544.jpg
inflating: monet2photo/trainA/01079.jpg
inflating: monet2photo/trainA/00076.jpg
inflating: monet2photo/trainA/00431.jpg
inflating: monet2photo/trainA/00958.jpg
inflating: monet2photo/trainA/01203.jpg
inflating: monet2photo/trainA/01332.jpg
inflating: monet2photo/trainA/00215.jpg
inflating: monet2photo/trainA/00948.jpg
inflating: monet2photo/trainA/00367.jpg
inflating: monet2photo/trainA/00825.jpg
inflating: monet2photo/trainA/01182.jpg
inflating: monet2photo/trainA/00618.jpg
inflating: monet2photo/trainA/01256.jpg
inflating: monet2photo/trainA/00846.jpg
inflating: monet2photo/trainA/00671.jpg
inflating: monet2photo/trainA/00529.jpg
inflating: monet2photo/trainA/00847.jpg
inflating: monet2photo/trainA/00715.jpg
inflating: monet2photo/trainA/00282.jpg
inflating: monet2photo/trainA/00588.jpg
inflating: monet2photo/trainA/01155.jpg
inflating: monet2photo/trainA/00999.jpg
inflating: monet2photo/trainA/00849.jpg
inflating: monet2photo/trainA/00247.jpg
inflating: monet2photo/trainA/00533.jpg
inflating: monet2photo/trainA/00074.jpg
inflating: monet2photo/trainA/00423.jpg
inflating: monet2photo/trainA/00305.jpg
inflating: monet2photo/trainA/00976.jpg
inflating: monet2photo/trainA/00974.jpg
inflating: monet2photo/trainA/00918.jpg
inflating: monet2photo/trainA/00938.jpg
inflating: monet2photo/trainA/00887.jpg
inflating: monet2photo/trainA/00285.jpg
inflating: monet2photo/trainA/01304.jpg
inflating: monet2photo/trainA/00874.jpg
inflating: monet2photo/trainA/00556.jpg
inflating: monet2photo/trainA/00162.jpg
inflating: monet2photo/trainA/01249.jpg
inflating: monet2photo/trainA/00784.jpg
inflating: monet2photo/trainA/00236.jpg
inflating: monet2photo/trainA/00926.jpg
inflating: monet2photo/trainA/00214.jpg
inflating: monet2photo/trainA/00696.jpg
inflating: monet2photo/trainA/01173.jpg
inflating: monet2photo/trainA/00458.jpg
inflating: monet2photo/trainA/00069.jpg
inflating: monet2photo/trainA/00025.jpg
inflating: monet2photo/trainA/00112.jpg
inflating: monet2photo/trainA/01269.jpg
inflating: monet2photo/trainA/01113.jpg
inflating: monet2photo/trainA/01015.jpg
inflating: monet2photo/trainA/00745.jpg
inflating: monet2photo/trainA/00736.jpg
inflating: monet2photo/trainA/00942.jpg
inflating: monet2photo/trainA/00992.jpg
inflating: monet2photo/trainA/00648.jpg
inflating: monet2photo/trainA/00257.jpg
inflating: monet2photo/trainA/00952.jpg
inflating: monet2photo/trainA/00843.jpg
inflating: monet2photo/trainA/00763.jpg
inflating: monet2photo/trainA/00683.jpg
inflating: monet2photo/trainA/00264.jpg
inflating: monet2photo/trainA/00052.jpg
inflating: monet2photo/trainA/00956.jpg
inflating: monet2photo/trainA/01309.jpg
inflating: monet2photo/trainA/00791.jpg
inflating: monet2photo/trainA/00198.jpg
inflating: monet2photo/trainA/01232.jpg
inflating: monet2photo/trainA/00647.jpg
inflating: monet2photo/trainA/00707.jpg
inflating: monet2photo/trainA/00941.jpg
inflating: monet2photo/trainA/00702.jpg
inflating: monet2photo/trainA/00711.jpg
inflating: monet2photo/trainA/01135.jpg
inflating: monet2photo/trainA/01255.jpg
inflating: monet2photo/trainA/01298.jpg
inflating: monet2photo/trainA/00405.jpg
inflating: monet2photo/trainA/01326.jpg
inflating: monet2photo/trainA/01068.jpg
inflating: monet2photo/trainA/01185.jpg
inflating: monet2photo/trainA/00949.jpg
inflating: monet2photo/trainA/00409.jpg
inflating: monet2photo/trainA/00203.jpg
inflating: monet2photo/trainA/00393.jpg
inflating: monet2photo/trainA/00655.jpg
inflating: monet2photo/trainA/00519.jpg
inflating: monet2photo/trainA/00327.jpg
inflating: monet2photo/trainA/01154.jpg
inflating: monet2photo/trainA/01005.jpg
inflating: monet2photo/trainA/00821.jpg
inflating: monet2photo/trainA/00738.jpg
inflating: monet2photo/trainA/00354.jpg
inflating: monet2photo/trainA/00297.jpg
inflating: monet2photo/trainA/00266.jpg
inflating: monet2photo/trainA/00804.jpg
inflating: monet2photo/trainA/01171.jpg
inflating: monet2photo/trainA/00439.jpg
inflating: monet2photo/trainA/00743.jpg
inflating: monet2photo/trainA/00953.jpg
inflating: monet2photo/trainA/01242.jpg
inflating: monet2photo/trainA/00364.jpg
inflating: monet2photo/trainA/00626.jpg
inflating: monet2photo/trainA/00858.jpg
inflating: monet2photo/trainA/00697.jpg
inflating: monet2photo/trainA/00263.jpg
inflating: monet2photo/trainA/01267.jpg
inflating: monet2photo/trainA/00401.jpg
inflating: monet2photo/trainA/01262.jpg
inflating: monet2photo/trainA/01215.jpg
inflating: monet2photo/trainA/01013.jpg
inflating: monet2photo/trainA/00277.jpg
inflating: monet2photo/trainA/00545.jpg
inflating: monet2photo/trainA/00728.jpg
inflating: monet2photo/trainA/00622.jpg
inflating: monet2photo/trainA/01202.jpg
inflating: monet2photo/trainA/01199.jpg
inflating: monet2photo/trainA/00381.jpg
inflating: monet2photo/trainA/00457.jpg
inflating: monet2photo/trainA/00783.jpg
inflating: monet2photo/trainA/00705.jpg
inflating: monet2photo/trainA/01095.jpg
inflating: monet2photo/trainA/00814.jpg
inflating: monet2photo/trainA/00771.jpg
inflating: monet2photo/trainA/00304.jpg
inflating: monet2photo/trainA/01336.jpg
inflating: monet2photo/trainA/00428.jpg
inflating: monet2photo/trainA/01221.jpg
inflating: monet2photo/trainA/00229.jpg
inflating: monet2photo/trainA/01201.jpg
inflating: monet2photo/trainA/01296.jpg
inflating: monet2photo/trainA/00216.jpg
inflating: monet2photo/trainA/00246.jpg
inflating: monet2photo/trainA/00342.jpg
inflating: monet2photo/trainA/00317.jpg
inflating: monet2photo/trainA/00295.jpg
inflating: monet2photo/trainA/00748.jpg
inflating: monet2photo/trainA/01165.jpg
inflating: monet2photo/trainA/00065.jpg
inflating: monet2photo/trainA/00053.jpg
inflating: monet2photo/trainA/01213.jpg
inflating: monet2photo/trainA/00353.jpg
inflating: monet2photo/trainA/00984.jpg
inflating: monet2photo/trainA/00042.jpg
inflating: monet2photo/trainA/00346.jpg
inflating: monet2photo/trainA/00911.jpg
inflating: monet2photo/trainA/00889.jpg
inflating: monet2photo/trainA/01287.jpg
inflating: monet2photo/trainA/01323.jpg
inflating: monet2photo/trainA/00746.jpg
inflating: monet2photo/trainA/00979.jpg
inflating: monet2photo/trainA/01268.jpg
inflating: monet2photo/trainA/00751.jpg
inflating: monet2photo/trainA/00054.jpg
inflating: monet2photo/trainA/01125.jpg
inflating: monet2photo/trainA/00427.jpg
inflating: monet2photo/trainA/00335.jpg
inflating: monet2photo/trainA/01254.jpg
inflating: monet2photo/trainA/00734.jpg
inflating: monet2photo/trainA/00413.jpg
inflating: monet2photo/trainA/01011.jpg
inflating: monet2photo/trainA/00794.jpg
inflating: monet2photo/trainA/00643.jpg
inflating: monet2photo/trainA/00316.jpg
inflating: monet2photo/trainA/00425.jpg
inflating: monet2photo/trainA/00773.jpg
inflating: monet2photo/trainA/01099.jpg
inflating: monet2photo/trainA/00932.jpg
inflating: monet2photo/trainA/00314.jpg
inflating: monet2photo/trainA/00093.jpg
inflating: monet2photo/trainA/00666.jpg
inflating: monet2photo/trainA/00365.jpg
inflating: monet2photo/trainA/00691.jpg
inflating: monet2photo/trainA/00303.jpg
inflating: monet2photo/trainA/01075.jpg
inflating: monet2photo/trainA/00014.jpg
inflating: monet2photo/trainA/00376.jpg
inflating: monet2photo/trainA/00057.jpg
inflating: monet2photo/trainA/00397.jpg
inflating: monet2photo/trainA/00165.jpg
inflating: monet2photo/trainA/00271.jpg
inflating: monet2photo/trainA/00703.jpg
inflating: monet2photo/trainA/01143.jpg
inflating: monet2photo/trainA/01101.jpg
inflating: monet2photo/trainA/00267.jpg
inflating: monet2photo/trainA/01151.jpg
inflating: monet2photo/trainA/00902.jpg
inflating: monet2photo/trainA/01126.jpg
inflating: monet2photo/trainA/00044.jpg
inflating: monet2photo/trainA/00496.jpg
creating: monet2photo/testB/
inflating: monet2photo/testB/2014-12-10 12:08:40.jpg
inflating: monet2photo/testB/2014-12-20 00:58:53.jpg
inflating: monet2photo/testB/2014-12-21 22:11:41.jpg
inflating: monet2photo/testB/2015-04-26 11:40:43.jpg
inflating: monet2photo/testB/2014-08-27 17:27:14.jpg
inflating: monet2photo/testB/2015-04-15 13:13:59.jpg
inflating: monet2photo/testB/2014-08-11 11:35:13.jpg
inflating: monet2photo/testB/2014-08-30 19:16:07.jpg
inflating: monet2photo/testB/2014-08-12 20:42:52.jpg
inflating: monet2photo/testB/2015-04-06 10:32:42.jpg
inflating: monet2photo/testB/2014-08-23 16:23:43.jpg
inflating: monet2photo/testB/2014-12-23 11:29:45.jpg
inflating: monet2photo/testB/2015-04-21 10:12:40.jpg
inflating: monet2photo/testB/2014-08-24 16:41:27.jpg
inflating: monet2photo/testB/2014-10-25 09:28:24.jpg
inflating: monet2photo/testB/2014-09-12 12:17:00.jpg
inflating: monet2photo/testB/2014-08-25 19:54:08.jpg
inflating: monet2photo/testB/2014-08-03 17:39:45.jpg
inflating: monet2photo/testB/2014-12-10 16:24:31.jpg
inflating: monet2photo/testB/2014-08-31 09:08:36.jpg
inflating: monet2photo/testB/2014-12-11 07:39:38.jpg
inflating: monet2photo/testB/2015-04-24 20:44:26.jpg
inflating: monet2photo/testB/2014-10-21 12:43:50.jpg
inflating: monet2photo/testB/2014-10-21 10:39:13.jpg
inflating: monet2photo/testB/2014-09-05 17:10:53.jpg
inflating: monet2photo/testB/2014-10-28 11:23:51.jpg
inflating: monet2photo/testB/2014-10-13 08:34:22.jpg
inflating: monet2photo/testB/2014-09-01 14:04:19.jpg
inflating: monet2photo/testB/2014-12-25 09:18:16.jpg
inflating: monet2photo/testB/2014-12-08 15:07:50.jpg
inflating: monet2photo/testB/2014-08-22 05:45:16.jpg
inflating: monet2photo/testB/2015-04-20 04:30:32.jpg
inflating: monet2photo/testB/2015-04-20 15:00:29.jpg
inflating: monet2photo/testB/2014-10-22 07:35:49.jpg
inflating: monet2photo/testB/2015-04-29 17:52:44.jpg
inflating: monet2photo/testB/2014-10-03 19:49:57.jpg
inflating: monet2photo/testB/2014-10-25 20:51:17.jpg
inflating: monet2photo/testB/2014-09-25 12:18:37.jpg
inflating: monet2photo/testB/2014-08-17 03:21:01.jpg
inflating: monet2photo/testB/2014-08-31 18:24:06.jpg
inflating: monet2photo/testB/2014-09-01 13:47:40.jpg
inflating: monet2photo/testB/2014-08-04 10:13:12.jpg
inflating: monet2photo/testB/2014-10-19 11:09:13.jpg
inflating: monet2photo/testB/2014-09-26 18:32:39.jpg
inflating: monet2photo/testB/2015-04-27 00:45:05.jpg
inflating: monet2photo/testB/2014-09-04 06:58:48.jpg
inflating: monet2photo/testB/2015-04-03 03:18:56.jpg
inflating: monet2photo/testB/2015-04-02 14:52:05.jpg
inflating: monet2photo/testB/2014-10-11 00:21:23.jpg
inflating: monet2photo/testB/2014-09-11 18:47:18.jpg
inflating: monet2photo/testB/2014-09-21 18:51:18.jpg
inflating: monet2photo/testB/2014-08-15 08:48:43.jpg
inflating: monet2photo/testB/2014-10-03 22:56:16.jpg
inflating: monet2photo/testB/2014-10-24 10:06:07.jpg
inflating: monet2photo/testB/2014-12-12 08:33:51.jpg
inflating: monet2photo/testB/2014-08-20 11:33:32.jpg
inflating: monet2photo/testB/2014-09-26 13:56:56.jpg
inflating: monet2photo/testB/2015-04-14 14:26:35.jpg
inflating: monet2photo/testB/2014-08-02 11:46:18.jpg
inflating: monet2photo/testB/2014-10-18 13:22:54.jpg
inflating: monet2photo/testB/2014-12-15 00:09:27.jpg
inflating: monet2photo/testB/2014-08-17 23:34:43.jpg
inflating: monet2photo/testB/2014-10-19 17:17:47.jpg
inflating: monet2photo/testB/2014-12-08 02:32:42.jpg
inflating: monet2photo/testB/2014-12-09 01:55:33.jpg
inflating: monet2photo/testB/2014-08-28 09:33:26.jpg
inflating: monet2photo/testB/2014-10-17 04:09:31.jpg
inflating: monet2photo/testB/2015-04-13 13:05:23.jpg
inflating: monet2photo/testB/2014-08-19 01:15:55.jpg
inflating: monet2photo/testB/2014-08-18 01:13:49.jpg
inflating: monet2photo/testB/2014-08-06 08:21:56.jpg
inflating: monet2photo/testB/2015-04-14 06:32:05.jpg
inflating: monet2photo/testB/2015-04-25 10:24:38.jpg
inflating: monet2photo/testB/2015-04-13 05:42:20.jpg
inflating: monet2photo/testB/2014-08-12 02:21:03.jpg
inflating: monet2photo/testB/2014-09-30 01:04:15.jpg
inflating: monet2photo/testB/2014-08-18 00:24:03.jpg
inflating: monet2photo/testB/2015-04-24 11:19:29.jpg
inflating: monet2photo/testB/2014-08-28 17:06:56.jpg
inflating: monet2photo/testB/2015-04-22 04:07:12.jpg
inflating: monet2photo/testB/2014-10-21 23:44:54.jpg
inflating: monet2photo/testB/2015-04-25 14:46:37.jpg
inflating: monet2photo/testB/2014-10-14 19:47:48.jpg
inflating: monet2photo/testB/2015-04-03 17:19:15.jpg
inflating: monet2photo/testB/2014-09-26 20:19:43.jpg
inflating: monet2photo/testB/2014-08-07 21:31:39.jpg
inflating: monet2photo/testB/2014-09-27 08:52:03.jpg
inflating: monet2photo/testB/2014-10-25 23:33:01.jpg
inflating: monet2photo/testB/2014-08-16 12:12:10.jpg
inflating: monet2photo/testB/2015-04-05 15:11:37.jpg
inflating: monet2photo/testB/2014-09-17 09:49:54.jpg
inflating: monet2photo/testB/2014-12-21 04:02:05.jpg
inflating: monet2photo/testB/2015-04-26 03:43:45.jpg
inflating: monet2photo/testB/2015-04-05 15:26:54.jpg
inflating: monet2photo/testB/2014-10-27 11:19:44.jpg
inflating: monet2photo/testB/2014-09-16 16:08:26.jpg
inflating: monet2photo/testB/2015-04-16 06:27:04.jpg
inflating: monet2photo/testB/2015-04-25 14:21:17.jpg
inflating: monet2photo/testB/2015-04-01 22:47:57.jpg
inflating: monet2photo/testB/2014-12-28 08:22:59.jpg
inflating: monet2photo/testB/2014-08-05 03:00:51.jpg
inflating: monet2photo/testB/2015-04-15 00:30:59.jpg
inflating: monet2photo/testB/2014-09-16 13:47:07.jpg
inflating: monet2photo/testB/2014-12-30 23:44:38.jpg
inflating: monet2photo/testB/2015-04-30 22:39:13.jpg
inflating: monet2photo/testB/2014-09-25 08:57:42.jpg
inflating: monet2photo/testB/2014-12-19 09:32:35.jpg
inflating: monet2photo/testB/2014-12-27 14:15:53.jpg
inflating: monet2photo/testB/2014-10-19 15:55:25.jpg
inflating: monet2photo/testB/2015-04-07 04:40:06.jpg
inflating: monet2photo/testB/2015-04-27 20:00:53.jpg
inflating: monet2photo/testB/2014-12-29 23:34:20.jpg
inflating: monet2photo/testB/2014-08-15 19:58:51.jpg
inflating: monet2photo/testB/2014-08-20 02:40:08.jpg
inflating: monet2photo/testB/2015-04-27 01:25:35.jpg
inflating: monet2photo/testB/2014-12-08 20:17:47.jpg
inflating: monet2photo/testB/2014-12-21 13:38:21.jpg
inflating: monet2photo/testB/2014-09-25 15:34:04.jpg
inflating: monet2photo/testB/2014-12-06 09:14:34.jpg
inflating: monet2photo/testB/2014-12-01 06:43:43.jpg
inflating: monet2photo/testB/2015-04-09 11:42:48.jpg
inflating: monet2photo/testB/2015-04-30 01:43:23.jpg
inflating: monet2photo/testB/2015-04-15 09:50:56.jpg
inflating: monet2photo/testB/2014-10-14 08:03:52.jpg
inflating: monet2photo/testB/2014-10-17 16:22:02.jpg
inflating: monet2photo/testB/2014-12-16 19:35:49.jpg
inflating: monet2photo/testB/2014-09-11 01:07:17.jpg
inflating: monet2photo/testB/2014-08-16 00:41:44.jpg
inflating: monet2photo/testB/2015-04-19 09:31:59.jpg
inflating: monet2photo/testB/2014-12-08 04:12:37.jpg
inflating: monet2photo/testB/2014-09-19 08:38:13.jpg
inflating: monet2photo/testB/2014-12-29 06:05:35.jpg
inflating: monet2photo/testB/2014-09-16 01:45:35.jpg
inflating: monet2photo/testB/2014-12-11 17:22:43.jpg
inflating: monet2photo/testB/2014-08-22 05:17:39.jpg
inflating: monet2photo/testB/2015-04-15 09:50:58.jpg
inflating: monet2photo/testB/2014-12-10 17:08:21.jpg
inflating: monet2photo/testB/2014-10-01 17:13:29.jpg
inflating: monet2photo/testB/2015-04-14 07:24:51.jpg
inflating: monet2photo/testB/2015-04-17 01:20:12.jpg
inflating: monet2photo/testB/2014-10-21 22:55:32.jpg
inflating: monet2photo/testB/2014-09-17 06:07:10.jpg
inflating: monet2photo/testB/2015-04-08 22:44:36.jpg
inflating: monet2photo/testB/2014-08-28 16:37:15.jpg
inflating: monet2photo/testB/2014-08-21 03:50:00.jpg
inflating: monet2photo/testB/2014-09-01 10:37:27.jpg
inflating: monet2photo/testB/2014-12-28 14:40:53.jpg
inflating: monet2photo/testB/2014-09-14 21:03:57.jpg
inflating: monet2photo/testB/2015-04-29 09:09:15.jpg
inflating: monet2photo/testB/2015-04-26 04:10:02.jpg
inflating: monet2photo/testB/2014-08-13 16:24:38.jpg
inflating: monet2photo/testB/2014-12-31 02:06:46.jpg
inflating: monet2photo/testB/2014-09-18 05:34:31.jpg
inflating: monet2photo/testB/2015-04-02 21:05:05.jpg
inflating: monet2photo/testB/2014-12-22 21:08:36.jpg
inflating: monet2photo/testB/2014-08-28 06:31:24.jpg
inflating: monet2photo/testB/2015-04-29 09:42:16.jpg
inflating: monet2photo/testB/2014-12-22 18:30:48.jpg
inflating: monet2photo/testB/2015-04-13 09:59:02.jpg
inflating: monet2photo/testB/2014-12-31 15:17:52.jpg
inflating: monet2photo/testB/2014-12-20 17:38:56.jpg
inflating: monet2photo/testB/2014-08-19 22:43:20.jpg
inflating: monet2photo/testB/2015-04-20 14:38:56.jpg
inflating: monet2photo/testB/2015-04-27 20:10:05.jpg
inflating: monet2photo/testB/2014-12-08 22:52:52.jpg
inflating: monet2photo/testB/2015-04-12 02:29:43.jpg
inflating: monet2photo/testB/2014-12-27 02:41:36.jpg
inflating: monet2photo/testB/2014-09-23 19:06:54.jpg
inflating: monet2photo/testB/2015-04-24 17:56:49.jpg
inflating: monet2photo/testB/2014-12-13 20:22:53.jpg
inflating: monet2photo/testB/2014-12-28 13:03:54.jpg
inflating: monet2photo/testB/2015-04-11 16:00:38.jpg
inflating: monet2photo/testB/2015-04-03 07:24:50.jpg
inflating: monet2photo/testB/2014-12-15 12:33:48.jpg
inflating: monet2photo/testB/2014-08-04 15:13:33.jpg
inflating: monet2photo/testB/2014-09-22 19:44:25.jpg
inflating: monet2photo/testB/2014-09-26 06:24:09.jpg
inflating: monet2photo/testB/2014-09-08 05:05:44.jpg
inflating: monet2photo/testB/2014-09-16 19:39:19.jpg
inflating: monet2photo/testB/2014-12-24 00:19:31.jpg
inflating: monet2photo/testB/2014-12-10 11:34:39.jpg
inflating: monet2photo/testB/2014-10-31 17:18:16.jpg
inflating: monet2photo/testB/2015-04-27 10:11:54.jpg
inflating: monet2photo/testB/2015-04-10 02:59:34.jpg
inflating: monet2photo/testB/2014-08-15 16:31:35.jpg
inflating: monet2photo/testB/2015-04-18 22:46:53.jpg
inflating: monet2photo/testB/2014-08-12 19:35:32.jpg
inflating: monet2photo/testB/2014-08-26 17:39:53.jpg
inflating: monet2photo/testB/2014-12-20 14:07:37.jpg
inflating: monet2photo/testB/2015-04-16 16:06:04.jpg
inflating: monet2photo/testB/2014-10-11 08:11:52.jpg
inflating: monet2photo/testB/2014-12-24 05:41:33.jpg
inflating: monet2photo/testB/2015-04-27 08:08:43.jpg
inflating: monet2photo/testB/2015-04-06 21:01:27.jpg
inflating: monet2photo/testB/2014-08-11 22:29:46.jpg
inflating: monet2photo/testB/2014-08-28 13:25:27.jpg
inflating: monet2photo/testB/2014-10-16 08:33:02.jpg
inflating: monet2photo/testB/2014-09-23 15:39:36.jpg
inflating: monet2photo/testB/2015-04-09 10:34:20.jpg
inflating: monet2photo/testB/2014-09-20 08:17:02.jpg
inflating: monet2photo/testB/2015-04-14 11:18:45.jpg
inflating: monet2photo/testB/2014-08-05 20:38:59.jpg
inflating: monet2photo/testB/2015-04-23 03:56:01.jpg
inflating: monet2photo/testB/2014-08-27 00:26:02.jpg
inflating: monet2photo/testB/2014-10-10 16:41:03.jpg
inflating: monet2photo/testB/2014-09-12 20:37:38.jpg
inflating: monet2photo/testB/2014-10-02 20:08:58.jpg
inflating: monet2photo/testB/2014-10-11 08:08:42.jpg
inflating: monet2photo/testB/2014-08-17 19:32:40.jpg
inflating: monet2photo/testB/2014-12-28 13:45:17.jpg
inflating: monet2photo/testB/2015-04-20 04:30:40.jpg
inflating: monet2photo/testB/2015-04-03 07:18:46.jpg
inflating: monet2photo/testB/2014-10-12 19:26:14.jpg
inflating: monet2photo/testB/2014-10-16 10:54:41.jpg
inflating: monet2photo/testB/2014-12-31 21:44:15.jpg
inflating: monet2photo/testB/2014-08-10 20:02:04.jpg
inflating: monet2photo/testB/2014-12-26 12:22:10.jpg
inflating: monet2photo/testB/2014-12-26 21:09:22.jpg
inflating: monet2photo/testB/2015-04-10 03:07:54.jpg
inflating: monet2photo/testB/2015-04-14 14:05:34.jpg
inflating: monet2photo/testB/2014-08-17 06:56:10.jpg
inflating: monet2photo/testB/2014-12-28 11:41:18.jpg
inflating: monet2photo/testB/2014-08-28 10:13:42.jpg
inflating: monet2photo/testB/2014-12-13 13:54:22.jpg
inflating: monet2photo/testB/2014-08-03 17:14:07.jpg
inflating: monet2photo/testB/2014-12-27 12:52:18.jpg
inflating: monet2photo/testB/2014-09-28 18:04:06.jpg
inflating: monet2photo/testB/2014-10-08 03:58:47.jpg
inflating: monet2photo/testB/2014-08-08 19:23:03.jpg
inflating: monet2photo/testB/2014-12-14 17:53:29.jpg
inflating: monet2photo/testB/2015-04-07 19:13:58.jpg
inflating: monet2photo/testB/2014-09-01 08:39:43.jpg
inflating: monet2photo/testB/2015-04-21 20:07:42.jpg
inflating: monet2photo/testB/2014-12-30 09:00:56.jpg
inflating: monet2photo/testB/2015-04-19 23:42:47.jpg
inflating: monet2photo/testB/2015-04-19 08:48:13.jpg
inflating: monet2photo/testB/2014-08-23 16:40:38.jpg
inflating: monet2photo/testB/2014-08-29 00:05:16.jpg
inflating: monet2photo/testB/2014-12-13 15:46:59.jpg
inflating: monet2photo/testB/2015-04-29 03:42:55.jpg
inflating: monet2photo/testB/2015-04-06 02:53:24.jpg
inflating: monet2photo/testB/2014-12-25 23:42:08.jpg
inflating: monet2photo/testB/2014-08-14 15:57:25.jpg
inflating: monet2photo/testB/2014-12-18 04:16:03.jpg
inflating: monet2photo/testB/2014-09-06 13:44:47.jpg
inflating: monet2photo/testB/2014-08-17 05:35:55.jpg
inflating: monet2photo/testB/2014-08-06 12:24:58.jpg
inflating: monet2photo/testB/2015-04-21 08:17:01.jpg
inflating: monet2photo/testB/2015-04-24 09:06:08.jpg
inflating: monet2photo/testB/2014-08-27 20:35:06.jpg
inflating: monet2photo/testB/2015-04-30 18:42:45.jpg
inflating: monet2photo/testB/2014-09-25 03:16:55.jpg
inflating: monet2photo/testB/2015-04-09 11:45:42.jpg
inflating: monet2photo/testB/2014-08-24 01:14:58.jpg
inflating: monet2photo/testB/2014-12-13 21:30:30.jpg
inflating: monet2photo/testB/2014-08-25 09:33:54.jpg
inflating: monet2photo/testB/2015-04-22 03:40:28.jpg
inflating: monet2photo/testB/2014-12-08 12:15:13.jpg
inflating: monet2photo/testB/2015-04-14 00:28:19.jpg
inflating: monet2photo/testB/2014-09-28 18:48:34.jpg
inflating: monet2photo/testB/2015-04-15 13:34:55.jpg
inflating: monet2photo/testB/2015-04-03 17:56:28.jpg
inflating: monet2photo/testB/2015-04-16 20:15:49.jpg
inflating: monet2photo/testB/2014-12-29 16:07:24.jpg
inflating: monet2photo/testB/2014-10-24 10:17:09.jpg
inflating: monet2photo/testB/2014-12-20 07:28:35.jpg
inflating: monet2photo/testB/2014-10-29 11:04:57.jpg
inflating: monet2photo/testB/2014-08-30 11:37:42.jpg
inflating: monet2photo/testB/2014-10-28 21:45:24.jpg
inflating: monet2photo/testB/2015-04-23 22:17:35.jpg
inflating: monet2photo/testB/2015-04-12 10:59:43.jpg
inflating: monet2photo/testB/2015-04-05 07:55:14.jpg
inflating: monet2photo/testB/2014-12-23 11:56:11.jpg
inflating: monet2photo/testB/2015-04-30 23:43:35.jpg
inflating: monet2photo/testB/2015-04-06 00:39:48.jpg
inflating: monet2photo/testB/2015-04-11 01:01:55.jpg
inflating: monet2photo/testB/2014-12-27 04:37:58.jpg
inflating: monet2photo/testB/2014-09-25 06:10:57.jpg
inflating: monet2photo/testB/2015-04-09 05:09:34.jpg
inflating: monet2photo/testB/2014-12-31 18:45:48.jpg
inflating: monet2photo/testB/2014-09-16 10:29:00.jpg
inflating: monet2photo/testB/2014-08-15 20:15:20.jpg
inflating: monet2photo/testB/2014-10-07 04:08:01.jpg
inflating: monet2photo/testB/2015-04-05 21:23:37.jpg
inflating: monet2photo/testB/2014-12-28 15:57:06.jpg
inflating: monet2photo/testB/2014-08-12 04:31:04.jpg
inflating: monet2photo/testB/2014-12-07 21:04:19.jpg
inflating: monet2photo/testB/2014-12-31 13:46:04.jpg
inflating: monet2photo/testB/2014-12-16 08:42:36.jpg
inflating: monet2photo/testB/2014-09-01 04:42:18.jpg
inflating: monet2photo/testB/2015-04-05 06:59:56.jpg
inflating: monet2photo/testB/2014-08-05 09:28:38.jpg
inflating: monet2photo/testB/2014-08-18 04:17:31.jpg
inflating: monet2photo/testB/2015-04-12 12:34:25.jpg
inflating: monet2photo/testB/2014-08-05 17:32:46.jpg
inflating: monet2photo/testB/2014-10-13 12:25:45.jpg
inflating: monet2photo/testB/2014-10-22 09:03:34.jpg
inflating: monet2photo/testB/2014-12-30 08:00:15.jpg
inflating: monet2photo/testB/2014-08-28 14:24:51.jpg
inflating: monet2photo/testB/2014-08-02 15:56:41.jpg
inflating: monet2photo/testB/2014-09-08 05:31:48.jpg
inflating: monet2photo/testB/2015-04-17 09:30:18.jpg
inflating: monet2photo/testB/2015-04-04 03:47:14.jpg
inflating: monet2photo/testB/2015-04-08 19:50:53.jpg
inflating: monet2photo/testB/2014-09-03 06:37:24.jpg
inflating: monet2photo/testB/2014-09-02 03:32:20.jpg
inflating: monet2photo/testB/2014-08-25 21:07:24.jpg
inflating: monet2photo/testB/2015-04-20 18:35:35.jpg
inflating: monet2photo/testB/2014-08-21 19:03:54.jpg
inflating: monet2photo/testB/2015-04-05 13:16:14.jpg
inflating: monet2photo/testB/2014-09-15 20:33:21.jpg
inflating: monet2photo/testB/2015-04-09 02:14:34.jpg
inflating: monet2photo/testB/2014-10-01 19:00:25.jpg
inflating: monet2photo/testB/2014-08-20 11:37:35.jpg
inflating: monet2photo/testB/2014-12-29 05:45:08.jpg
inflating: monet2photo/testB/2014-12-09 19:30:09.jpg
inflating: monet2photo/testB/2014-10-11 09:36:03.jpg
inflating: monet2photo/testB/2014-08-30 00:04:09.jpg
inflating: monet2photo/testB/2015-04-27 13:52:08.jpg
inflating: monet2photo/testB/2014-09-15 14:21:29.jpg
inflating: monet2photo/testB/2014-10-22 21:24:20.jpg
inflating: monet2photo/testB/2015-04-06 11:19:28.jpg
inflating: monet2photo/testB/2014-08-18 07:03:56.jpg
inflating: monet2photo/testB/2014-09-11 12:31:09.jpg
inflating: monet2photo/testB/2015-04-07 19:44:27.jpg
inflating: monet2photo/testB/2015-04-10 22:32:31.jpg
inflating: monet2photo/testB/2014-08-30 01:03:38.jpg
inflating: monet2photo/testB/2014-09-24 06:44:53.jpg
inflating: monet2photo/testB/2014-12-29 03:38:12.jpg
inflating: monet2photo/testB/2014-10-09 17:15:42.jpg
inflating: monet2photo/testB/2015-04-09 00:00:21.jpg
inflating: monet2photo/testB/2015-04-20 18:11:28.jpg
inflating: monet2photo/testB/2015-04-21 18:20:27.jpg
inflating: monet2photo/testB/2015-04-17 15:07:05.jpg
inflating: monet2photo/testB/2014-12-28 18:09:59.jpg
inflating: monet2photo/testB/2014-12-28 16:07:23.jpg
inflating: monet2photo/testB/2015-04-02 20:54:13.jpg
inflating: monet2photo/testB/2014-12-20 06:49:02.jpg
inflating: monet2photo/testB/2015-04-30 13:12:06.jpg
inflating: monet2photo/testB/2014-08-17 22:35:09.jpg
inflating: monet2photo/testB/2014-08-12 10:56:59.jpg
inflating: monet2photo/testB/2014-10-22 18:51:20.jpg
inflating: monet2photo/testB/2014-10-11 15:22:06.jpg
inflating: monet2photo/testB/2014-09-29 17:23:50.jpg
inflating: monet2photo/testB/2014-10-22 17:20:02.jpg
inflating: monet2photo/testB/2014-10-28 08:30:12.jpg
inflating: monet2photo/testB/2014-09-04 21:29:30.jpg
inflating: monet2photo/testB/2014-08-11 06:59:41.jpg
inflating: monet2photo/testB/2015-04-30 06:09:55.jpg
inflating: monet2photo/testB/2015-04-27 09:48:03.jpg
inflating: monet2photo/testB/2014-10-18 23:18:04.jpg
inflating: monet2photo/testB/2014-10-03 01:31:33.jpg
inflating: monet2photo/testB/2015-04-16 11:01:52.jpg
inflating: monet2photo/testB/2014-09-07 22:08:20.jpg
inflating: monet2photo/testB/2015-04-25 15:30:47.jpg
inflating: monet2photo/testB/2014-09-09 09:23:36.jpg
inflating: monet2photo/testB/2014-08-28 17:53:51.jpg
inflating: monet2photo/testB/2015-04-29 16:19:50.jpg
inflating: monet2photo/testB/2014-12-27 16:21:38.jpg
inflating: monet2photo/testB/2014-12-17 04:59:20.jpg
inflating: monet2photo/testB/2014-12-05 01:52:35.jpg
inflating: monet2photo/testB/2014-08-04 08:01:08.jpg
inflating: monet2photo/testB/2015-04-04 08:13:07.jpg
inflating: monet2photo/testB/2015-04-25 15:59:48.jpg
inflating: monet2photo/testB/2014-12-29 07:53:08.jpg
inflating: monet2photo/testB/2014-08-29 15:12:04.jpg
inflating: monet2photo/testB/2014-09-24 23:33:56.jpg
inflating: monet2photo/testB/2014-10-20 05:29:59.jpg
inflating: monet2photo/testB/2014-12-10 18:20:49.jpg
inflating: monet2photo/testB/2014-12-18 03:04:56.jpg
inflating: monet2photo/testB/2014-08-19 08:48:20.jpg
inflating: monet2photo/testB/2014-12-11 04:21:01.jpg
inflating: monet2photo/testB/2014-08-23 10:27:03.jpg
inflating: monet2photo/testB/2015-04-08 12:53:31.jpg
inflating: monet2photo/testB/2014-09-24 12:23:44.jpg
inflating: monet2photo/testB/2015-04-14 01:30:35.jpg
inflating: monet2photo/testB/2014-08-25 13:11:42.jpg
inflating: monet2photo/testB/2014-08-26 10:08:38.jpg
inflating: monet2photo/testB/2015-04-21 13:55:08.jpg
inflating: monet2photo/testB/2014-09-23 08:38:48.jpg
inflating: monet2photo/testB/2014-08-24 12:34:26.jpg
inflating: monet2photo/testB/2014-08-18 20:01:09.jpg
inflating: monet2photo/testB/2014-09-24 06:55:58.jpg
inflating: monet2photo/testB/2014-10-19 20:06:07.jpg
inflating: monet2photo/testB/2014-08-05 16:20:33.jpg
inflating: monet2photo/testB/2014-10-19 22:22:01.jpg
inflating: monet2photo/testB/2014-10-23 15:15:54.jpg
inflating: monet2photo/testB/2014-08-18 17:24:39.jpg
inflating: monet2photo/testB/2014-10-11 06:15:23.jpg
inflating: monet2photo/testB/2014-08-06 19:34:34.jpg
inflating: monet2photo/testB/2015-04-30 18:04:28.jpg
inflating: monet2photo/testB/2015-04-28 23:07:47.jpg
inflating: monet2photo/testB/2015-04-27 11:34:00.jpg
inflating: monet2photo/testB/2014-08-02 19:18:15.jpg
inflating: monet2photo/testB/2014-10-27 09:45:01.jpg
inflating: monet2photo/testB/2014-09-10 12:09:48.jpg
inflating: monet2photo/testB/2014-10-04 11:52:08.jpg
inflating: monet2photo/testB/2014-12-19 18:44:36.jpg
inflating: monet2photo/testB/2014-09-12 21:15:12.jpg
inflating: monet2photo/testB/2015-04-03 13:26:41.jpg
inflating: monet2photo/testB/2014-10-02 13:16:57.jpg
inflating: monet2photo/testB/2015-04-23 01:34:10.jpg
inflating: monet2photo/testB/2015-04-28 12:10:44.jpg
inflating: monet2photo/testB/2014-08-19 13:49:27.jpg
inflating: monet2photo/testB/2015-04-08 20:29:52.jpg
inflating: monet2photo/testB/2014-08-06 08:56:57.jpg
inflating: monet2photo/testB/2015-04-04 08:34:46.jpg
inflating: monet2photo/testB/2014-08-27 16:48:39.jpg
inflating: monet2photo/testB/2014-08-15 21:42:15.jpg
inflating: monet2photo/testB/2015-04-18 07:16:15.jpg
inflating: monet2photo/testB/2015-04-11 01:01:54.jpg
inflating: monet2photo/testB/2014-09-03 19:37:15.jpg
inflating: monet2photo/testB/2014-09-13 22:50:10.jpg
inflating: monet2photo/testB/2014-08-19 01:22:04.jpg
inflating: monet2photo/testB/2014-09-27 09:32:05.jpg
inflating: monet2photo/testB/2014-10-12 10:58:38.jpg
inflating: monet2photo/testB/2015-04-07 16:51:24.jpg
inflating: monet2photo/testB/2014-12-18 07:37:19.jpg
inflating: monet2photo/testB/2015-04-15 22:57:46.jpg
inflating: monet2photo/testB/2014-12-06 18:09:03.jpg
inflating: monet2photo/testB/2015-04-05 00:56:42.jpg
inflating: monet2photo/testB/2014-08-26 05:57:48.jpg
inflating: monet2photo/testB/2015-04-05 17:03:59.jpg
inflating: monet2photo/testB/2014-10-15 19:52:22.jpg
inflating: monet2photo/testB/2015-04-01 13:04:15.jpg
inflating: monet2photo/testB/2015-04-03 07:07:47.jpg
inflating: monet2photo/testB/2014-12-15 09:04:36.jpg
inflating: monet2photo/testB/2015-04-06 20:32:26.jpg
inflating: monet2photo/testB/2015-04-16 13:35:48.jpg
inflating: monet2photo/testB/2014-09-14 00:41:04.jpg
inflating: monet2photo/testB/2015-04-28 06:28:02.jpg
inflating: monet2photo/testB/2014-09-04 03:25:32.jpg
inflating: monet2photo/testB/2014-08-25 17:36:12.jpg
inflating: monet2photo/testB/2015-04-18 23:19:52.jpg
inflating: monet2photo/testB/2015-04-14 14:46:05.jpg
inflating: monet2photo/testB/2014-10-11 08:00:52.jpg
inflating: monet2photo/testB/2014-08-07 05:50:37.jpg
inflating: monet2photo/testB/2015-04-24 08:37:32.jpg
inflating: monet2photo/testB/2014-09-13 04:39:47.jpg
inflating: monet2photo/testB/2014-09-25 02:31:47.jpg
inflating: monet2photo/testB/2014-12-13 15:15:09.jpg
inflating: monet2photo/testB/2015-04-30 15:52:09.jpg
inflating: monet2photo/testB/2014-10-21 02:35:45.jpg
inflating: monet2photo/testB/2014-08-28 19:18:49.jpg
inflating: monet2photo/testB/2015-04-24 19:07:03.jpg
inflating: monet2photo/testB/2015-04-14 20:14:25.jpg
inflating: monet2photo/testB/2015-04-29 10:09:56.jpg
inflating: monet2photo/testB/2015-04-21 05:10:48.jpg
inflating: monet2photo/testB/2014-12-31 16:09:24.jpg
inflating: monet2photo/testB/2014-09-04 04:24:39.jpg
inflating: monet2photo/testB/2014-08-01 17:41:55.jpg
inflating: monet2photo/testB/2015-04-08 21:44:34.jpg
inflating: monet2photo/testB/2015-04-16 15:01:00.jpg
inflating: monet2photo/testB/2014-09-25 17:13:01.jpg
inflating: monet2photo/testB/2015-04-10 01:15:21.jpg
inflating: monet2photo/testB/2015-04-22 22:32:43.jpg
inflating: monet2photo/testB/2014-08-25 04:07:18.jpg
inflating: monet2photo/testB/2015-04-03 15:39:26.jpg
inflating: monet2photo/testB/2015-04-12 08:53:07.jpg
inflating: monet2photo/testB/2014-08-04 23:37:50.jpg
inflating: monet2photo/testB/2015-04-14 03:21:35.jpg
inflating: monet2photo/testB/2015-04-23 16:07:29.jpg
inflating: monet2photo/testB/2015-04-18 22:51:21.jpg
inflating: monet2photo/testB/2014-12-19 08:46:58.jpg
inflating: monet2photo/testB/2014-08-06 17:25:15.jpg
inflating: monet2photo/testB/2014-09-09 04:31:16.jpg
inflating: monet2photo/testB/2014-09-09 22:00:23.jpg
inflating: monet2photo/testB/2014-09-06 13:10:15.jpg
inflating: monet2photo/testB/2014-12-21 22:24:37.jpg
inflating: monet2photo/testB/2014-08-14 03:35:50.jpg
inflating: monet2photo/testB/2015-04-09 11:38:30.jpg
inflating: monet2photo/testB/2014-12-22 08:37:22.jpg
inflating: monet2photo/testB/2015-04-17 23:24:52.jpg
inflating: monet2photo/testB/2014-08-27 05:48:39.jpg
inflating: monet2photo/testB/2014-08-25 03:59:39.jpg
inflating: monet2photo/testB/2014-10-20 10:27:46.jpg
inflating: monet2photo/testB/2014-09-19 03:35:14.jpg
inflating: monet2photo/testB/2014-12-07 11:12:00.jpg
inflating: monet2photo/testB/2014-08-21 10:46:51.jpg
inflating: monet2photo/testB/2014-08-31 23:19:14.jpg
inflating: monet2photo/testB/2015-04-25 06:47:22.jpg
inflating: monet2photo/testB/2014-09-04 01:38:17.jpg
inflating: monet2photo/testB/2015-04-18 19:15:22.jpg
inflating: monet2photo/testB/2014-09-14 10:06:42.jpg
inflating: monet2photo/testB/2014-09-24 03:06:11.jpg
inflating: monet2photo/testB/2015-04-12 07:52:14.jpg
inflating: monet2photo/testB/2014-10-06 19:59:05.jpg
inflating: monet2photo/testB/2015-04-16 11:01:24.jpg
inflating: monet2photo/testB/2014-12-05 15:47:45.jpg
inflating: monet2photo/testB/2014-10-16 22:54:50.jpg
inflating: monet2photo/testB/2014-12-21 17:01:28.jpg
inflating: monet2photo/testB/2015-04-04 17:26:29.jpg
inflating: monet2photo/testB/2015-04-22 09:41:34.jpg
inflating: monet2photo/testB/2014-12-13 07:57:24.jpg
inflating: monet2photo/testB/2014-08-15 12:21:19.jpg
inflating: monet2photo/testB/2014-10-20 14:45:44.jpg
inflating: monet2photo/testB/2014-12-15 04:58:07.jpg
inflating: monet2photo/testB/2015-04-03 09:47:21.jpg
inflating: monet2photo/testB/2015-04-27 04:21:48.jpg
inflating: monet2photo/testB/2015-04-03 11:10:52.jpg
inflating: monet2photo/testB/2014-12-13 07:07:44.jpg
inflating: monet2photo/testB/2014-10-17 22:51:21.jpg
inflating: monet2photo/testB/2014-12-10 10:16:48.jpg
inflating: monet2photo/testB/2014-09-14 14:27:52.jpg
inflating: monet2photo/testB/2014-12-22 19:57:11.jpg
inflating: monet2photo/testB/2014-10-24 04:26:01.jpg
inflating: monet2photo/testB/2014-09-25 04:37:16.jpg
inflating: monet2photo/testB/2015-04-14 19:53:47.jpg
inflating: monet2photo/testB/2014-10-27 17:15:25.jpg
inflating: monet2photo/testB/2014-08-29 06:11:06.jpg
inflating: monet2photo/testB/2014-10-21 14:02:20.jpg
inflating: monet2photo/testB/2015-04-14 11:20:31.jpg
inflating: monet2photo/testB/2015-04-04 14:34:45.jpg
inflating: monet2photo/testB/2014-12-27 10:06:23.jpg
inflating: monet2photo/testB/2015-04-06 12:08:05.jpg
inflating: monet2photo/testB/2014-09-12 09:29:59.jpg
inflating: monet2photo/testB/2015-04-18 17:08:45.jpg
inflating: monet2photo/testB/2014-12-28 16:48:28.jpg
inflating: monet2photo/testB/2014-08-20 11:42:41.jpg
inflating: monet2photo/testB/2014-12-03 11:24:41.jpg
inflating: monet2photo/testB/2015-04-06 21:25:55.jpg
inflating: monet2photo/testB/2014-09-23 19:35:31.jpg
inflating: monet2photo/testB/2014-08-04 20:20:12.jpg
inflating: monet2photo/testB/2015-04-09 06:23:06.jpg
inflating: monet2photo/testB/2014-09-29 12:17:04.jpg
inflating: monet2photo/testB/2014-10-06 13:13:13.jpg
inflating: monet2photo/testB/2014-09-17 04:26:48.jpg
inflating: monet2photo/testB/2014-09-16 04:31:55.jpg
inflating: monet2photo/testB/2014-08-07 10:27:51.jpg
inflating: monet2photo/testB/2014-10-28 20:22:31.jpg
inflating: monet2photo/testB/2014-08-01 22:38:22.jpg
inflating: monet2photo/testB/2015-04-09 16:16:32.jpg
inflating: monet2photo/testB/2015-04-19 08:36:56.jpg
inflating: monet2photo/testB/2014-08-25 02:19:00.jpg
inflating: monet2photo/testB/2014-09-08 15:55:20.jpg
inflating: monet2photo/testB/2015-04-15 13:51:03.jpg
inflating: monet2photo/testB/2014-08-24 18:28:05.jpg
inflating: monet2photo/testB/2014-09-16 02:43:20.jpg
inflating: monet2photo/testB/2014-09-08 15:47:44.jpg
inflating: monet2photo/testB/2015-04-29 13:22:10.jpg
inflating: monet2photo/testB/2015-04-02 05:19:16.jpg
inflating: monet2photo/testB/2014-10-17 15:57:00.jpg
inflating: monet2photo/testB/2015-04-23 19:56:22.jpg
inflating: monet2photo/testB/2015-04-28 20:55:45.jpg
inflating: monet2photo/testB/2014-09-05 19:58:36.jpg
inflating: monet2photo/testB/2014-09-05 16:57:06.jpg
inflating: monet2photo/testB/2014-12-19 07:21:54.jpg
inflating: monet2photo/testB/2014-10-09 15:45:48.jpg
inflating: monet2photo/testB/2014-10-02 20:30:35.jpg
inflating: monet2photo/testB/2015-04-08 04:13:56.jpg
inflating: monet2photo/testB/2014-12-08 10:31:27.jpg
inflating: monet2photo/testB/2014-08-19 04:08:24.jpg
inflating: monet2photo/testB/2015-04-20 09:43:57.jpg
inflating: monet2photo/testB/2015-04-06 08:00:28.jpg
inflating: monet2photo/testB/2015-04-09 20:51:53.jpg
inflating: monet2photo/testB/2014-09-29 14:26:48.jpg
inflating: monet2photo/testB/2015-04-15 01:01:11.jpg
inflating: monet2photo/testB/2015-04-20 14:21:15.jpg
inflating: monet2photo/testB/2014-09-20 13:29:35.jpg
inflating: monet2photo/testB/2014-10-21 10:15:16.jpg
inflating: monet2photo/testB/2014-09-28 19:28:24.jpg
inflating: monet2photo/testB/2015-04-09 12:56:06.jpg
inflating: monet2photo/testB/2014-09-08 18:32:43.jpg
inflating: monet2photo/testB/2014-10-14 01:49:08.jpg
inflating: monet2photo/testB/2014-09-01 17:13:18.jpg
inflating: monet2photo/testB/2014-12-03 05:41:36.jpg
inflating: monet2photo/testB/2014-08-12 16:56:23.jpg
inflating: monet2photo/testB/2014-12-27 04:43:06.jpg
inflating: monet2photo/testB/2015-04-08 15:57:47.jpg
inflating: monet2photo/testB/2014-08-24 01:43:47.jpg
inflating: monet2photo/testB/2015-04-09 04:45:36.jpg
inflating: monet2photo/testB/2015-04-27 09:03:04.jpg
inflating: monet2photo/testB/2014-08-27 19:16:38.jpg
inflating: monet2photo/testB/2015-04-11 05:11:47.jpg
inflating: monet2photo/testB/2014-08-30 04:58:18.jpg
inflating: monet2photo/testB/2015-04-23 18:34:09.jpg
inflating: monet2photo/testB/2014-09-20 13:36:47.jpg
inflating: monet2photo/testB/2015-04-18 18:59:48.jpg
inflating: monet2photo/testB/2015-04-29 22:54:50.jpg
inflating: monet2photo/testB/2014-08-20 08:13:24.jpg
inflating: monet2photo/testB/2014-08-31 07:26:58.jpg
inflating: monet2photo/testB/2015-04-27 18:10:44.jpg
inflating: monet2photo/testB/2014-08-15 19:04:35.jpg
inflating: monet2photo/testB/2015-04-24 08:47:55.jpg
inflating: monet2photo/testB/2014-09-18 14:23:57.jpg
inflating: monet2photo/testB/2015-04-14 22:48:56.jpg
inflating: monet2photo/testB/2015-04-28 14:41:16.jpg
inflating: monet2photo/testB/2014-09-20 16:19:16.jpg
inflating: monet2photo/testB/2014-09-07 11:35:03.jpg
inflating: monet2photo/testB/2014-10-16 21:02:28.jpg
inflating: monet2photo/testB/2014-10-25 18:45:10.jpg
inflating: monet2photo/testB/2014-09-07 19:24:36.jpg
inflating: monet2photo/testB/2014-12-30 17:40:33.jpg
inflating: monet2photo/testB/2014-08-13 09:33:33.jpg
inflating: monet2photo/testB/2014-12-09 06:47:41.jpg
inflating: monet2photo/testB/2014-10-31 23:07:00.jpg
inflating: monet2photo/testB/2014-10-31 22:21:01.jpg
inflating: monet2photo/testB/2014-12-08 03:41:11.jpg
inflating: monet2photo/testB/2015-04-29 03:12:14.jpg
inflating: monet2photo/testB/2014-10-19 00:51:42.jpg
inflating: monet2photo/testB/2014-08-02 00:36:32.jpg
inflating: monet2photo/testB/2014-10-31 01:55:45.jpg
inflating: monet2photo/testB/2015-04-30 13:49:47.jpg
inflating: monet2photo/testB/2015-04-25 23:23:46.jpg
inflating: monet2photo/testB/2015-04-12 09:17:56.jpg
inflating: monet2photo/testB/2014-08-27 00:11:53.jpg
inflating: monet2photo/testB/2014-08-13 13:38:43.jpg
inflating: monet2photo/testB/2014-09-30 10:38:24.jpg
inflating: monet2photo/testB/2014-09-04 23:48:01.jpg
inflating: monet2photo/testB/2014-12-08 23:29:40.jpg
inflating: monet2photo/testB/2014-09-24 22:57:57.jpg
inflating: monet2photo/testB/2014-08-26 11:21:11.jpg
inflating: monet2photo/testB/2014-10-12 11:25:09.jpg
inflating: monet2photo/testB/2014-09-05 18:37:41.jpg
inflating: monet2photo/testB/2014-10-23 01:02:15.jpg
inflating: monet2photo/testB/2015-04-23 15:55:46.jpg
inflating: monet2photo/testB/2014-09-21 11:13:34.jpg
inflating: monet2photo/testB/2014-10-21 04:46:30.jpg
inflating: monet2photo/testB/2015-04-13 21:30:29.jpg
inflating: monet2photo/testB/2015-04-15 09:27:18.jpg
inflating: monet2photo/testB/2014-10-25 21:19:21.jpg
inflating: monet2photo/testB/2015-04-28 15:46:57.jpg
inflating: monet2photo/testB/2014-12-30 15:46:37.jpg
inflating: monet2photo/testB/2014-09-24 10:19:42.jpg
inflating: monet2photo/testB/2014-12-09 09:34:45.jpg
inflating: monet2photo/testB/2014-08-08 13:12:18.jpg
inflating: monet2photo/testB/2015-04-07 07:23:16.jpg
inflating: monet2photo/testB/2014-10-12 15:29:24.jpg
inflating: monet2photo/testB/2014-08-31 19:51:31.jpg
inflating: monet2photo/testB/2014-09-15 20:24:00.jpg
inflating: monet2photo/testB/2014-10-31 02:17:50.jpg
inflating: monet2photo/testB/2014-12-08 16:15:56.jpg
inflating: monet2photo/testB/2015-04-25 16:44:09.jpg
inflating: monet2photo/testB/2014-08-13 17:01:58.jpg
inflating: monet2photo/testB/2014-12-02 05:53:10.jpg
inflating: monet2photo/testB/2014-12-18 16:07:12.jpg
inflating: monet2photo/testB/2014-12-07 05:00:46.jpg
inflating: monet2photo/testB/2014-09-20 16:18:07.jpg
inflating: monet2photo/testB/2015-04-23 10:12:24.jpg
inflating: monet2photo/testB/2014-08-09 00:16:45.jpg
inflating: monet2photo/testB/2014-09-02 17:31:05.jpg
inflating: monet2photo/testB/2015-04-28 18:34:40.jpg
inflating: monet2photo/testB/2015-04-08 00:43:51.jpg
inflating: monet2photo/testB/2015-04-17 06:06:53.jpg
inflating: monet2photo/testB/2015-04-15 14:31:52.jpg
inflating: monet2photo/testB/2015-04-12 05:11:50.jpg
inflating: monet2photo/testB/2015-04-29 22:07:46.jpg
inflating: monet2photo/testB/2014-10-05 19:17:59.jpg
inflating: monet2photo/testB/2014-08-07 22:18:53.jpg
inflating: monet2photo/testB/2015-04-30 05:59:53.jpg
inflating: monet2photo/testB/2015-04-16 09:15:09.jpg
inflating: monet2photo/testB/2015-04-28 10:20:30.jpg
inflating: monet2photo/testB/2014-09-11 06:54:09.jpg
inflating: monet2photo/testB/2015-04-14 22:19:39.jpg
inflating: monet2photo/testB/2014-08-15 17:41:16.jpg
inflating: monet2photo/testB/2014-08-05 21:54:30.jpg
inflating: monet2photo/testB/2014-09-04 17:59:03.jpg
inflating: monet2photo/testB/2014-10-13 11:51:19.jpg
inflating: monet2photo/testB/2014-12-30 18:22:23.jpg
inflating: monet2photo/testB/2014-10-05 16:40:18.jpg
inflating: monet2photo/testB/2014-10-20 11:13:30.jpg
inflating: monet2photo/testB/2014-09-21 11:28:36.jpg
inflating: monet2photo/testB/2014-12-01 18:14:05.jpg
inflating: monet2photo/testB/2014-08-23 22:47:17.jpg
inflating: monet2photo/testB/2014-10-02 19:48:29.jpg
inflating: monet2photo/testB/2014-12-10 19:30:20.jpg
inflating: monet2photo/testB/2014-10-09 01:58:08.jpg
inflating: monet2photo/testB/2015-04-29 13:13:09.jpg
inflating: monet2photo/testB/2015-04-25 20:54:01.jpg
inflating: monet2photo/testB/2015-04-21 09:54:58.jpg
inflating: monet2photo/testB/2014-10-14 21:57:09.jpg
inflating: monet2photo/testB/2015-04-29 03:42:56.jpg
inflating: monet2photo/testB/2014-10-06 09:23:57.jpg
inflating: monet2photo/testB/2015-04-16 00:14:35.jpg
inflating: monet2photo/testB/2015-04-17 21:50:31.jpg
inflating: monet2photo/testB/2015-04-06 16:28:57.jpg
inflating: monet2photo/testB/2014-12-08 03:44:48.jpg
inflating: monet2photo/testB/2014-09-28 02:16:51.jpg
inflating: monet2photo/testB/2014-09-26 20:00:32.jpg
inflating: monet2photo/testB/2014-12-04 13:49:47.jpg
inflating: monet2photo/testB/2014-12-14 08:06:59.jpg
inflating: monet2photo/testB/2015-04-17 10:19:56.jpg
inflating: monet2photo/testB/2015-04-21 18:01:12.jpg
inflating: monet2photo/testB/2015-04-26 20:16:20.jpg
inflating: monet2photo/testB/2015-04-08 22:26:04.jpg
inflating: monet2photo/testB/2014-09-01 20:21:27.jpg
inflating: monet2photo/testB/2014-12-18 15:00:35.jpg
inflating: monet2photo/testB/2014-08-23 06:52:05.jpg
inflating: monet2photo/testB/2015-04-24 09:14:40.jpg
inflating: monet2photo/testB/2014-12-29 14:15:57.jpg
inflating: monet2photo/testB/2014-10-04 05:39:50.jpg
inflating: monet2photo/testB/2015-04-03 09:48:01.jpg
inflating: monet2photo/testB/2014-10-02 10:51:04.jpg
inflating: monet2photo/testB/2014-08-16 06:30:29.jpg
inflating: monet2photo/testB/2014-12-01 23:02:22.jpg
inflating: monet2photo/testB/2015-04-12 02:34:46.jpg
inflating: monet2photo/testB/2014-10-14 01:24:38.jpg
inflating: monet2photo/testB/2014-12-10 07:29:03.jpg
inflating: monet2photo/testB/2015-04-18 15:32:10.jpg
inflating: monet2photo/testB/2015-04-06 09:26:43.jpg
inflating: monet2photo/testB/2014-09-09 01:33:01.jpg
inflating: monet2photo/testB/2014-08-24 18:23:47.jpg
inflating: monet2photo/testB/2014-12-30 09:08:37.jpg
inflating: monet2photo/testB/2014-12-23 07:06:52.jpg
inflating: monet2photo/testB/2014-09-30 20:23:36.jpg
inflating: monet2photo/testB/2014-09-15 04:13:27.jpg
inflating: monet2photo/testB/2015-04-17 09:24:29.jpg
inflating: monet2photo/testB/2014-12-28 15:41:48.jpg
inflating: monet2photo/testB/2014-10-15 18:08:35.jpg
inflating: monet2photo/testB/2014-10-27 04:18:19.jpg
inflating: monet2photo/testB/2014-10-18 21:37:58.jpg
inflating: monet2photo/testB/2014-08-13 13:56:45.jpg
inflating: monet2photo/testB/2014-08-04 11:06:56.jpg
inflating: monet2photo/testB/2014-10-17 17:19:18.jpg
inflating: monet2photo/testB/2014-09-09 05:36:32.jpg
inflating: monet2photo/testB/2015-04-07 05:00:31.jpg
inflating: monet2photo/testB/2015-04-10 00:08:26.jpg
inflating: monet2photo/testB/2014-08-28 23:31:26.jpg
inflating: monet2photo/testB/2014-08-19 15:06:53.jpg
inflating: monet2photo/testB/2014-08-13 21:38:57.jpg
inflating: monet2photo/testB/2015-04-19 15:57:04.jpg
inflating: monet2photo/testB/2014-08-06 15:33:46.jpg
inflating: monet2photo/testB/2015-04-04 16:31:37.jpg
inflating: monet2photo/testB/2015-04-14 11:55:38.jpg
inflating: monet2photo/testB/2014-10-20 03:38:37.jpg
inflating: monet2photo/testB/2014-12-15 09:27:15.jpg
inflating: monet2photo/testB/2014-12-20 09:10:59.jpg
inflating: monet2photo/testB/2014-09-03 05:09:44.jpg
inflating: monet2photo/testB/2015-04-10 03:49:09.jpg
inflating: monet2photo/testB/2014-10-15 10:38:50.jpg
inflating: monet2photo/testB/2014-10-23 08:05:17.jpg
inflating: monet2photo/testB/2014-09-16 03:14:52.jpg
inflating: monet2photo/testB/2015-04-12 08:45:07.jpg
inflating: monet2photo/testB/2015-04-29 17:13:54.jpg
inflating: monet2photo/testB/2014-08-26 13:45:19.jpg
inflating: monet2photo/testB/2014-10-20 18:40:31.jpg
inflating: monet2photo/testB/2014-08-08 17:06:41.jpg
inflating: monet2photo/testB/2014-12-21 10:01:09.jpg
inflating: monet2photo/testB/2015-04-22 22:32:40.jpg
inflating: monet2photo/testB/2015-04-08 12:53:38.jpg
inflating: monet2photo/testB/2014-10-01 14:01:23.jpg
inflating: monet2photo/testB/2015-04-09 09:55:16.jpg
inflating: monet2photo/testB/2014-08-03 09:47:19.jpg
inflating: monet2photo/testB/2014-12-15 19:47:51.jpg
inflating: monet2photo/testB/2014-09-14 04:12:06.jpg
inflating: monet2photo/testB/2014-12-18 23:06:27.jpg
inflating: monet2photo/testB/2014-09-14 17:52:24.jpg
inflating: monet2photo/testB/2014-09-01 09:56:58.jpg
inflating: monet2photo/testB/2014-09-23 17:25:38.jpg
inflating: monet2photo/testB/2015-04-26 12:43:43.jpg
inflating: monet2photo/testB/2015-04-28 12:41:31.jpg
creating: monet2photo/trainB/
inflating: monet2photo/trainB/2016-01-20 08:00:45.jpg
inflating: monet2photo/trainB/2015-08-03 22:17:08.jpg
inflating: monet2photo/trainB/2014-11-16 22:13:14.jpg
inflating: monet2photo/trainB/2015-10-28 11:12:19.jpg
inflating: monet2photo/trainB/2015-06-21 22:50:04.jpg
inflating: monet2photo/trainB/2016-07-11 02:20:45.jpg
inflating: monet2photo/trainB/2015-11-13 16:16:47.jpg
inflating: monet2photo/trainB/2016-05-15 17:33:38.jpg
inflating: monet2photo/trainB/2016-08-09 00:57:24.jpg
inflating: monet2photo/trainB/2016-07-27 08:21:53.jpg
inflating: monet2photo/trainB/2016-02-26 14:05:36.jpg
inflating: monet2photo/trainB/2015-11-23 06:38:05.jpg
inflating: monet2photo/trainB/2016-04-11 10:59:19.jpg
inflating: monet2photo/trainB/2015-11-28 00:48:42.jpg
inflating: monet2photo/trainB/2014-11-15 18:11:35.jpg
inflating: monet2photo/trainB/2017-01-02 04:15:42.jpg
inflating: monet2photo/trainB/2014-03-22 19:01:01.jpg
inflating: monet2photo/trainB/2015-06-09 18:59:52.jpg
inflating: monet2photo/trainB/2016-08-29 09:43:54.jpg
inflating: monet2photo/trainB/2015-01-02 18:36:11.jpg
inflating: monet2photo/trainB/2016-05-15 00:35:24.jpg
inflating: monet2photo/trainB/2015-08-07 10:56:43.jpg
inflating: monet2photo/trainB/2015-07-21 05:17:06.jpg
inflating: monet2photo/trainB/2016-04-11 22:20:27.jpg
inflating: monet2photo/trainB/2015-07-22 20:37:20.jpg
inflating: monet2photo/trainB/2015-03-13 08:41:30.jpg
inflating: monet2photo/trainB/2015-09-04 06:11:04.jpg
inflating: monet2photo/trainB/2016-07-10 09:51:37.jpg
inflating: monet2photo/trainB/2016-11-22 02:30:58.jpg
inflating: monet2photo/trainB/2016-01-10 14:58:25.jpg
inflating: monet2photo/trainB/2015-07-13 06:24:04.jpg
inflating: monet2photo/trainB/2014-02-09 03:43:47.jpg
inflating: monet2photo/trainB/2015-06-27 05:20:43.jpg
inflating: monet2photo/trainB/2016-12-17 12:31:32.jpg
inflating: monet2photo/trainB/2016-04-04 07:14:27.jpg
inflating: monet2photo/trainB/2015-06-01 01:32:24.jpg
inflating: monet2photo/trainB/2016-02-01 20:00:02.jpg
inflating: monet2photo/trainB/2013-12-20 10:12:53.jpg
inflating: monet2photo/trainB/2014-11-11 07:18:34.jpg
inflating: monet2photo/trainB/2015-11-25 13:41:25.jpg
inflating: monet2photo/trainB/2015-11-17 17:25:34.jpg
inflating: monet2photo/trainB/2014-03-19 16:51:55.jpg
inflating: monet2photo/trainB/2016-11-25 05:11:00.jpg
inflating: monet2photo/trainB/2014-06-06 05:51:40.jpg
inflating: monet2photo/trainB/2015-12-30 03:06:38.jpg
inflating: monet2photo/trainB/2015-03-14 15:27:36.jpg
inflating: monet2photo/trainB/2015-07-14 06:55:03.jpg
inflating: monet2photo/trainB/2015-02-22 08:48:27.jpg
inflating: monet2photo/trainB/2015-08-21 20:25:51.jpg
inflating: monet2photo/trainB/2016-04-08 22:14:02.jpg
inflating: monet2photo/trainB/2016-02-19 11:19:38.jpg
inflating: monet2photo/trainB/2013-11-10 06:42:01.jpg
inflating: monet2photo/trainB/2015-08-07 12:52:52.jpg
inflating: monet2photo/trainB/2015-11-05 09:43:49.jpg
inflating: monet2photo/trainB/2016-03-30 10:12:43.jpg
inflating: monet2photo/trainB/2014-03-06 08:34:51.jpg
inflating: monet2photo/trainB/2016-06-25 22:49:59.jpg
inflating: monet2photo/trainB/2015-03-18 13:03:46.jpg
inflating: monet2photo/trainB/2016-01-20 23:42:32.jpg
inflating: monet2photo/trainB/2015-12-03 17:46:38.jpg
inflating: monet2photo/trainB/2016-07-03 13:27:31.jpg
inflating: monet2photo/trainB/2014-01-19 03:59:37.jpg
inflating: monet2photo/trainB/2015-08-31 05:51:43.jpg
inflating: monet2photo/trainB/2015-08-05 05:08:04.jpg
inflating: monet2photo/trainB/2016-12-11 21:52:22.jpg
inflating: monet2photo/trainB/2016-08-15 20:33:57.jpg
inflating: monet2photo/trainB/2016-11-24 16:27:04.jpg
inflating: monet2photo/trainB/2016-12-17 12:21:25.jpg
inflating: monet2photo/trainB/2015-08-15 23:18:44.jpg
inflating: monet2photo/trainB/2015-03-15 23:15:56.jpg
inflating: monet2photo/trainB/2015-10-03 01:16:44.jpg
inflating: monet2photo/trainB/2015-03-03 10:41:27.jpg
inflating: monet2photo/trainB/2016-03-05 23:22:59.jpg
inflating: monet2photo/trainB/2015-12-10 07:56:00.jpg
inflating: monet2photo/trainB/2016-07-25 12:29:50.jpg
inflating: monet2photo/trainB/2014-07-13 08:44:15.jpg
inflating: monet2photo/trainB/2016-08-25 08:03:26.jpg
inflating: monet2photo/trainB/2016-01-13 12:15:26.jpg
inflating: monet2photo/trainB/2016-05-09 05:41:41.jpg
inflating: monet2photo/trainB/2016-12-16 10:19:55.jpg
inflating: monet2photo/trainB/2016-04-16 02:02:04.jpg
inflating: monet2photo/trainB/2014-05-05 22:20:25.jpg
inflating: monet2photo/trainB/2014-02-21 18:50:50.jpg
inflating: monet2photo/trainB/2016-01-08 18:34:54.jpg
inflating: monet2photo/trainB/2016-05-05 23:56:48.jpg
inflating: monet2photo/trainB/2016-01-08 10:20:13.jpg
inflating: monet2photo/trainB/2015-03-02 19:09:55.jpg
inflating: monet2photo/trainB/2014-07-17 11:34:12.jpg
inflating: monet2photo/trainB/2014-05-11 10:56:16.jpg
inflating: monet2photo/trainB/2016-12-14 18:43:47.jpg
inflating: monet2photo/trainB/2016-08-31 10:41:22.jpg
inflating: monet2photo/trainB/2016-05-09 12:57:53.jpg
inflating: monet2photo/trainB/2015-05-13 02:27:30.jpg
inflating: monet2photo/trainB/2016-05-29 06:19:09.jpg
inflating: monet2photo/trainB/2015-07-13 00:17:55.jpg
inflating: monet2photo/trainB/2014-07-02 05:35:06.jpg
inflating: monet2photo/trainB/2015-07-16 01:54:37.jpg
inflating: monet2photo/trainB/2016-02-06 02:17:06.jpg
inflating: monet2photo/trainB/2016-05-07 21:00:29.jpg
inflating: monet2photo/trainB/2016-11-28 11:11:12.jpg
inflating: monet2photo/trainB/2015-01-02 23:20:53.jpg
inflating: monet2photo/trainB/2015-05-28 10:23:06.jpg
inflating: monet2photo/trainB/2016-02-23 06:56:17.jpg
inflating: monet2photo/trainB/2013-12-08 03:46:02.jpg
inflating: monet2photo/trainB/2015-03-13 19:06:05.jpg
inflating: monet2photo/trainB/2014-03-19 22:16:54.jpg
inflating: monet2photo/trainB/2015-03-16 03:24:03.jpg
inflating: monet2photo/trainB/2016-07-26 02:09:13.jpg
inflating: monet2photo/trainB/2015-09-14 17:31:26.jpg
inflating: monet2photo/trainB/2013-11-18 06:58:36.jpg
inflating: monet2photo/trainB/2015-05-22 17:09:23.jpg
inflating: monet2photo/trainB/2015-10-09 05:47:27.jpg
inflating: monet2photo/trainB/2016-04-01 19:34:01.jpg
inflating: monet2photo/trainB/2015-06-02 21:45:50.jpg
inflating: monet2photo/trainB/2015-07-10 10:47:26.jpg
inflating: monet2photo/trainB/2014-07-13 08:10:55.jpg
inflating: monet2photo/trainB/2015-05-25 04:28:44.jpg
inflating: monet2photo/trainB/2016-06-21 02:09:58.jpg
inflating: monet2photo/trainB/2016-12-27 21:34:16.jpg
inflating: monet2photo/trainB/2016-04-03 09:50:55.jpg
inflating: monet2photo/trainB/2014-04-13 00:01:01.jpg
inflating: monet2photo/trainB/2015-07-23 21:34:10.jpg
inflating: monet2photo/trainB/2016-03-10 05:43:21.jpg
inflating: monet2photo/trainB/2014-02-11 10:08:58.jpg
inflating: monet2photo/trainB/2015-05-28 18:06:00.jpg
inflating: monet2photo/trainB/2016-02-07 03:38:07.jpg
inflating: monet2photo/trainB/2014-07-31 07:28:49.jpg
inflating: monet2photo/trainB/2015-06-22 10:46:56.jpg
inflating: monet2photo/trainB/2015-01-21 08:51:34.jpg
inflating: monet2photo/trainB/2015-08-11 09:57:14.jpg
inflating: monet2photo/trainB/2014-02-13 17:30:06.jpg
inflating: monet2photo/trainB/2016-01-17 08:20:51.jpg
inflating: monet2photo/trainB/2016-11-28 03:58:50.jpg
inflating: monet2photo/trainB/2015-09-12 12:47:59.jpg
inflating: monet2photo/trainB/2016-06-06 23:32:44.jpg
inflating: monet2photo/trainB/2015-02-26 19:08:47.jpg
inflating: monet2photo/trainB/2016-01-10 13:19:14.jpg
inflating: monet2photo/trainB/2015-09-21 03:56:04.jpg
inflating: monet2photo/trainB/2014-05-04 05:16:12.jpg
inflating: monet2photo/trainB/2016-05-24 01:39:00.jpg
inflating: monet2photo/trainB/2014-06-01 21:37:46.jpg
inflating: monet2photo/trainB/2015-08-26 12:02:01.jpg
inflating: monet2photo/trainB/2015-05-27 18:26:03.jpg
inflating: monet2photo/trainB/2016-02-01 06:59:29.jpg
inflating: monet2photo/trainB/2015-05-08 23:54:08.jpg
inflating: monet2photo/trainB/2014-07-24 23:11:05.jpg
inflating: monet2photo/trainB/2015-03-04 20:59:33.jpg
inflating: monet2photo/trainB/2016-03-03 12:26:30.jpg
inflating: monet2photo/trainB/2015-08-04 16:32:18.jpg
inflating: monet2photo/trainB/2016-04-02 17:18:58.jpg
inflating: monet2photo/trainB/2016-08-28 11:43:26.jpg
inflating: monet2photo/trainB/2016-03-01 12:38:00.jpg
inflating: monet2photo/trainB/2016-03-26 10:40:21.jpg
inflating: monet2photo/trainB/2015-05-14 18:00:22.jpg
inflating: monet2photo/trainB/2015-02-04 23:34:44.jpg
inflating: monet2photo/trainB/2014-07-25 21:28:59.jpg
inflating: monet2photo/trainB/2016-07-30 09:54:47.jpg
inflating: monet2photo/trainB/2016-05-18 07:33:38.jpg
inflating: monet2photo/trainB/2016-05-13 14:24:05.jpg
inflating: monet2photo/trainB/2016-05-21 14:44:17.jpg
inflating: monet2photo/trainB/2015-11-28 02:46:54.jpg
inflating: monet2photo/trainB/2014-11-06 02:21:38.jpg
inflating: monet2photo/trainB/2015-07-09 04:22:37.jpg
inflating: monet2photo/trainB/2016-12-15 04:27:28.jpg
inflating: monet2photo/trainB/2015-09-23 08:41:38.jpg
inflating: monet2photo/trainB/2016-12-16 04:59:14.jpg
inflating: monet2photo/trainB/2015-08-17 07:36:34.jpg
inflating: monet2photo/trainB/2016-07-20 05:01:07.jpg
inflating: monet2photo/trainB/2015-03-01 12:54:13.jpg
inflating: monet2photo/trainB/2016-03-21 00:40:46.jpg
inflating: monet2photo/trainB/2016-01-09 16:09:39.jpg
inflating: monet2photo/trainB/2014-05-22 21:03:30.jpg
inflating: monet2photo/trainB/2017-01-03 09:23:19.jpg
inflating: monet2photo/trainB/2015-10-30 17:50:11.jpg
inflating: monet2photo/trainB/2014-02-21 07:01:13.jpg
inflating: monet2photo/trainB/2016-08-27 06:39:46.jpg
inflating: monet2photo/trainB/2015-03-04 13:01:59.jpg
inflating: monet2photo/trainB/2015-11-08 20:49:39.jpg
inflating: monet2photo/trainB/2013-12-07 19:24:26.jpg
inflating: monet2photo/trainB/2015-07-16 09:46:35.jpg
inflating: monet2photo/trainB/2014-07-27 03:56:46.jpg
inflating: monet2photo/trainB/2016-06-22 22:08:21.jpg
inflating: monet2photo/trainB/2015-05-05 21:16:20.jpg
inflating: monet2photo/trainB/2016-03-09 07:07:56.jpg
inflating: monet2photo/trainB/2016-04-26 22:24:44.jpg
inflating: monet2photo/trainB/2016-06-18 04:38:04.jpg
inflating: monet2photo/trainB/2015-07-16 11:50:28.jpg
inflating: monet2photo/trainB/2015-07-15 12:33:03.jpg
inflating: monet2photo/trainB/2014-03-28 11:00:40.jpg
inflating: monet2photo/trainB/2015-08-27 13:26:34.jpg
inflating: monet2photo/trainB/2016-01-29 22:44:22.jpg
inflating: monet2photo/trainB/2016-05-18 12:53:48.jpg
inflating: monet2photo/trainB/2016-04-28 09:56:25.jpg
inflating: monet2photo/trainB/2015-02-22 15:38:21.jpg
inflating: monet2photo/trainB/2015-11-24 10:07:42.jpg
inflating: monet2photo/trainB/2015-05-16 05:53:16.jpg
inflating: monet2photo/trainB/2014-02-01 15:20:16.jpg
inflating: monet2photo/trainB/2016-05-08 21:59:43.jpg
inflating: monet2photo/trainB/2014-05-29 23:14:53.jpg
inflating: monet2photo/trainB/2016-08-28 11:43:06.jpg
inflating: monet2photo/trainB/2016-06-06 09:14:34.jpg
inflating: monet2photo/trainB/2016-12-12 08:27:30.jpg
inflating: monet2photo/trainB/2016-08-12 16:14:35.jpg
inflating: monet2photo/trainB/2015-09-08 05:59:56.jpg
inflating: monet2photo/trainB/2015-06-28 04:47:05.jpg
inflating: monet2photo/trainB/2014-02-24 15:29:26.jpg
inflating: monet2photo/trainB/2015-12-16 13:42:04.jpg
inflating: monet2photo/trainB/2016-03-05 02:25:39.jpg
inflating: monet2photo/trainB/2015-03-03 16:43:16.jpg
inflating: monet2photo/trainB/2015-10-13 21:17:15.jpg
inflating: monet2photo/trainB/2016-01-02 16:53:29.jpg
inflating: monet2photo/trainB/2016-08-12 12:00:45.jpg
inflating: monet2photo/trainB/2016-01-22 13:22:41.jpg
inflating: monet2photo/trainB/2015-07-06 19:28:16.jpg
inflating: monet2photo/trainB/2016-08-16 05:06:00.jpg
inflating: monet2photo/trainB/2016-06-30 06:02:35.jpg
inflating: monet2photo/trainB/2015-05-24 02:31:47.jpg
inflating: monet2photo/trainB/2015-06-18 21:29:16.jpg
inflating: monet2photo/trainB/2016-02-21 07:54:23.jpg
inflating: monet2photo/trainB/2016-06-23 14:25:27.jpg
inflating: monet2photo/trainB/2015-03-01 02:26:13.jpg
inflating: monet2photo/trainB/2015-03-16 01:52:46.jpg
inflating: monet2photo/trainB/2015-10-18 03:07:44.jpg
inflating: monet2photo/trainB/2016-08-14 08:39:03.jpg
inflating: monet2photo/trainB/2015-05-30 00:48:38.jpg
inflating: monet2photo/trainB/2015-10-29 12:20:18.jpg
inflating: monet2photo/trainB/2014-05-19 23:31:42.jpg
inflating: monet2photo/trainB/2016-02-18 01:22:32.jpg
inflating: monet2photo/trainB/2015-02-15 09:44:42.jpg
inflating: monet2photo/trainB/2013-11-20 11:21:32.jpg
inflating: monet2photo/trainB/2016-03-26 14:03:47.jpg
inflating: monet2photo/trainB/2016-07-22 04:40:22.jpg
inflating: monet2photo/trainB/2013-12-21 09:50:17.jpg
inflating: monet2photo/trainB/2015-05-02 18:01:51.jpg
inflating: monet2photo/trainB/2016-07-23 01:23:09.jpg
inflating: monet2photo/trainB/2015-08-27 14:10:17.jpg
inflating: monet2photo/trainB/2015-10-01 09:22:03.jpg
inflating: monet2photo/trainB/2015-11-09 06:11:07.jpg
inflating: monet2photo/trainB/2014-11-07 09:24:05.jpg
inflating: monet2photo/trainB/2016-12-15 07:15:20.jpg
inflating: monet2photo/trainB/2015-07-08 13:50:11.jpg
inflating: monet2photo/trainB/2014-03-19 08:24:08.jpg
inflating: monet2photo/trainB/2016-12-05 01:54:07.jpg
inflating: monet2photo/trainB/2016-04-05 03:12:13.jpg
inflating: monet2photo/trainB/2016-08-07 08:14:53.jpg
inflating: monet2photo/trainB/2015-12-28 03:04:30.jpg
inflating: monet2photo/trainB/2015-03-28 11:51:17.jpg
inflating: monet2photo/trainB/2015-10-09 04:31:54.jpg
inflating: monet2photo/trainB/2015-06-14 23:18:17.jpg
inflating: monet2photo/trainB/2014-04-15 09:34:13.jpg
inflating: monet2photo/trainB/2014-05-07 03:42:02.jpg
inflating: monet2photo/trainB/2015-12-20 10:58:14.jpg
inflating: monet2photo/trainB/2016-01-11 10:42:44.jpg
inflating: monet2photo/trainB/2016-02-10 18:39:15.jpg
inflating: monet2photo/trainB/2015-09-02 22:56:47.jpg
inflating: monet2photo/trainB/2016-02-20 14:37:11.jpg
inflating: monet2photo/trainB/2015-09-25 02:38:35.jpg
inflating: monet2photo/trainB/2014-02-13 13:10:39.jpg
inflating: monet2photo/trainB/2016-11-19 21:17:56.jpg
inflating: monet2photo/trainB/2016-02-12 08:03:48.jpg
inflating: monet2photo/trainB/2016-12-08 23:24:13.jpg
inflating: monet2photo/trainB/2015-11-09 09:32:17.jpg
inflating: monet2photo/trainB/2014-04-14 07:59:33.jpg
inflating: monet2photo/trainB/2015-02-23 10:10:53.jpg
inflating: monet2photo/trainB/2014-04-15 03:15:16.jpg
inflating: monet2photo/trainB/2015-07-27 00:54:51.jpg
inflating: monet2photo/trainB/2015-07-20 10:50:54.jpg
inflating: monet2photo/trainB/2015-09-22 13:45:00.jpg
inflating: monet2photo/trainB/2016-04-17 13:33:28.jpg
inflating: monet2photo/trainB/2015-11-03 12:23:49.jpg
inflating: monet2photo/trainB/2014-05-06 14:53:01.jpg
inflating: monet2photo/trainB/2015-07-27 05:45:08.jpg
inflating: monet2photo/trainB/2015-05-16 15:41:52.jpg
inflating: monet2photo/trainB/2016-05-28 13:59:27.jpg
inflating: monet2photo/trainB/2015-08-23 13:49:54.jpg
inflating: monet2photo/trainB/2016-01-13 12:18:21.jpg
inflating: monet2photo/trainB/2015-06-01 13:45:35.jpg
inflating: monet2photo/trainB/2015-08-09 06:15:40.jpg
inflating: monet2photo/trainB/2016-08-11 19:18:55.jpg
inflating: monet2photo/trainB/2016-03-14 05:36:25.jpg
inflating: monet2photo/trainB/2015-03-15 10:13:54.jpg
inflating: monet2photo/trainB/2014-07-27 15:40:00.jpg
inflating: monet2photo/trainB/2016-01-25 22:27:44.jpg
inflating: monet2photo/trainB/2016-12-26 12:13:07.jpg
inflating: monet2photo/trainB/2016-04-12 10:56:56.jpg
inflating: monet2photo/trainB/2015-08-01 00:47:48.jpg
inflating: monet2photo/trainB/2014-11-10 07:27:21.jpg
inflating: monet2photo/trainB/2013-11-29 21:00:08.jpg
inflating: monet2photo/trainB/2015-05-11 10:52:42.jpg
inflating: monet2photo/trainB/2015-12-23 04:01:45.jpg
inflating: monet2photo/trainB/2016-08-29 04:39:37.jpg
inflating: monet2photo/trainB/2016-02-18 05:46:10.jpg
inflating: monet2photo/trainB/2016-02-07 00:21:45.jpg
inflating: monet2photo/trainB/2015-01-25 22:57:12.jpg
inflating: monet2photo/trainB/2016-08-23 09:04:41.jpg
inflating: monet2photo/trainB/2015-03-12 16:09:46.jpg
inflating: monet2photo/trainB/2015-11-04 08:32:15.jpg
inflating: monet2photo/trainB/2015-05-21 17:11:14.jpg
inflating: monet2photo/trainB/2016-12-12 04:07:23.jpg
inflating: monet2photo/trainB/2016-12-13 09:41:04.jpg
inflating: monet2photo/trainB/2016-07-13 20:16:44.jpg
inflating: monet2photo/trainB/2016-12-27 12:19:01.jpg
inflating: monet2photo/trainB/2015-02-07 23:05:18.jpg
inflating: monet2photo/trainB/2015-05-10 20:20:32.jpg
inflating: monet2photo/trainB/2014-06-20 17:24:36.jpg
inflating: monet2photo/trainB/2015-02-16 19:24:27.jpg
inflating: monet2photo/trainB/2016-12-18 13:02:01.jpg
inflating: monet2photo/trainB/2014-01-27 20:13:33.jpg
inflating: monet2photo/trainB/2015-12-20 06:53:55.jpg
inflating: monet2photo/trainB/2014-05-18 19:48:17.jpg
inflating: monet2photo/trainB/2013-11-10 07:43:23.jpg
inflating: monet2photo/trainB/2015-08-07 00:26:00.jpg
inflating: monet2photo/trainB/2016-12-16 13:37:33.jpg
inflating: monet2photo/trainB/2016-12-03 06:48:40.jpg
inflating: monet2photo/trainB/2015-10-17 09:19:32.jpg
inflating: monet2photo/trainB/2016-05-18 11:48:40.jpg
inflating: monet2photo/trainB/2015-07-14 03:15:48.jpg
inflating: monet2photo/trainB/2016-05-23 04:39:32.jpg
inflating: monet2photo/trainB/2015-07-19 00:48:54.jpg
inflating: monet2photo/trainB/2016-01-14 09:42:14.jpg
inflating: monet2photo/trainB/2015-10-19 22:17:36.jpg
inflating: monet2photo/trainB/2013-12-25 01:33:16.jpg
inflating: monet2photo/trainB/2016-07-30 08:21:00.jpg
inflating: monet2photo/trainB/2015-11-16 19:10:12.jpg
inflating: monet2photo/trainB/2016-08-01 09:51:59.jpg
inflating: monet2photo/trainB/2016-08-07 20:11:54.jpg
inflating: monet2photo/trainB/2017-01-02 15:28:55.jpg
inflating: monet2photo/trainB/2016-06-30 11:54:39.jpg
inflating: monet2photo/trainB/2014-07-02 07:17:49.jpg
inflating: monet2photo/trainB/2014-05-03 21:06:44.jpg
inflating: monet2photo/trainB/2016-05-15 18:21:51.jpg
inflating: monet2photo/trainB/2016-04-13 01:53:54.jpg
inflating: monet2photo/trainB/2014-07-01 18:08:13.jpg
inflating: monet2photo/trainB/2014-07-14 16:59:21.jpg
inflating: monet2photo/trainB/2015-02-03 10:53:02.jpg
inflating: monet2photo/trainB/2016-12-18 14:55:31.jpg
inflating: monet2photo/trainB/2016-01-17 09:57:23.jpg
inflating: monet2photo/trainB/2016-05-25 04:22:48.jpg
inflating: monet2photo/trainB/2014-05-11 21:47:40.jpg
inflating: monet2photo/trainB/2015-08-06 14:43:17.jpg
inflating: monet2photo/trainB/2014-03-30 01:22:54.jpg
inflating: monet2photo/trainB/2016-04-20 08:55:26.jpg
inflating: monet2photo/trainB/2015-01-01 13:54:27.jpg
inflating: monet2photo/trainB/2015-03-14 17:08:33.jpg
inflating: monet2photo/trainB/2015-09-15 07:54:27.jpg
inflating: monet2photo/trainB/2015-07-31 07:24:46.jpg
inflating: monet2photo/trainB/2016-01-13 00:22:00.jpg
inflating: monet2photo/trainB/2016-04-12 22:47:39.jpg
inflating: monet2photo/trainB/2015-08-03 07:31:16.jpg
inflating: monet2photo/trainB/2015-10-07 21:28:09.jpg
inflating: monet2photo/trainB/2015-10-19 13:42:41.jpg
inflating: monet2photo/trainB/2014-07-07 16:04:10.jpg
inflating: monet2photo/trainB/2016-12-04 02:02:46.jpg
inflating: monet2photo/trainB/2016-08-08 17:49:08.jpg
inflating: monet2photo/trainB/2016-05-23 04:58:13.jpg
inflating: monet2photo/trainB/2015-02-22 18:52:50.jpg
inflating: monet2photo/trainB/2016-12-31 10:16:09.jpg
inflating: monet2photo/trainB/2016-12-26 07:15:01.jpg
inflating: monet2photo/trainB/2015-03-28 10:38:26.jpg
inflating: monet2photo/trainB/2015-01-05 04:33:24.jpg
inflating: monet2photo/trainB/2015-05-18 06:26:48.jpg
inflating: monet2photo/trainB/2015-05-05 11:23:44.jpg
inflating: monet2photo/trainB/2016-11-30 19:26:37.jpg
inflating: monet2photo/trainB/2013-12-18 21:03:24.jpg
inflating: monet2photo/trainB/2015-09-27 04:00:53.jpg
inflating: monet2photo/trainB/2016-07-04 13:01:59.jpg
inflating: monet2photo/trainB/2015-05-20 12:35:35.jpg
inflating: monet2photo/trainB/2014-01-28 12:54:46.jpg
inflating: monet2photo/trainB/2016-08-27 09:23:35.jpg
inflating: monet2photo/trainB/2016-08-30 21:30:31.jpg
inflating: monet2photo/trainB/2015-09-03 08:14:19.jpg
inflating: monet2photo/trainB/2015-02-10 13:51:33.jpg
inflating: monet2photo/trainB/2015-01-24 21:47:47.jpg
inflating: monet2photo/trainB/2015-07-02 05:13:21.jpg
inflating: monet2photo/trainB/2014-02-04 19:54:02.jpg
inflating: monet2photo/trainB/2015-05-14 21:44:29.jpg
inflating: monet2photo/trainB/2015-11-10 12:27:39.jpg
inflating: monet2photo/trainB/2015-03-10 10:22:26.jpg
inflating: monet2photo/trainB/2015-08-27 18:20:39.jpg
inflating: monet2photo/trainB/2015-10-12 23:19:26.jpg
inflating: monet2photo/trainB/2015-06-13 03:35:52.jpg
inflating: monet2photo/trainB/2015-07-21 10:14:25.jpg
inflating: monet2photo/trainB/2016-08-30 21:28:32.jpg
inflating: monet2photo/trainB/2016-02-02 07:17:49.jpg
inflating: monet2photo/trainB/2014-02-02 10:49:44.jpg
inflating: monet2photo/trainB/2016-03-13 17:28:13.jpg
inflating: monet2photo/trainB/2015-08-30 09:15:11.jpg
inflating: monet2photo/trainB/2015-05-11 05:34:54.jpg
inflating: monet2photo/trainB/2015-08-09 11:28:56.jpg
inflating: monet2photo/trainB/2015-09-24 18:49:47.jpg
inflating: monet2photo/trainB/2015-10-23 06:24:38.jpg
inflating: monet2photo/trainB/2015-03-18 03:53:48.jpg
inflating: monet2photo/trainB/2015-08-27 19:03:33.jpg
inflating: monet2photo/trainB/2015-12-28 08:03:16.jpg
inflating: monet2photo/trainB/2016-02-29 21:26:03.jpg
inflating: monet2photo/trainB/2015-08-22 02:58:50.jpg
inflating: monet2photo/trainB/2016-07-09 06:02:31.jpg
inflating: monet2photo/trainB/2016-01-01 00:58:01.jpg
inflating: monet2photo/trainB/2016-04-16 08:35:56.jpg
inflating: monet2photo/trainB/2016-08-23 17:03:26.jpg
inflating: monet2photo/trainB/2016-12-26 02:46:40.jpg
inflating: monet2photo/trainB/2016-05-10 08:36:13.jpg
inflating: monet2photo/trainB/2016-08-14 12:13:44.jpg
inflating: monet2photo/trainB/2015-09-15 18:45:56.jpg
inflating: monet2photo/trainB/2016-05-01 19:43:57.jpg
inflating: monet2photo/trainB/2014-04-22 12:35:23.jpg
inflating: monet2photo/trainB/2015-06-14 22:49:19.jpg
inflating: monet2photo/trainB/2014-11-01 13:22:16.jpg
inflating: monet2photo/trainB/2015-10-18 15:00:12.jpg
inflating: monet2photo/trainB/2014-05-15 11:08:11.jpg
inflating: monet2photo/trainB/2016-05-30 06:56:13.jpg
inflating: monet2photo/trainB/2015-10-24 12:12:39.jpg
inflating: monet2photo/trainB/2015-12-16 16:46:28.jpg
inflating: monet2photo/trainB/2016-05-15 21:29:43.jpg
inflating: monet2photo/trainB/2016-06-13 17:18:30.jpg
inflating: monet2photo/trainB/2015-12-27 22:21:14.jpg
inflating: monet2photo/trainB/2014-05-23 20:06:37.jpg
inflating: monet2photo/trainB/2016-08-24 11:21:21.jpg
inflating: monet2photo/trainB/2016-01-04 14:51:51.jpg
inflating: monet2photo/trainB/2017-01-02 07:26:48.jpg
inflating: monet2photo/trainB/2016-07-26 11:11:49.jpg
inflating: monet2photo/trainB/2016-05-27 18:39:09.jpg
inflating: monet2photo/trainB/2015-07-19 09:36:45.jpg
inflating: monet2photo/trainB/2015-05-14 03:20:43.jpg
inflating: monet2photo/trainB/2015-12-29 07:05:59.jpg
inflating: monet2photo/trainB/2015-10-21 10:18:51.jpg
inflating: monet2photo/trainB/2015-11-01 07:19:53.jpg
inflating: monet2photo/trainB/2015-07-14 01:48:48.jpg
inflating: monet2photo/trainB/2015-03-09 01:47:37.jpg
inflating: monet2photo/trainB/2015-06-09 13:44:27.jpg
inflating: monet2photo/trainB/2015-09-01 11:52:31.jpg
inflating: monet2photo/trainB/2016-07-11 01:18:43.jpg
inflating: monet2photo/trainB/2015-05-13 23:39:08.jpg
inflating: monet2photo/trainB/2015-09-04 03:32:02.jpg
inflating: monet2photo/trainB/2015-09-09 01:27:28.jpg
inflating: monet2photo/trainB/2015-07-14 10:40:03.jpg
inflating: monet2photo/trainB/2016-08-30 21:16:27.jpg
inflating: monet2photo/trainB/2015-09-19 22:36:14.jpg
inflating: monet2photo/trainB/2016-08-05 07:36:11.jpg
inflating: monet2photo/trainB/2015-09-29 02:15:51.jpg
inflating: monet2photo/trainB/2015-05-22 00:02:25.jpg
inflating: monet2photo/trainB/2015-03-21 15:21:34.jpg
inflating: monet2photo/trainB/2015-05-30 01:47:24.jpg
inflating: monet2photo/trainB/2015-01-03 23:56:01.jpg
inflating: monet2photo/trainB/2016-12-05 23:15:52.jpg
inflating: monet2photo/trainB/2015-09-16 12:08:43.jpg
inflating: monet2photo/trainB/2014-06-09 20:42:27.jpg
inflating: monet2photo/trainB/2015-01-15 23:38:29.jpg
inflating: monet2photo/trainB/2014-06-08 02:21:32.jpg
inflating: monet2photo/trainB/2015-09-10 14:49:23.jpg
inflating: monet2photo/trainB/2015-06-09 08:26:39.jpg
inflating: monet2photo/trainB/2015-06-24 13:27:10.jpg
inflating: monet2photo/trainB/2016-02-04 11:07:01.jpg
inflating: monet2photo/trainB/2014-01-15 19:22:29.jpg
inflating: monet2photo/trainB/2016-11-18 14:08:06.jpg
inflating: monet2photo/trainB/2016-07-22 13:30:58.jpg
inflating: monet2photo/trainB/2015-11-23 10:20:05.jpg
inflating: monet2photo/trainB/2015-02-18 19:51:26.jpg
inflating: monet2photo/trainB/2016-05-02 03:43:13.jpg
inflating: monet2photo/trainB/2015-05-12 07:10:00.jpg
inflating: monet2photo/trainB/2016-04-26 23:39:23.jpg
inflating: monet2photo/trainB/2014-06-27 18:21:00.jpg
inflating: monet2photo/trainB/2015-05-08 03:05:44.jpg
inflating: monet2photo/trainB/2016-08-16 01:31:55.jpg
inflating: monet2photo/trainB/2015-09-04 23:12:40.jpg
inflating: monet2photo/trainB/2015-09-18 11:35:20.jpg
inflating: monet2photo/trainB/2016-07-06 07:05:00.jpg
inflating: monet2photo/trainB/2016-08-26 12:23:41.jpg
inflating: monet2photo/trainB/2015-11-18 22:53:04.jpg
inflating: monet2photo/trainB/2015-03-15 14:57:46.jpg
inflating: monet2photo/trainB/2016-11-15 12:41:40.jpg
inflating: monet2photo/trainB/2016-04-03 22:01:12.jpg
inflating: monet2photo/trainB/2016-03-21 17:35:08.jpg
inflating: monet2photo/trainB/2016-06-09 08:04:04.jpg
inflating: monet2photo/trainB/2016-07-19 08:56:48.jpg
inflating: monet2photo/trainB/2016-03-17 19:25:31.jpg
inflating: monet2photo/trainB/2015-03-08 15:45:50.jpg
inflating: monet2photo/trainB/2016-08-28 18:03:27.jpg
inflating: monet2photo/trainB/2016-01-13 10:06:10.jpg
inflating: monet2photo/trainB/2013-11-21 17:44:44.jpg
inflating: monet2photo/trainB/2014-11-12 00:37:15.jpg
inflating: monet2photo/trainB/2016-06-06 13:29:02.jpg
inflating: monet2photo/trainB/2013-12-29 14:33:33.jpg
inflating: monet2photo/trainB/2016-07-12 09:42:36.jpg
inflating: monet2photo/trainB/2014-11-22 17:35:19.jpg
inflating: monet2photo/trainB/2016-06-13 13:18:53.jpg
inflating: monet2photo/trainB/2015-10-12 22:15:33.jpg
inflating: monet2photo/trainB/2015-05-12 16:02:28.jpg
inflating: monet2photo/trainB/2015-05-27 11:36:44.jpg
inflating: monet2photo/trainB/2015-09-04 14:51:54.jpg
inflating: monet2photo/trainB/2015-07-01 06:43:02.jpg
inflating: monet2photo/trainB/2016-05-23 03:44:28.jpg
inflating: monet2photo/trainB/2015-07-14 13:52:26.jpg
inflating: monet2photo/trainB/2016-03-18 21:28:24.jpg
inflating: monet2photo/trainB/2016-06-09 23:01:24.jpg
inflating: monet2photo/trainB/2016-08-24 00:14:56.jpg
inflating: monet2photo/trainB/2016-11-22 14:42:56.jpg
inflating: monet2photo/trainB/2016-03-19 23:20:33.jpg
inflating: monet2photo/trainB/2015-11-20 16:35:37.jpg
inflating: monet2photo/trainB/2016-08-01 21:32:19.jpg
inflating: monet2photo/trainB/2015-12-28 11:12:24.jpg
inflating: monet2photo/trainB/2015-12-06 20:28:57.jpg
inflating: monet2photo/trainB/2015-08-03 14:39:42.jpg
inflating: monet2photo/trainB/2015-08-12 09:46:29.jpg
inflating: monet2photo/trainB/2015-08-11 08:50:42.jpg
inflating: monet2photo/trainB/2015-06-20 07:25:48.jpg
inflating: monet2photo/trainB/2014-06-20 08:27:43.jpg
inflating: monet2photo/trainB/2015-08-17 13:02:31.jpg
inflating: monet2photo/trainB/2016-12-30 17:51:12.jpg
inflating: monet2photo/trainB/2015-03-10 18:58:47.jpg
inflating: monet2photo/trainB/2015-05-15 02:48:41.jpg
inflating: monet2photo/trainB/2016-05-21 07:53:58.jpg
inflating: monet2photo/trainB/2016-06-20 03:19:42.jpg
inflating: monet2photo/trainB/2014-07-25 22:56:06.jpg
inflating: monet2photo/trainB/2015-07-16 08:54:35.jpg
inflating: monet2photo/trainB/2015-10-20 07:40:01.jpg
inflating: monet2photo/trainB/2016-04-26 09:45:31.jpg
inflating: monet2photo/trainB/2015-07-30 05:36:39.jpg
inflating: monet2photo/trainB/2015-12-13 05:01:16.jpg
inflating: monet2photo/trainB/2015-07-18 21:08:37.jpg
inflating: monet2photo/trainB/2016-06-17 13:19:57.jpg
inflating: monet2photo/trainB/2015-01-01 22:16:54.jpg
inflating: monet2photo/trainB/2015-06-28 23:41:58.jpg
inflating: monet2photo/trainB/2015-10-31 18:14:17.jpg
inflating: monet2photo/trainB/2014-11-09 18:58:45.jpg
inflating: monet2photo/trainB/2014-07-19 13:21:31.jpg
inflating: monet2photo/trainB/2016-08-29 09:59:47.jpg
inflating: monet2photo/trainB/2015-09-14 11:43:56.jpg
inflating: monet2photo/trainB/2016-12-17 10:38:21.jpg
inflating: monet2photo/trainB/2015-08-11 13:33:42.jpg
inflating: monet2photo/trainB/2016-04-28 11:13:51.jpg
inflating: monet2photo/trainB/2016-02-28 06:15:40.jpg
inflating: monet2photo/trainB/2016-07-13 00:57:09.jpg
inflating: monet2photo/trainB/2016-12-30 12:04:58.jpg
inflating: monet2photo/trainB/2016-04-13 04:21:04.jpg
inflating: monet2photo/trainB/2016-11-29 17:37:23.jpg
inflating: monet2photo/trainB/2014-05-12 15:02:21.jpg
inflating: monet2photo/trainB/2015-07-24 06:09:40.jpg
inflating: monet2photo/trainB/2015-09-29 03:25:56.jpg
inflating: monet2photo/trainB/2016-02-07 11:34:35.jpg
inflating: monet2photo/trainB/2015-02-03 07:48:40.jpg
inflating: monet2photo/trainB/2016-08-25 01:28:23.jpg
inflating: monet2photo/trainB/2015-07-19 19:14:10.jpg
inflating: monet2photo/trainB/2016-08-13 12:40:05.jpg
inflating: monet2photo/trainB/2015-12-02 00:07:27.jpg
inflating: monet2photo/trainB/2016-02-21 12:48:57.jpg
inflating: monet2photo/trainB/2016-11-23 04:15:28.jpg
inflating: monet2photo/trainB/2016-07-09 23:03:02.jpg
inflating: monet2photo/trainB/2016-07-23 22:00:28.jpg
inflating: monet2photo/trainB/2014-01-04 14:21:47.jpg
inflating: monet2photo/trainB/2015-09-02 05:52:20.jpg
inflating: monet2photo/trainB/2015-09-02 11:14:05.jpg
inflating: monet2photo/trainB/2015-01-25 02:58:29.jpg
inflating: monet2photo/trainB/2014-07-29 07:39:36.jpg
inflating: monet2photo/trainB/2014-06-21 15:25:54.jpg
inflating: monet2photo/trainB/2014-11-24 09:07:19.jpg
inflating: monet2photo/trainB/2015-08-18 07:21:12.jpg
inflating: monet2photo/trainB/2014-03-10 16:25:40.jpg
inflating: monet2photo/trainB/2016-12-31 08:12:05.jpg
inflating: monet2photo/trainB/2015-07-03 13:43:24.jpg
inflating: monet2photo/trainB/2016-11-15 23:09:54.jpg
inflating: monet2photo/trainB/2015-11-22 08:18:45.jpg
inflating: monet2photo/trainB/2014-02-01 19:10:54.jpg
inflating: monet2photo/trainB/2016-01-09 17:36:32.jpg
inflating: monet2photo/trainB/2015-07-04 11:15:56.jpg
inflating: monet2photo/trainB/2014-02-21 21:55:07.jpg
inflating: monet2photo/trainB/2016-03-28 09:57:34.jpg
inflating: monet2photo/trainB/2015-06-27 09:47:53.jpg
inflating: monet2photo/trainB/2014-03-11 17:41:50.jpg
inflating: monet2photo/trainB/2014-11-20 04:02:46.jpg
inflating: monet2photo/trainB/2015-11-18 12:44:56.jpg
inflating: monet2photo/trainB/2016-05-24 17:50:51.jpg
inflating: monet2photo/trainB/2015-06-20 01:05:43.jpg
inflating: monet2photo/trainB/2015-07-19 11:03:05.jpg
inflating: monet2photo/trainB/2015-09-06 03:55:41.jpg
inflating: monet2photo/trainB/2016-06-17 12:45:53.jpg
inflating: monet2photo/trainB/2016-12-13 10:29:55.jpg
inflating: monet2photo/trainB/2016-01-15 20:17:32.jpg
inflating: monet2photo/trainB/2013-12-10 11:32:40.jpg
inflating: monet2photo/trainB/2014-07-28 12:24:37.jpg
inflating: monet2photo/trainB/2016-07-04 07:02:53.jpg
inflating: monet2photo/trainB/2015-06-01 17:40:44.jpg
inflating: monet2photo/trainB/2015-06-22 12:28:13.jpg
inflating: monet2photo/trainB/2016-06-28 20:36:37.jpg
inflating: monet2photo/trainB/2015-02-02 19:27:50.jpg
inflating: monet2photo/trainB/2014-11-16 10:16:44.jpg
inflating: monet2photo/trainB/2016-01-29 23:54:11.jpg
inflating: monet2photo/trainB/2015-12-06 15:46:33.jpg
inflating: monet2photo/trainB/2015-09-16 04:23:47.jpg
inflating: monet2photo/trainB/2015-12-26 15:07:51.jpg
inflating: monet2photo/trainB/2016-11-17 14:17:47.jpg
inflating: monet2photo/trainB/2014-05-12 18:08:15.jpg
inflating: monet2photo/trainB/2015-06-02 12:59:25.jpg
inflating: monet2photo/trainB/2014-01-02 04:58:11.jpg
inflating: monet2photo/trainB/2015-06-14 08:58:56.jpg
inflating: monet2photo/trainB/2015-05-04 19:02:10.jpg
inflating: monet2photo/trainB/2014-02-04 10:05:44.jpg
inflating: monet2photo/trainB/2013-12-26 18:10:46.jpg
inflating: monet2photo/trainB/2015-05-06 16:10:33.jpg
inflating: monet2photo/trainB/2014-01-30 08:32:10.jpg
inflating: monet2photo/trainB/2015-09-08 11:24:14.jpg
inflating: monet2photo/trainB/2016-07-30 22:28:46.jpg
inflating: monet2photo/trainB/2015-06-18 22:17:43.jpg
inflating: monet2photo/trainB/2015-07-06 07:11:25.jpg
inflating: monet2photo/trainB/2014-01-11 11:28:35.jpg
inflating: monet2photo/trainB/2016-02-09 16:18:45.jpg
inflating: monet2photo/trainB/2015-10-16 05:03:11.jpg
inflating: monet2photo/trainB/2015-10-27 23:46:09.jpg
inflating: monet2photo/trainB/2015-10-03 10:14:59.jpg
inflating: monet2photo/trainB/2016-08-19 13:48:17.jpg
inflating: monet2photo/trainB/2016-11-24 19:39:12.jpg
inflating: monet2photo/trainB/2016-05-25 11:15:00.jpg
inflating: monet2photo/trainB/2016-12-18 19:14:42.jpg
inflating: monet2photo/trainB/2015-08-05 08:26:14.jpg
inflating: monet2photo/trainB/2016-03-28 13:59:45.jpg
inflating: monet2photo/trainB/2015-02-07 23:31:01.jpg
inflating: monet2photo/trainB/2015-06-11 23:42:37.jpg
inflating: monet2photo/trainB/2014-01-18 00:37:42.jpg
inflating: monet2photo/trainB/2015-07-21 05:08:56.jpg
inflating: monet2photo/trainB/2016-04-28 01:31:26.jpg
inflating: monet2photo/trainB/2014-03-17 08:22:36.jpg
inflating: monet2photo/trainB/2015-05-17 20:11:05.jpg
inflating: monet2photo/trainB/2016-05-13 10:03:04.jpg
inflating: monet2photo/trainB/2016-06-27 10:34:18.jpg
inflating: monet2photo/trainB/2016-12-23 08:49:22.jpg
inflating: monet2photo/trainB/2014-06-07 21:09:48.jpg
inflating: monet2photo/trainB/2016-05-10 14:50:58.jpg
inflating: monet2photo/trainB/2016-03-16 02:57:42.jpg
inflating: monet2photo/trainB/2016-04-16 02:31:23.jpg
inflating: monet2photo/trainB/2016-03-26 07:57:36.jpg
inflating: monet2photo/trainB/2015-07-03 13:13:20.jpg
inflating: monet2photo/trainB/2015-09-03 05:12:33.jpg
inflating: monet2photo/trainB/2015-08-02 14:13:28.jpg
inflating: monet2photo/trainB/2016-05-06 22:49:26.jpg
inflating: monet2photo/trainB/2016-05-17 20:01:43.jpg
inflating: monet2photo/trainB/2015-06-30 10:34:03.jpg
inflating: monet2photo/trainB/2015-09-30 17:13:09.jpg
inflating: monet2photo/trainB/2015-02-18 15:59:39.jpg
inflating: monet2photo/trainB/2015-12-20 09:00:02.jpg
inflating: monet2photo/trainB/2015-08-01 14:05:35.jpg
inflating: monet2photo/trainB/2015-07-23 05:25:32.jpg
inflating: monet2photo/trainB/2015-10-22 07:16:11.jpg
inflating: monet2photo/trainB/2015-12-26 10:04:34.jpg
inflating: monet2photo/trainB/2016-11-19 23:39:13.jpg
inflating: monet2photo/trainB/2014-11-16 10:37:53.jpg
inflating: monet2photo/trainB/2015-11-10 05:58:11.jpg
inflating: monet2photo/trainB/2015-06-18 21:19:43.jpg
inflating: monet2photo/trainB/2015-08-10 09:24:06.jpg
inflating: monet2photo/trainB/2015-08-27 04:27:59.jpg
inflating: monet2photo/trainB/2016-05-10 09:48:22.jpg
inflating: monet2photo/trainB/2016-03-31 07:40:30.jpg
inflating: monet2photo/trainB/2015-01-28 01:49:16.jpg
inflating: monet2photo/trainB/2016-01-14 13:53:20.jpg
inflating: monet2photo/trainB/2015-05-06 16:11:19.jpg
inflating: monet2photo/trainB/2016-04-02 08:32:12.jpg
inflating: monet2photo/trainB/2016-03-15 20:35:19.jpg
inflating: monet2photo/trainB/2016-01-10 20:00:01.jpg
inflating: monet2photo/trainB/2015-08-17 20:45:19.jpg
inflating: monet2photo/trainB/2016-03-24 02:25:27.jpg
inflating: monet2photo/trainB/2015-09-07 06:38:07.jpg
inflating: monet2photo/trainB/2015-07-09 17:10:26.jpg
inflating: monet2photo/trainB/2016-01-31 06:49:24.jpg
inflating: monet2photo/trainB/2016-08-23 03:38:40.jpg
inflating: monet2photo/trainB/2015-03-31 12:15:48.jpg
inflating: monet2photo/trainB/2014-07-07 14:14:26.jpg
inflating: monet2photo/trainB/2015-09-09 05:52:46.jpg
inflating: monet2photo/trainB/2015-08-10 03:26:38.jpg
inflating: monet2photo/trainB/2015-12-02 10:15:47.jpg
inflating: monet2photo/trainB/2016-12-03 02:15:43.jpg
inflating: monet2photo/trainB/2016-08-26 07:58:14.jpg
inflating: monet2photo/trainB/2016-06-28 21:17:36.jpg
inflating: monet2photo/trainB/2016-12-17 12:30:56.jpg
inflating: monet2photo/trainB/2014-03-17 21:05:41.jpg
inflating: monet2photo/trainB/2016-05-24 05:12:04.jpg
inflating: monet2photo/trainB/2014-11-05 07:00:40.jpg
inflating: monet2photo/trainB/2016-03-28 00:26:07.jpg
inflating: monet2photo/trainB/2016-02-19 23:56:37.jpg
inflating: monet2photo/trainB/2014-04-19 01:27:58.jpg
inflating: monet2photo/trainB/2015-11-18 11:55:57.jpg
inflating: monet2photo/trainB/2015-09-12 03:01:06.jpg
inflating: monet2photo/trainB/2016-04-01 13:01:38.jpg
inflating: monet2photo/trainB/2015-08-22 19:39:50.jpg
inflating: monet2photo/trainB/2016-05-02 23:34:47.jpg
inflating: monet2photo/trainB/2015-07-03 02:35:39.jpg
inflating: monet2photo/trainB/2016-11-29 12:43:34.jpg
inflating: monet2photo/trainB/2016-11-19 20:00:10.jpg
inflating: monet2photo/trainB/2013-11-30 17:09:33.jpg
inflating: monet2photo/trainB/2014-11-23 07:46:12.jpg
inflating: monet2photo/trainB/2015-12-14 19:12:24.jpg
inflating: monet2photo/trainB/2015-01-09 13:44:39.jpg
inflating: monet2photo/trainB/2015-11-04 10:00:26.jpg
inflating: monet2photo/trainB/2014-11-15 16:20:16.jpg
inflating: monet2photo/trainB/2015-11-19 16:19:41.jpg
inflating: monet2photo/trainB/2015-09-02 21:38:30.jpg
inflating: monet2photo/trainB/2015-12-22 12:49:10.jpg
inflating: monet2photo/trainB/2014-03-15 14:29:42.jpg
inflating: monet2photo/trainB/2014-03-01 01:54:43.jpg
inflating: monet2photo/trainB/2016-01-27 21:16:02.jpg
inflating: monet2photo/trainB/2014-06-11 13:57:04.jpg
inflating: monet2photo/trainB/2016-03-03 18:31:22.jpg
inflating: monet2photo/trainB/2015-07-12 10:21:09.jpg
inflating: monet2photo/trainB/2016-11-23 17:01:36.jpg
inflating: monet2photo/trainB/2016-12-10 07:04:00.jpg
inflating: monet2photo/trainB/2015-09-25 03:58:20.jpg
inflating: monet2photo/trainB/2015-05-29 00:15:12.jpg
inflating: monet2photo/trainB/2016-01-05 12:32:48.jpg
inflating: monet2photo/trainB/2016-04-30 08:00:04.jpg
inflating: monet2photo/trainB/2016-08-05 17:51:28.jpg
inflating: monet2photo/trainB/2014-11-03 02:57:48.jpg
inflating: monet2photo/trainB/2015-08-11 06:09:04.jpg
inflating: monet2photo/trainB/2015-07-28 19:44:24.jpg
inflating: monet2photo/trainB/2016-11-28 12:12:23.jpg
inflating: monet2photo/trainB/2016-02-26 23:42:17.jpg
inflating: monet2photo/trainB/2016-11-21 19:34:23.jpg
inflating: monet2photo/trainB/2015-05-31 16:55:32.jpg
inflating: monet2photo/trainB/2016-06-21 12:56:40.jpg
inflating: monet2photo/trainB/2016-06-28 11:40:56.jpg
inflating: monet2photo/trainB/2015-09-03 17:54:18.jpg
inflating: monet2photo/trainB/2016-06-07 06:49:09.jpg
inflating: monet2photo/trainB/2016-12-30 05:27:37.jpg
inflating: monet2photo/trainB/2015-10-25 11:21:42.jpg
inflating: monet2photo/trainB/2016-08-13 00:55:17.jpg
inflating: monet2photo/trainB/2015-09-14 11:17:41.jpg
inflating: monet2photo/trainB/2016-03-06 22:30:17.jpg
inflating: monet2photo/trainB/2015-05-24 10:31:49.jpg
inflating: monet2photo/trainB/2015-10-18 20:42:41.jpg
inflating: monet2photo/trainB/2015-09-19 19:51:36.jpg
inflating: monet2photo/trainB/2016-07-06 05:11:00.jpg
inflating: monet2photo/trainB/2016-11-19 18:49:13.jpg
inflating: monet2photo/trainB/2016-03-15 14:33:10.jpg
inflating: monet2photo/trainB/2016-12-23 08:09:06.jpg
inflating: monet2photo/trainB/2014-07-19 10:52:02.jpg
inflating: monet2photo/trainB/2015-03-09 14:54:14.jpg
inflating: monet2photo/trainB/2016-07-28 08:29:39.jpg
inflating: monet2photo/trainB/2016-01-17 10:06:52.jpg
inflating: monet2photo/trainB/2015-02-12 05:26:03.jpg
inflating: monet2photo/trainB/2015-11-20 03:30:00.jpg
inflating: monet2photo/trainB/2016-04-16 13:41:01.jpg
inflating: monet2photo/trainB/2015-11-03 12:22:18.jpg
inflating: monet2photo/trainB/2015-11-23 03:25:23.jpg
inflating: monet2photo/trainB/2015-12-25 03:22:09.jpg
inflating: monet2photo/trainB/2014-07-17 04:25:53.jpg
inflating: monet2photo/trainB/2016-08-11 12:47:46.jpg
inflating: monet2photo/trainB/2015-08-27 03:33:23.jpg
inflating: monet2photo/trainB/2016-01-19 23:49:47.jpg
inflating: monet2photo/trainB/2016-07-17 00:52:44.jpg
inflating: monet2photo/trainB/2015-10-23 21:29:14.jpg
inflating: monet2photo/trainB/2016-03-31 18:56:09.jpg
inflating: monet2photo/trainB/2015-07-14 22:30:31.jpg
inflating: monet2photo/trainB/2015-08-29 15:17:27.jpg
inflating: monet2photo/trainB/2015-08-11 02:13:55.jpg
inflating: monet2photo/trainB/2016-04-15 12:25:12.jpg
inflating: monet2photo/trainB/2016-05-06 10:02:21.jpg
inflating: monet2photo/trainB/2016-12-07 06:31:46.jpg
inflating: monet2photo/trainB/2016-03-13 01:59:34.jpg
inflating: monet2photo/trainB/2015-03-07 10:25:56.jpg
inflating: monet2photo/trainB/2015-05-08 08:43:52.jpg
inflating: monet2photo/trainB/2016-08-18 23:51:11.jpg
inflating: monet2photo/trainB/2016-02-09 20:27:20.jpg
inflating: monet2photo/trainB/2015-08-04 09:51:50.jpg
inflating: monet2photo/trainB/2016-04-01 12:18:54.jpg
inflating: monet2photo/trainB/2015-10-01 23:49:18.jpg
inflating: monet2photo/trainB/2016-12-29 12:35:41.jpg
inflating: monet2photo/trainB/2016-04-13 06:19:00.jpg
inflating: monet2photo/trainB/2014-04-18 21:21:48.jpg
inflating: monet2photo/trainB/2015-02-25 10:29:34.jpg
inflating: monet2photo/trainB/2015-08-17 16:50:09.jpg
inflating: monet2photo/trainB/2014-06-23 12:07:33.jpg
inflating: monet2photo/trainB/2015-09-12 13:29:32.jpg
inflating: monet2photo/trainB/2014-05-30 15:19:27.jpg
inflating: monet2photo/trainB/2015-05-10 19:29:07.jpg
inflating: monet2photo/trainB/2015-12-16 12:17:38.jpg
inflating: monet2photo/trainB/2014-04-29 20:32:22.jpg
inflating: monet2photo/trainB/2016-05-01 18:04:46.jpg
inflating: monet2photo/trainB/2015-12-18 17:37:58.jpg
inflating: monet2photo/trainB/2015-08-11 17:58:42.jpg
inflating: monet2photo/trainB/2016-12-22 04:11:22.jpg
inflating: monet2photo/trainB/2016-11-28 19:34:38.jpg
inflating: monet2photo/trainB/2015-08-17 13:03:16.jpg
inflating: monet2photo/trainB/2016-06-20 19:11:57.jpg
inflating: monet2photo/trainB/2015-06-22 08:32:33.jpg
inflating: monet2photo/trainB/2013-12-20 01:17:39.jpg
inflating: monet2photo/trainB/2015-09-14 18:56:23.jpg
inflating: monet2photo/trainB/2016-03-01 21:14:36.jpg
inflating: monet2photo/trainB/2015-10-03 04:15:52.jpg
inflating: monet2photo/trainB/2015-02-07 17:01:20.jpg
inflating: monet2photo/trainB/2015-02-14 17:22:56.jpg
inflating: monet2photo/trainB/2016-06-23 05:56:13.jpg
inflating: monet2photo/trainB/2014-03-06 08:56:06.jpg
inflating: monet2photo/trainB/2016-02-08 10:23:21.jpg
inflating: monet2photo/trainB/2014-11-09 14:55:31.jpg
inflating: monet2photo/trainB/2015-03-08 08:42:08.jpg
inflating: monet2photo/trainB/2014-06-15 06:05:47.jpg
inflating: monet2photo/trainB/2016-08-27 05:15:40.jpg
inflating: monet2photo/trainB/2016-04-22 21:09:55.jpg
inflating: monet2photo/trainB/2015-05-28 15:19:14.jpg
inflating: monet2photo/trainB/2016-02-04 10:21:27.jpg
inflating: monet2photo/trainB/2016-05-23 06:48:33.jpg
inflating: monet2photo/trainB/2015-11-23 13:48:33.jpg
inflating: monet2photo/trainB/2016-12-21 20:18:26.jpg
inflating: monet2photo/trainB/2016-08-23 07:00:21.jpg
inflating: monet2photo/trainB/2015-05-01 01:56:39.jpg
inflating: monet2photo/trainB/2015-07-13 22:22:13.jpg
inflating: monet2photo/trainB/2016-04-03 09:06:19.jpg
inflating: monet2photo/trainB/2015-05-28 21:18:44.jpg
inflating: monet2photo/trainB/2015-06-15 02:24:57.jpg
inflating: monet2photo/trainB/2016-12-31 11:11:06.jpg
inflating: monet2photo/trainB/2015-03-25 04:32:33.jpg
inflating: monet2photo/trainB/2015-09-28 05:22:30.jpg
inflating: monet2photo/trainB/2016-08-12 11:08:28.jpg
inflating: monet2photo/trainB/2016-12-28 11:58:10.jpg
inflating: monet2photo/trainB/2014-02-07 13:17:33.jpg
inflating: monet2photo/trainB/2016-12-21 10:32:50.jpg
inflating: monet2photo/trainB/2014-06-28 15:22:55.jpg
inflating: monet2photo/trainB/2016-02-25 21:12:57.jpg
inflating: monet2photo/trainB/2015-06-11 10:50:44.jpg
inflating: monet2photo/trainB/2016-05-11 07:46:37.jpg
inflating: monet2photo/trainB/2016-12-18 15:37:45.jpg
inflating: monet2photo/trainB/2016-12-04 01:16:17.jpg
inflating: monet2photo/trainB/2014-11-27 07:42:14.jpg
inflating: monet2photo/trainB/2015-01-31 18:33:29.jpg
inflating: monet2photo/trainB/2013-12-29 20:07:30.jpg
inflating: monet2photo/trainB/2016-04-28 05:35:13.jpg
inflating: monet2photo/trainB/2016-07-20 11:49:14.jpg
inflating: monet2photo/trainB/2016-12-19 06:22:02.jpg
inflating: monet2photo/trainB/2014-11-29 08:39:53.jpg
inflating: monet2photo/trainB/2016-02-17 11:11:37.jpg
inflating: monet2photo/trainB/2015-11-16 00:59:06.jpg
inflating: monet2photo/trainB/2014-11-10 09:48:43.jpg
inflating: monet2photo/trainB/2014-01-14 10:35:47.jpg
inflating: monet2photo/trainB/2016-11-27 23:57:07.jpg
inflating: monet2photo/trainB/2015-05-30 17:06:39.jpg
inflating: monet2photo/trainB/2014-03-28 10:29:24.jpg
inflating: monet2photo/trainB/2016-05-31 17:08:22.jpg
inflating: monet2photo/trainB/2015-01-12 11:03:15.jpg
inflating: monet2photo/trainB/2016-07-18 03:08:10.jpg
inflating: monet2photo/trainB/2014-01-31 16:34:45.jpg
inflating: monet2photo/trainB/2015-11-23 18:42:12.jpg
inflating: monet2photo/trainB/2016-06-13 12:32:07.jpg
inflating: monet2photo/trainB/2015-02-11 04:31:30.jpg
inflating: monet2photo/trainB/2014-07-17 09:37:39.jpg
inflating: monet2photo/trainB/2016-01-01 12:57:31.jpg
inflating: monet2photo/trainB/2015-10-28 09:50:33.jpg
inflating: monet2photo/trainB/2015-02-02 18:18:23.jpg
inflating: monet2photo/trainB/2016-08-07 05:37:23.jpg
inflating: monet2photo/trainB/2014-03-22 18:23:48.jpg
inflating: monet2photo/trainB/2015-07-20 06:48:17.jpg
inflating: monet2photo/trainB/2014-01-29 23:13:25.jpg
inflating: monet2photo/trainB/2015-10-22 08:57:17.jpg
inflating: monet2photo/trainB/2013-11-16 04:17:00.jpg
inflating: monet2photo/trainB/2016-04-14 15:20:23.jpg
inflating: monet2photo/trainB/2016-06-17 05:14:33.jpg
inflating: monet2photo/trainB/2014-01-28 22:06:02.jpg
inflating: monet2photo/trainB/2014-02-13 04:08:49.jpg
inflating: monet2photo/trainB/2016-07-06 17:53:48.jpg
inflating: monet2photo/trainB/2016-07-12 11:58:05.jpg
inflating: monet2photo/trainB/2015-10-22 09:51:05.jpg
inflating: monet2photo/trainB/2015-09-24 07:31:25.jpg
inflating: monet2photo/trainB/2015-09-02 03:17:06.jpg
inflating: monet2photo/trainB/2015-11-23 06:33:10.jpg
inflating: monet2photo/trainB/2016-01-27 05:14:19.jpg
inflating: monet2photo/trainB/2015-10-20 15:06:09.jpg
inflating: monet2photo/trainB/2015-05-07 11:32:21.jpg
inflating: monet2photo/trainB/2015-12-02 17:14:04.jpg
inflating: monet2photo/trainB/2016-01-08 03:57:39.jpg
inflating: monet2photo/trainB/2015-03-07 23:28:34.jpg
inflating: monet2photo/trainB/2016-08-05 06:58:27.jpg
inflating: monet2photo/trainB/2016-11-23 09:27:47.jpg
inflating: monet2photo/trainB/2013-11-18 11:46:45.jpg
inflating: monet2photo/trainB/2014-07-28 14:50:23.jpg
inflating: monet2photo/trainB/2016-02-12 22:03:19.jpg
inflating: monet2photo/trainB/2016-01-27 03:09:27.jpg
inflating: monet2photo/trainB/2016-08-05 05:41:41.jpg
inflating: monet2photo/trainB/2014-07-12 02:54:05.jpg
inflating: monet2photo/trainB/2016-05-14 00:31:20.jpg
inflating: monet2photo/trainB/2015-02-15 08:36:40.jpg
inflating: monet2photo/trainB/2015-01-08 18:50:17.jpg
inflating: monet2photo/trainB/2016-02-04 04:49:39.jpg
inflating: monet2photo/trainB/2015-03-24 23:44:21.jpg
inflating: monet2photo/trainB/2013-11-29 08:24:15.jpg
inflating: monet2photo/trainB/2016-07-04 06:04:40.jpg
inflating: monet2photo/trainB/2015-03-11 12:07:34.jpg
inflating: monet2photo/trainB/2015-05-05 02:37:36.jpg
inflating: monet2photo/trainB/2015-09-17 21:53:40.jpg
inflating: monet2photo/trainB/2016-12-20 14:09:36.jpg
inflating: monet2photo/trainB/2016-06-06 15:11:02.jpg
inflating: monet2photo/trainB/2016-05-24 02:11:04.jpg
inflating: monet2photo/trainB/2016-08-07 04:20:39.jpg
inflating: monet2photo/trainB/2016-07-17 11:09:41.jpg
inflating: monet2photo/trainB/2016-03-09 19:30:42.jpg
inflating: monet2photo/trainB/2016-05-09 23:33:45.jpg
inflating: monet2photo/trainB/2015-06-28 23:55:48.jpg
inflating: monet2photo/trainB/2016-03-31 22:09:48.jpg
inflating: monet2photo/trainB/2016-04-06 10:47:08.jpg
inflating: monet2photo/trainB/2015-02-17 21:22:12.jpg
inflating: monet2photo/trainB/2015-09-22 22:20:34.jpg
inflating: monet2photo/trainB/2015-08-16 10:52:44.jpg
inflating: monet2photo/trainB/2015-01-06 23:15:40.jpg
inflating: monet2photo/trainB/2015-12-22 11:12:34.jpg
inflating: monet2photo/trainB/2015-02-15 19:58:40.jpg
inflating: monet2photo/trainB/2016-03-25 09:19:00.jpg
inflating: monet2photo/trainB/2016-01-13 06:37:06.jpg
inflating: monet2photo/trainB/2014-03-10 22:24:10.jpg
inflating: monet2photo/trainB/2015-02-12 11:31:32.jpg
inflating: monet2photo/trainB/2016-02-01 20:14:16.jpg
inflating: monet2photo/trainB/2014-06-23 00:50:13.jpg
inflating: monet2photo/trainB/2016-02-20 01:09:08.jpg
inflating: monet2photo/trainB/2016-08-17 01:24:27.jpg
inflating: monet2photo/trainB/2015-03-08 23:09:45.jpg
inflating: monet2photo/trainB/2015-09-29 18:43:24.jpg
inflating: monet2photo/trainB/2015-12-22 09:10:32.jpg
inflating: monet2photo/trainB/2016-08-13 01:19:48.jpg
inflating: monet2photo/trainB/2016-04-22 13:27:13.jpg
inflating: monet2photo/trainB/2013-12-06 23:00:51.jpg
inflating: monet2photo/trainB/2015-03-30 21:34:04.jpg
inflating: monet2photo/trainB/2016-02-14 11:29:55.jpg
inflating: monet2photo/trainB/2014-11-03 03:35:56.jpg
inflating: monet2photo/trainB/2015-07-09 11:03:26.jpg
inflating: monet2photo/trainB/2016-05-02 19:48:53.jpg
inflating: monet2photo/trainB/2015-03-06 10:17:05.jpg
inflating: monet2photo/trainB/2015-08-09 11:19:02.jpg
inflating: monet2photo/trainB/2016-02-23 23:13:58.jpg
inflating: monet2photo/trainB/2015-10-31 04:35:13.jpg
inflating: monet2photo/trainB/2014-02-17 07:33:35.jpg
inflating: monet2photo/trainB/2016-07-15 08:53:56.jpg
inflating: monet2photo/trainB/2016-05-09 11:34:31.jpg
inflating: monet2photo/trainB/2016-05-07 18:39:45.jpg
inflating: monet2photo/trainB/2016-06-11 09:28:45.jpg
inflating: monet2photo/trainB/2015-07-23 07:52:05.jpg
inflating: monet2photo/trainB/2015-07-15 08:58:14.jpg
inflating: monet2photo/trainB/2016-01-19 12:04:48.jpg
inflating: monet2photo/trainB/2015-06-14 22:28:12.jpg
inflating: monet2photo/trainB/2016-05-30 12:41:12.jpg
inflating: monet2photo/trainB/2014-02-21 16:02:29.jpg
inflating: monet2photo/trainB/2016-07-23 14:58:44.jpg
inflating: monet2photo/trainB/2014-11-23 12:04:30.jpg
inflating: monet2photo/trainB/2016-06-13 01:59:21.jpg
inflating: monet2photo/trainB/2015-08-03 17:43:20.jpg
inflating: monet2photo/trainB/2016-02-29 18:45:19.jpg
inflating: monet2photo/trainB/2016-01-07 16:54:48.jpg
inflating: monet2photo/trainB/2014-06-22 14:22:23.jpg
inflating: monet2photo/trainB/2016-01-11 20:12:54.jpg
inflating: monet2photo/trainB/2015-08-17 23:04:03.jpg
inflating: monet2photo/trainB/2015-09-23 20:56:30.jpg
inflating: monet2photo/trainB/2016-04-04 07:56:51.jpg
inflating: monet2photo/trainB/2016-02-01 02:24:54.jpg
inflating: monet2photo/trainB/2015-02-17 04:27:49.jpg
inflating: monet2photo/trainB/2015-02-08 10:01:39.jpg
inflating: monet2photo/trainB/2015-05-09 10:43:29.jpg
inflating: monet2photo/trainB/2016-06-03 06:19:25.jpg
inflating: monet2photo/trainB/2016-07-22 02:59:39.jpg
inflating: monet2photo/trainB/2015-10-17 09:16:16.jpg
inflating: monet2photo/trainB/2016-07-17 22:22:05.jpg
inflating: monet2photo/trainB/2015-01-01 01:19:45.jpg
inflating: monet2photo/trainB/2013-11-22 14:12:35.jpg
inflating: monet2photo/trainB/2014-11-13 01:06:10.jpg
inflating: monet2photo/trainB/2015-08-17 03:13:55.jpg
inflating: monet2photo/trainB/2016-03-25 11:16:00.jpg
inflating: monet2photo/trainB/2015-03-02 04:38:52.jpg
inflating: monet2photo/trainB/2016-07-17 04:16:27.jpg
inflating: monet2photo/trainB/2014-07-26 12:28:01.jpg
inflating: monet2photo/trainB/2015-06-09 18:25:09.jpg
inflating: monet2photo/trainB/2015-10-25 01:10:16.jpg
inflating: monet2photo/trainB/2016-06-10 12:04:59.jpg
inflating: monet2photo/trainB/2016-12-05 00:21:17.jpg
inflating: monet2photo/trainB/2016-04-23 09:43:32.jpg
inflating: monet2photo/trainB/2014-01-22 07:21:39.jpg
inflating: monet2photo/trainB/2016-06-30 12:11:01.jpg
inflating: monet2photo/trainB/2016-08-15 08:33:14.jpg
inflating: monet2photo/trainB/2014-01-23 15:37:46.jpg
inflating: monet2photo/trainB/2015-09-06 05:47:13.jpg
inflating: monet2photo/trainB/2015-08-23 07:07:17.jpg
inflating: monet2photo/trainB/2016-03-14 02:14:09.jpg
inflating: monet2photo/trainB/2014-04-01 14:02:33.jpg
inflating: monet2photo/trainB/2016-04-19 20:41:56.jpg
inflating: monet2photo/trainB/2014-06-14 04:15:46.jpg
inflating: monet2photo/trainB/2016-07-14 07:32:35.jpg
inflating: monet2photo/trainB/2014-04-13 23:36:41.jpg
inflating: monet2photo/trainB/2016-08-15 05:12:29.jpg
inflating: monet2photo/trainB/2016-03-08 02:43:33.jpg
inflating: monet2photo/trainB/2015-11-22 17:01:30.jpg
inflating: monet2photo/trainB/2014-04-17 10:45:24.jpg
inflating: monet2photo/trainB/2015-11-16 21:07:37.jpg
inflating: monet2photo/trainB/2015-10-19 03:05:05.jpg
inflating: monet2photo/trainB/2016-12-12 14:34:36.jpg
inflating: monet2photo/trainB/2016-03-18 07:07:02.jpg
inflating: monet2photo/trainB/2015-01-17 14:38:27.jpg
inflating: monet2photo/trainB/2015-01-09 07:36:06.jpg
inflating: monet2photo/trainB/2016-05-26 03:07:13.jpg
inflating: monet2photo/trainB/2016-12-07 03:53:40.jpg
inflating: monet2photo/trainB/2016-05-11 18:57:12.jpg
inflating: monet2photo/trainB/2014-05-04 19:47:43.jpg
inflating: monet2photo/trainB/2015-10-29 08:57:07.jpg
inflating: monet2photo/trainB/2015-09-10 13:48:06.jpg
inflating: monet2photo/trainB/2014-02-14 03:31:31.jpg
inflating: monet2photo/trainB/2014-05-18 06:25:31.jpg
inflating: monet2photo/trainB/2015-10-18 21:22:35.jpg
inflating: monet2photo/trainB/2016-04-10 09:57:22.jpg
inflating: monet2photo/trainB/2015-01-21 23:57:01.jpg
inflating: monet2photo/trainB/2015-09-25 20:36:34.jpg
inflating: monet2photo/trainB/2016-05-07 05:07:19.jpg
inflating: monet2photo/trainB/2016-08-02 09:46:19.jpg
inflating: monet2photo/trainB/2014-02-09 14:32:22.jpg
inflating: monet2photo/trainB/2016-01-22 07:23:50.jpg
inflating: monet2photo/trainB/2016-04-23 14:42:16.jpg
inflating: monet2photo/trainB/2014-06-10 12:18:30.jpg
inflating: monet2photo/trainB/2014-02-13 19:14:27.jpg
inflating: monet2photo/trainB/2016-07-19 02:43:15.jpg
inflating: monet2photo/trainB/2016-07-14 11:28:07.jpg
inflating: monet2photo/trainB/2016-01-09 09:16:29.jpg
inflating: monet2photo/trainB/2015-05-29 07:53:14.jpg
inflating: monet2photo/trainB/2015-12-08 01:57:16.jpg
inflating: monet2photo/trainB/2015-09-05 03:18:58.jpg
inflating: monet2photo/trainB/2016-01-19 17:17:35.jpg
inflating: monet2photo/trainB/2016-08-08 01:52:11.jpg
inflating: monet2photo/trainB/2016-07-05 21:20:11.jpg
inflating: monet2photo/trainB/2015-03-07 14:38:57.jpg
inflating: monet2photo/trainB/2015-03-29 02:23:52.jpg
inflating: monet2photo/trainB/2015-09-04 11:46:58.jpg
inflating: monet2photo/trainB/2016-07-18 18:13:32.jpg
inflating: monet2photo/trainB/2014-01-04 10:21:21.jpg
inflating: monet2photo/trainB/2014-04-15 15:48:05.jpg
inflating: monet2photo/trainB/2016-03-28 05:29:07.jpg
inflating: monet2photo/trainB/2014-04-07 09:02:36.jpg
inflating: monet2photo/trainB/2015-11-15 15:12:34.jpg
inflating: monet2photo/trainB/2015-07-15 20:29:50.jpg
inflating: monet2photo/trainB/2015-03-09 06:27:31.jpg
inflating: monet2photo/trainB/2016-06-27 02:10:29.jpg
inflating: monet2photo/trainB/2016-03-28 08:11:31.jpg
inflating: monet2photo/trainB/2016-06-01 01:51:22.jpg
inflating: monet2photo/trainB/2014-04-13 02:02:58.jpg
inflating: monet2photo/trainB/2015-09-17 10:52:09.jpg
inflating: monet2photo/trainB/2016-07-31 08:05:12.jpg
inflating: monet2photo/trainB/2016-01-29 21:19:05.jpg
inflating: monet2photo/trainB/2015-10-27 13:39:53.jpg
inflating: monet2photo/trainB/2016-07-06 09:56:19.jpg
inflating: monet2photo/trainB/2015-07-04 11:19:47.jpg
inflating: monet2photo/trainB/2015-08-20 10:12:41.jpg
inflating: monet2photo/trainB/2015-10-25 10:02:39.jpg
inflating: monet2photo/trainB/2013-12-16 11:07:26.jpg
inflating: monet2photo/trainB/2016-02-21 17:43:32.jpg
inflating: monet2photo/trainB/2016-07-21 15:42:53.jpg
inflating: monet2photo/trainB/2015-11-22 16:08:15.jpg
inflating: monet2photo/trainB/2014-06-11 07:22:32.jpg
inflating: monet2photo/trainB/2015-06-28 00:40:59.jpg
inflating: monet2photo/trainB/2017-01-02 03:05:15.jpg
inflating: monet2photo/trainB/2015-01-17 11:24:38.jpg
inflating: monet2photo/trainB/2015-11-27 12:56:44.jpg
inflating: monet2photo/trainB/2016-01-27 01:48:28.jpg
inflating: monet2photo/trainB/2014-04-29 02:57:19.jpg
inflating: monet2photo/trainB/2015-07-10 06:30:53.jpg
inflating: monet2photo/trainB/2016-06-21 10:55:42.jpg
inflating: monet2photo/trainB/2015-02-25 07:55:21.jpg
inflating: monet2photo/trainB/2016-12-01 04:50:37.jpg
inflating: monet2photo/trainB/2016-07-10 09:41:36.jpg
inflating: monet2photo/trainB/2016-03-06 17:25:50.jpg
inflating: monet2photo/trainB/2016-03-15 05:23:36.jpg
inflating: monet2photo/trainB/2015-11-23 01:58:32.jpg
inflating: monet2photo/trainB/2016-02-24 19:25:15.jpg
inflating: monet2photo/trainB/2016-03-12 07:12:30.jpg
inflating: monet2photo/trainB/2015-01-05 21:37:03.jpg
inflating: monet2photo/trainB/2015-05-07 02:16:01.jpg
inflating: monet2photo/trainB/2015-08-17 15:21:50.jpg
inflating: monet2photo/trainB/2016-12-12 12:56:55.jpg
inflating: monet2photo/trainB/2014-05-17 19:35:40.jpg
inflating: monet2photo/trainB/2015-11-16 16:45:12.jpg
inflating: monet2photo/trainB/2014-07-20 11:39:36.jpg
inflating: monet2photo/trainB/2015-09-09 21:36:59.jpg
inflating: monet2photo/trainB/2016-11-27 06:44:11.jpg
inflating: monet2photo/trainB/2016-06-05 21:58:18.jpg
inflating: monet2photo/trainB/2014-04-25 19:19:55.jpg
inflating: monet2photo/trainB/2015-01-01 15:48:38.jpg
inflating: monet2photo/trainB/2014-05-04 13:29:37.jpg
inflating: monet2photo/trainB/2015-05-11 08:29:34.jpg
inflating: monet2photo/trainB/2016-06-05 02:41:40.jpg
inflating: monet2photo/trainB/2016-08-28 01:21:09.jpg
inflating: monet2photo/trainB/2016-05-29 08:47:45.jpg
inflating: monet2photo/trainB/2015-01-03 07:02:34.jpg
inflating: monet2photo/trainB/2016-05-20 18:31:33.jpg
inflating: monet2photo/trainB/2016-03-26 10:01:00.jpg
inflating: monet2photo/trainB/2016-08-26 08:53:18.jpg
inflating: monet2photo/trainB/2015-09-30 15:40:15.jpg
inflating: monet2photo/trainB/2016-08-19 21:53:21.jpg
inflating: monet2photo/trainB/2014-07-21 19:50:15.jpg
inflating: monet2photo/trainB/2016-07-23 01:46:14.jpg
inflating: monet2photo/trainB/2016-04-17 03:05:40.jpg
inflating: monet2photo/trainB/2016-08-19 10:03:46.jpg
inflating: monet2photo/trainB/2016-02-20 12:41:24.jpg
inflating: monet2photo/trainB/2015-06-28 12:31:41.jpg
inflating: monet2photo/trainB/2015-06-03 20:31:06.jpg
inflating: monet2photo/trainB/2015-06-05 09:56:38.jpg
inflating: monet2photo/trainB/2015-03-26 18:12:14.jpg
inflating: monet2photo/trainB/2015-11-25 04:50:11.jpg
inflating: monet2photo/trainB/2016-07-30 21:41:35.jpg
inflating: monet2photo/trainB/2015-11-13 16:19:17.jpg
inflating: monet2photo/trainB/2016-06-07 17:03:01.jpg
inflating: monet2photo/trainB/2015-07-11 11:35:13.jpg
inflating: monet2photo/trainB/2016-12-26 05:54:48.jpg
inflating: monet2photo/trainB/2014-05-04 19:40:20.jpg
inflating: monet2photo/trainB/2015-11-18 10:50:20.jpg
inflating: monet2photo/trainB/2015-03-05 14:04:50.jpg
inflating: monet2photo/trainB/2015-11-14 22:52:45.jpg
inflating: monet2photo/trainB/2014-11-14 19:37:25.jpg
inflating: monet2photo/trainB/2013-11-26 22:00:45.jpg
inflating: monet2photo/trainB/2015-11-01 03:53:06.jpg
inflating: monet2photo/trainB/2016-01-16 22:37:17.jpg
inflating: monet2photo/trainB/2014-04-29 19:31:40.jpg
inflating: monet2photo/trainB/2015-07-15 03:48:56.jpg
inflating: monet2photo/trainB/2014-06-01 14:52:19.jpg
inflating: monet2photo/trainB/2014-05-09 14:05:33.jpg
inflating: monet2photo/trainB/2016-07-10 21:34:36.jpg
inflating: monet2photo/trainB/2015-06-27 04:55:49.jpg
inflating: monet2photo/trainB/2016-07-15 09:31:45.jpg
inflating: monet2photo/trainB/2016-04-21 14:31:09.jpg
inflating: monet2photo/trainB/2016-01-20 02:05:54.jpg
inflating: monet2photo/trainB/2016-05-17 15:03:09.jpg
inflating: monet2photo/trainB/2014-06-01 12:27:23.jpg
inflating: monet2photo/trainB/2015-11-06 11:47:56.jpg
inflating: monet2photo/trainB/2016-12-05 19:17:42.jpg
inflating: monet2photo/trainB/2015-07-24 11:05:01.jpg
inflating: monet2photo/trainB/2016-07-23 02:22:48.jpg
inflating: monet2photo/trainB/2015-10-14 03:08:43.jpg
inflating: monet2photo/trainB/2015-01-19 03:44:39.jpg
inflating: monet2photo/trainB/2016-02-15 01:56:15.jpg
inflating: monet2photo/trainB/2015-06-03 18:57:09.jpg
inflating: monet2photo/trainB/2014-06-15 06:41:17.jpg
inflating: monet2photo/trainB/2015-05-21 05:11:09.jpg
inflating: monet2photo/trainB/2015-12-02 12:18:31.jpg
inflating: monet2photo/trainB/2016-06-30 10:09:26.jpg
inflating: monet2photo/trainB/2016-11-23 10:03:47.jpg
inflating: monet2photo/trainB/2016-05-15 09:24:23.jpg
inflating: monet2photo/trainB/2016-11-21 10:10:18.jpg
inflating: monet2photo/trainB/2015-02-11 10:30:47.jpg
inflating: monet2photo/trainB/2016-02-09 02:11:29.jpg
inflating: monet2photo/trainB/2014-04-30 07:28:49.jpg
inflating: monet2photo/trainB/2015-09-22 17:28:23.jpg
inflating: monet2photo/trainB/2014-11-06 06:45:21.jpg
inflating: monet2photo/trainB/2015-08-25 21:21:56.jpg
inflating: monet2photo/trainB/2017-01-02 09:03:14.jpg
inflating: monet2photo/trainB/2016-07-19 13:32:43.jpg
inflating: monet2photo/trainB/2015-07-16 19:31:26.jpg
inflating: monet2photo/trainB/2015-08-26 01:44:05.jpg
inflating: monet2photo/trainB/2015-07-10 05:45:02.jpg
inflating: monet2photo/trainB/2013-11-17 16:40:10.jpg
inflating: monet2photo/trainB/2016-07-18 10:56:27.jpg
inflating: monet2photo/trainB/2016-02-25 11:04:47.jpg
inflating: monet2photo/trainB/2015-09-27 23:00:14.jpg
inflating: monet2photo/trainB/2015-01-19 09:09:02.jpg
inflating: monet2photo/trainB/2015-10-26 13:02:51.jpg
inflating: monet2photo/trainB/2013-12-29 23:48:10.jpg
inflating: monet2photo/trainB/2015-10-08 07:39:31.jpg
inflating: monet2photo/trainB/2016-04-12 08:05:37.jpg
inflating: monet2photo/trainB/2015-07-21 07:13:47.jpg
inflating: monet2photo/trainB/2015-07-06 08:55:26.jpg
inflating: monet2photo/trainB/2015-02-10 18:32:34.jpg
inflating: monet2photo/trainB/2014-03-01 03:18:02.jpg
inflating: monet2photo/trainB/2014-01-03 18:17:52.jpg
inflating: monet2photo/trainB/2016-08-15 07:55:46.jpg
inflating: monet2photo/trainB/2015-09-22 03:37:09.jpg
inflating: monet2photo/trainB/2016-02-07 07:46:13.jpg
inflating: monet2photo/trainB/2015-08-11 03:44:21.jpg
inflating: monet2photo/trainB/2016-02-04 23:52:16.jpg
inflating: monet2photo/trainB/2016-01-03 23:24:26.jpg
inflating: monet2photo/trainB/2015-05-16 04:21:25.jpg
inflating: monet2photo/trainB/2016-05-22 18:20:36.jpg
inflating: monet2photo/trainB/2015-08-01 09:46:38.jpg
inflating: monet2photo/trainB/2014-02-20 15:34:34.jpg
inflating: monet2photo/trainB/2014-02-26 01:18:41.jpg
inflating: monet2photo/trainB/2015-10-28 03:31:04.jpg
inflating: monet2photo/trainB/2014-03-19 23:25:02.jpg
inflating: monet2photo/trainB/2014-06-16 17:54:59.jpg
inflating: monet2photo/trainB/2014-06-03 11:14:41.jpg
inflating: monet2photo/trainB/2015-06-07 17:55:21.jpg
inflating: monet2photo/trainB/2016-06-28 11:08:00.jpg
inflating: monet2photo/trainB/2015-02-01 15:57:29.jpg
inflating: monet2photo/trainB/2015-11-29 13:30:17.jpg
inflating: monet2photo/trainB/2014-11-18 20:07:28.jpg
inflating: monet2photo/trainB/2014-06-29 10:44:57.jpg
inflating: monet2photo/trainB/2016-07-29 14:55:59.jpg
inflating: monet2photo/trainB/2015-05-29 04:17:38.jpg
inflating: monet2photo/trainB/2015-03-02 21:55:09.jpg
inflating: monet2photo/trainB/2013-12-30 12:27:15.jpg
inflating: monet2photo/trainB/2014-11-13 03:46:31.jpg
inflating: monet2photo/trainB/2015-11-06 11:56:11.jpg
inflating: monet2photo/trainB/2015-05-21 06:34:35.jpg
inflating: monet2photo/trainB/2015-05-10 17:14:32.jpg
inflating: monet2photo/trainB/2016-04-03 08:34:14.jpg
inflating: monet2photo/trainB/2016-03-18 20:01:52.jpg
inflating: monet2photo/trainB/2016-11-26 20:10:56.jpg
inflating: monet2photo/trainB/2014-07-20 12:08:04.jpg
inflating: monet2photo/trainB/2015-02-26 18:09:59.jpg
inflating: monet2photo/trainB/2016-12-03 03:45:02.jpg
inflating: monet2photo/trainB/2016-08-07 07:53:37.jpg
inflating: monet2photo/trainB/2015-01-11 00:39:45.jpg
inflating: monet2photo/trainB/2013-11-26 00:16:03.jpg
inflating: monet2photo/trainB/2015-10-30 06:04:13.jpg
inflating: monet2photo/trainB/2014-01-21 06:15:43.jpg
inflating: monet2photo/trainB/2015-12-05 13:04:40.jpg
inflating: monet2photo/trainB/2016-07-31 07:56:42.jpg
inflating: monet2photo/trainB/2014-11-10 07:45:05.jpg
inflating: monet2photo/trainB/2015-08-09 01:22:44.jpg
inflating: monet2photo/trainB/2015-06-03 10:17:42.jpg
inflating: monet2photo/trainB/2015-11-02 05:25:28.jpg
inflating: monet2photo/trainB/2015-11-20 00:20:54.jpg
inflating: monet2photo/trainB/2015-07-13 10:32:35.jpg
inflating: monet2photo/trainB/2014-11-08 14:44:54.jpg
inflating: monet2photo/trainB/2016-08-15 17:46:46.jpg
inflating: monet2photo/trainB/2016-06-01 17:04:29.jpg
inflating: monet2photo/trainB/2016-08-30 19:05:12.jpg
inflating: monet2photo/trainB/2016-01-08 20:09:54.jpg
inflating: monet2photo/trainB/2015-01-27 12:08:00.jpg
inflating: monet2photo/trainB/2016-02-28 06:56:00.jpg
inflating: monet2photo/trainB/2016-06-06 19:32:14.jpg
inflating: monet2photo/trainB/2016-08-03 19:46:52.jpg
inflating: monet2photo/trainB/2014-06-23 10:48:18.jpg
inflating: monet2photo/trainB/2015-06-06 05:54:10.jpg
inflating: monet2photo/trainB/2015-07-04 04:13:25.jpg
inflating: monet2photo/trainB/2016-04-21 14:08:22.jpg
inflating: monet2photo/trainB/2015-08-24 06:09:37.jpg
inflating: monet2photo/trainB/2015-08-13 19:11:03.jpg
inflating: monet2photo/trainB/2014-03-07 16:11:23.jpg
inflating: monet2photo/trainB/2014-02-03 01:49:15.jpg
inflating: monet2photo/trainB/2016-06-30 09:38:06.jpg
inflating: monet2photo/trainB/2015-08-06 17:05:28.jpg
inflating: monet2photo/trainB/2014-11-21 03:16:08.jpg
inflating: monet2photo/trainB/2015-08-10 22:11:07.jpg
inflating: monet2photo/trainB/2015-07-29 17:44:16.jpg
inflating: monet2photo/trainB/2016-08-02 11:52:11.jpg
inflating: monet2photo/trainB/2015-08-04 07:41:00.jpg
inflating: monet2photo/trainB/2015-10-01 12:29:41.jpg
inflating: monet2photo/trainB/2016-08-24 08:20:09.jpg
inflating: monet2photo/trainB/2015-11-09 02:20:07.jpg
inflating: monet2photo/trainB/2014-03-01 10:29:12.jpg
inflating: monet2photo/trainB/2014-01-25 15:52:21.jpg
inflating: monet2photo/trainB/2016-03-31 10:04:59.jpg
inflating: monet2photo/trainB/2016-01-21 06:28:26.jpg
inflating: monet2photo/trainB/2016-01-06 11:41:09.jpg
inflating: monet2photo/trainB/2014-03-25 20:35:31.jpg
inflating: monet2photo/trainB/2013-11-11 06:35:27.jpg
inflating: monet2photo/trainB/2015-05-14 08:16:40.jpg
inflating: monet2photo/trainB/2016-08-26 08:00:09.jpg
inflating: monet2photo/trainB/2015-06-11 12:33:58.jpg
inflating: monet2photo/trainB/2015-07-28 19:35:52.jpg
inflating: monet2photo/trainB/2015-01-20 14:27:32.jpg
inflating: monet2photo/trainB/2015-12-06 20:32:47.jpg
inflating: monet2photo/trainB/2016-05-23 08:23:56.jpg
inflating: monet2photo/trainB/2014-04-29 03:04:12.jpg
inflating: monet2photo/trainB/2016-07-03 11:20:05.jpg
inflating: monet2photo/trainB/2015-09-08 06:29:20.jpg
inflating: monet2photo/trainB/2015-08-25 13:25:55.jpg
inflating: monet2photo/trainB/2015-11-15 07:55:48.jpg
inflating: monet2photo/trainB/2014-01-21 20:04:29.jpg
inflating: monet2photo/trainB/2016-08-31 21:27:11.jpg
inflating: monet2photo/trainB/2014-06-21 06:39:11.jpg
inflating: monet2photo/trainB/2015-12-23 13:41:47.jpg
inflating: monet2photo/trainB/2015-07-07 13:47:19.jpg
inflating: monet2photo/trainB/2016-08-19 13:50:18.jpg
inflating: monet2photo/trainB/2015-05-21 17:48:48.jpg
inflating: monet2photo/trainB/2016-07-26 10:12:19.jpg
inflating: monet2photo/trainB/2016-02-03 11:42:00.jpg
inflating: monet2photo/trainB/2015-06-05 22:53:54.jpg
inflating: monet2photo/trainB/2016-03-08 20:45:30.jpg
inflating: monet2photo/trainB/2015-02-09 16:11:12.jpg
inflating: monet2photo/trainB/2015-08-19 12:25:40.jpg
inflating: monet2photo/trainB/2015-06-05 22:27:31.jpg
inflating: monet2photo/trainB/2016-07-30 05:06:18.jpg
inflating: monet2photo/trainB/2016-03-09 07:24:11.jpg
inflating: monet2photo/trainB/2015-12-08 13:12:02.jpg
inflating: monet2photo/trainB/2016-06-13 06:48:38.jpg
inflating: monet2photo/trainB/2016-07-21 11:30:15.jpg
inflating: monet2photo/trainB/2015-06-26 20:09:34.jpg
inflating: monet2photo/trainB/2015-10-05 14:59:18.jpg
inflating: monet2photo/trainB/2015-03-11 18:28:41.jpg
inflating: monet2photo/trainB/2015-07-01 08:30:11.jpg
inflating: monet2photo/trainB/2016-05-22 23:44:11.jpg
inflating: monet2photo/trainB/2016-07-01 01:40:08.jpg
inflating: monet2photo/trainB/2015-11-26 21:03:50.jpg
inflating: monet2photo/trainB/2015-11-15 09:02:16.jpg
inflating: monet2photo/trainB/2015-06-05 20:40:40.jpg
inflating: monet2photo/trainB/2016-05-18 11:20:08.jpg
inflating: monet2photo/trainB/2014-06-15 10:20:25.jpg
inflating: monet2photo/trainB/2015-08-18 03:01:29.jpg
inflating: monet2photo/trainB/2015-09-16 06:46:56.jpg
inflating: monet2photo/trainB/2015-12-22 06:28:03.jpg
inflating: monet2photo/trainB/2014-07-20 11:34:54.jpg
inflating: monet2photo/trainB/2016-05-13 21:44:42.jpg
inflating: monet2photo/trainB/2016-04-13 06:03:34.jpg
inflating: monet2photo/trainB/2014-07-28 04:01:09.jpg
inflating: monet2photo/trainB/2015-06-17 07:27:16.jpg
inflating: monet2photo/trainB/2014-03-21 14:32:30.jpg
inflating: monet2photo/trainB/2016-08-10 15:43:13.jpg
inflating: monet2photo/trainB/2016-07-26 16:22:24.jpg
inflating: monet2photo/trainB/2015-07-15 00:50:59.jpg
inflating: monet2photo/trainB/2015-09-29 04:40:08.jpg
inflating: monet2photo/trainB/2015-08-27 01:37:30.jpg
inflating: monet2photo/trainB/2016-06-11 01:55:43.jpg
inflating: monet2photo/trainB/2014-02-05 23:58:43.jpg
inflating: monet2photo/trainB/2015-12-17 23:03:41.jpg
inflating: monet2photo/trainB/2015-06-03 06:11:33.jpg
inflating: monet2photo/trainB/2015-09-02 15:29:34.jpg
inflating: monet2photo/trainB/2014-11-26 23:05:27.jpg
inflating: monet2photo/trainB/2016-06-23 12:51:27.jpg
inflating: monet2photo/trainB/2016-06-17 17:14:31.jpg
inflating: monet2photo/trainB/2016-05-22 08:28:20.jpg
inflating: monet2photo/trainB/2016-01-01 08:36:11.jpg
inflating: monet2photo/trainB/2015-02-27 03:43:12.jpg
inflating: monet2photo/trainB/2015-01-12 12:58:28.jpg
inflating: monet2photo/trainB/2017-01-02 19:36:15.jpg
inflating: monet2photo/trainB/2016-08-09 07:24:34.jpg
inflating: monet2photo/trainB/2016-12-03 07:56:06.jpg
inflating: monet2photo/trainB/2015-07-15 21:07:13.jpg
inflating: monet2photo/trainB/2016-01-01 06:04:25.jpg
inflating: monet2photo/trainB/2015-02-04 01:12:12.jpg
inflating: monet2photo/trainB/2016-12-11 15:06:10.jpg
inflating: monet2photo/trainB/2016-08-28 14:57:51.jpg
inflating: monet2photo/trainB/2016-06-24 13:33:56.jpg
inflating: monet2photo/trainB/2016-02-13 22:17:32.jpg
inflating: monet2photo/trainB/2013-11-20 23:23:37.jpg
inflating: monet2photo/trainB/2016-03-09 15:06:10.jpg
inflating: monet2photo/trainB/2015-11-07 01:41:38.jpg
inflating: monet2photo/trainB/2015-08-05 02:21:33.jpg
inflating: monet2photo/trainB/2016-05-06 01:35:10.jpg
inflating: monet2photo/trainB/2014-02-17 11:28:16.jpg
inflating: monet2photo/trainB/2016-01-10 21:06:47.jpg
inflating: monet2photo/trainB/2013-12-09 06:25:48.jpg
inflating: monet2photo/trainB/2015-05-15 17:07:10.jpg
inflating: monet2photo/trainB/2015-10-09 09:35:36.jpg
inflating: monet2photo/trainB/2015-07-02 09:48:56.jpg
inflating: monet2photo/trainB/2014-11-28 00:10:49.jpg
inflating: monet2photo/trainB/2014-07-20 23:05:49.jpg
inflating: monet2photo/trainB/2016-01-09 05:22:38.jpg
inflating: monet2photo/trainB/2016-06-27 18:28:11.jpg
inflating: monet2photo/trainB/2015-09-10 20:41:45.jpg
inflating: monet2photo/trainB/2015-02-22 22:48:47.jpg
inflating: monet2photo/trainB/2015-08-07 11:15:44.jpg
inflating: monet2photo/trainB/2016-01-17 00:59:56.jpg
inflating: monet2photo/trainB/2014-02-15 09:40:26.jpg
inflating: monet2photo/trainB/2015-10-06 02:22:12.jpg
inflating: monet2photo/trainB/2014-11-06 19:00:11.jpg
inflating: monet2photo/trainB/2015-02-19 09:18:13.jpg
inflating: monet2photo/trainB/2016-07-28 18:33:05.jpg
inflating: monet2photo/trainB/2016-02-22 11:24:42.jpg
inflating: monet2photo/trainB/2015-03-17 00:31:53.jpg
inflating: monet2photo/trainB/2015-10-09 15:42:06.jpg
inflating: monet2photo/trainB/2016-05-02 13:20:49.jpg
inflating: monet2photo/trainB/2015-10-12 17:25:13.jpg
inflating: monet2photo/trainB/2015-12-06 01:59:08.jpg
inflating: monet2photo/trainB/2014-02-16 14:10:03.jpg
inflating: monet2photo/trainB/2014-05-15 17:36:22.jpg
inflating: monet2photo/trainB/2016-12-14 13:22:01.jpg
inflating: monet2photo/trainB/2015-01-09 13:20:23.jpg
inflating: monet2photo/trainB/2016-03-15 09:53:29.jpg
inflating: monet2photo/trainB/2016-02-27 18:44:59.jpg
inflating: monet2photo/trainB/2015-06-16 14:35:04.jpg
inflating: monet2photo/trainB/2014-04-16 21:51:08.jpg
inflating: monet2photo/trainB/2014-02-22 16:19:21.jpg
inflating: monet2photo/trainB/2015-09-23 05:26:28.jpg
inflating: monet2photo/trainB/2016-02-23 16:41:42.jpg
inflating: monet2photo/trainB/2016-06-23 10:54:40.jpg
inflating: monet2photo/trainB/2015-09-14 10:34:44.jpg
inflating: monet2photo/trainB/2016-11-20 00:44:03.jpg
inflating: monet2photo/trainB/2015-06-19 02:28:56.jpg
inflating: monet2photo/trainB/2016-04-01 09:05:24.jpg
inflating: monet2photo/trainB/2016-03-23 19:14:56.jpg
inflating: monet2photo/trainB/2015-08-26 14:20:51.jpg
inflating: monet2photo/trainB/2016-04-27 11:42:49.jpg
inflating: monet2photo/trainB/2015-11-10 00:45:34.jpg
inflating: monet2photo/trainB/2015-03-09 11:20:47.jpg
inflating: monet2photo/trainB/2016-02-25 01:24:46.jpg
inflating: monet2photo/trainB/2016-06-29 11:57:28.jpg
inflating: monet2photo/trainB/2014-04-05 02:05:33.jpg
inflating: monet2photo/trainB/2015-09-16 14:46:24.jpg
inflating: monet2photo/trainB/2016-05-21 15:47:52.jpg
inflating: monet2photo/trainB/2016-11-28 21:35:08.jpg
inflating: monet2photo/trainB/2015-11-15 09:22:01.jpg
inflating: monet2photo/trainB/2015-11-10 11:38:06.jpg
inflating: monet2photo/trainB/2015-08-21 07:16:08.jpg
inflating: monet2photo/trainB/2015-06-03 09:07:53.jpg
inflating: monet2photo/trainB/2014-11-07 07:34:28.jpg
inflating: monet2photo/trainB/2016-11-20 19:55:30.jpg
inflating: monet2photo/trainB/2015-06-21 07:06:34.jpg
inflating: monet2photo/trainB/2015-12-28 14:17:56.jpg
inflating: monet2photo/trainB/2015-12-10 03:33:30.jpg
inflating: monet2photo/trainB/2014-11-02 06:51:29.jpg
inflating: monet2photo/trainB/2015-08-31 03:26:48.jpg
inflating: monet2photo/trainB/2016-06-15 10:20:38.jpg
inflating: monet2photo/trainB/2016-08-01 22:25:24.jpg
inflating: monet2photo/trainB/2016-12-18 07:07:36.jpg
inflating: monet2photo/trainB/2014-03-17 10:50:19.jpg
inflating: monet2photo/trainB/2015-02-08 13:31:23.jpg
inflating: monet2photo/trainB/2015-02-08 20:58:43.jpg
inflating: monet2photo/trainB/2015-08-20 09:01:54.jpg
inflating: monet2photo/trainB/2016-06-10 09:28:53.jpg
inflating: monet2photo/trainB/2015-09-18 02:29:16.jpg
inflating: monet2photo/trainB/2015-01-30 00:31:29.jpg
inflating: monet2photo/trainB/2015-09-09 11:30:37.jpg
inflating: monet2photo/trainB/2016-11-20 10:58:27.jpg
inflating: monet2photo/trainB/2015-05-15 12:40:29.jpg
inflating: monet2photo/trainB/2015-07-09 16:09:36.jpg
inflating: monet2photo/trainB/2015-08-08 09:10:46.jpg
inflating: monet2photo/trainB/2015-06-29 05:00:36.jpg
inflating: monet2photo/trainB/2016-12-30 13:37:05.jpg
inflating: monet2photo/trainB/2015-06-11 09:02:09.jpg
inflating: monet2photo/trainB/2016-11-25 09:33:57.jpg
inflating: monet2photo/trainB/2015-10-19 04:24:00.jpg
inflating: monet2photo/trainB/2014-06-01 03:20:23.jpg
inflating: monet2photo/trainB/2013-11-11 12:10:46.jpg
inflating: monet2photo/trainB/2016-06-27 01:12:48.jpg
inflating: monet2photo/trainB/2016-06-23 20:38:12.jpg
inflating: monet2photo/trainB/2016-03-31 05:58:36.jpg
inflating: monet2photo/trainB/2014-01-10 12:46:39.jpg
inflating: monet2photo/trainB/2015-02-23 11:45:00.jpg
inflating: monet2photo/trainB/2015-05-23 09:38:08.jpg
inflating: monet2photo/trainB/2016-01-15 00:48:49.jpg
inflating: monet2photo/trainB/2016-12-27 18:15:26.jpg
inflating: monet2photo/trainB/2017-01-02 11:16:05.jpg
inflating: monet2photo/trainB/2015-08-06 11:08:32.jpg
inflating: monet2photo/trainB/2015-12-16 07:43:36.jpg
inflating: monet2photo/trainB/2016-03-25 12:57:28.jpg
inflating: monet2photo/trainB/2016-05-10 11:44:44.jpg
inflating: monet2photo/trainB/2015-03-11 08:01:52.jpg
inflating: monet2photo/trainB/2015-08-30 05:26:05.jpg
inflating: monet2photo/trainB/2015-10-03 19:00:56.jpg
inflating: monet2photo/trainB/2016-06-08 02:40:47.jpg
inflating: monet2photo/trainB/2016-02-28 23:11:19.jpg
inflating: monet2photo/trainB/2016-05-03 23:06:27.jpg
inflating: monet2photo/trainB/2016-08-29 15:19:43.jpg
inflating: monet2photo/trainB/2016-11-23 22:09:59.jpg
inflating: monet2photo/trainB/2015-11-16 09:02:06.jpg
inflating: monet2photo/trainB/2016-08-12 06:33:17.jpg
inflating: monet2photo/trainB/2016-01-27 14:08:54.jpg
inflating: monet2photo/trainB/2015-09-20 20:04:09.jpg
inflating: monet2photo/trainB/2015-07-24 10:08:51.jpg
inflating: monet2photo/trainB/2015-05-18 19:20:16.jpg
inflating: monet2photo/trainB/2016-07-16 14:23:45.jpg
inflating: monet2photo/trainB/2015-12-15 23:26:21.jpg
inflating: monet2photo/trainB/2016-01-10 10:42:28.jpg
inflating: monet2photo/trainB/2016-05-20 06:59:30.jpg
inflating: monet2photo/trainB/2015-02-24 10:57:24.jpg
inflating: monet2photo/trainB/2015-08-16 08:17:02.jpg
inflating: monet2photo/trainB/2015-01-26 16:06:24.jpg
inflating: monet2photo/trainB/2014-01-01 19:34:10.jpg
inflating: monet2photo/trainB/2014-11-16 09:43:27.jpg
inflating: monet2photo/trainB/2016-11-17 04:59:15.jpg
inflating: monet2photo/trainB/2015-10-14 13:37:45.jpg
inflating: monet2photo/trainB/2015-06-07 01:30:26.jpg
inflating: monet2photo/trainB/2014-05-09 00:38:44.jpg
inflating: monet2photo/trainB/2016-02-02 22:36:04.jpg
inflating: monet2photo/trainB/2015-11-04 11:12:32.jpg
inflating: monet2photo/trainB/2015-02-16 03:25:17.jpg
inflating: monet2photo/trainB/2015-11-29 02:43:01.jpg
inflating: monet2photo/trainB/2015-11-30 09:10:09.jpg
inflating: monet2photo/trainB/2016-08-21 05:46:07.jpg
inflating: monet2photo/trainB/2016-03-16 03:57:04.jpg
inflating: monet2photo/trainB/2016-06-28 10:54:01.jpg
inflating: monet2photo/trainB/2016-04-23 20:28:31.jpg
inflating: monet2photo/trainB/2016-11-25 08:50:18.jpg
inflating: monet2photo/trainB/2014-02-19 13:54:46.jpg
inflating: monet2photo/trainB/2016-12-03 14:02:25.jpg
inflating: monet2photo/trainB/2016-03-04 14:04:16.jpg
inflating: monet2photo/trainB/2016-06-12 05:22:23.jpg
inflating: monet2photo/trainB/2016-02-25 09:56:11.jpg
inflating: monet2photo/trainB/2015-03-23 19:28:52.jpg
inflating: monet2photo/trainB/2016-06-10 12:28:04.jpg
inflating: monet2photo/trainB/2015-07-31 14:42:43.jpg
inflating: monet2photo/trainB/2016-01-11 02:23:59.jpg
inflating: monet2photo/trainB/2016-07-21 05:57:20.jpg
inflating: monet2photo/trainB/2014-02-19 03:54:22.jpg
inflating: monet2photo/trainB/2015-11-02 07:36:59.jpg
inflating: monet2photo/trainB/2015-07-08 01:53:36.jpg
inflating: monet2photo/trainB/2015-10-10 09:14:55.jpg
inflating: monet2photo/trainB/2015-12-02 09:43:42.jpg
inflating: monet2photo/trainB/2014-03-18 07:30:25.jpg
inflating: monet2photo/trainB/2016-07-04 03:43:47.jpg
inflating: monet2photo/trainB/2016-04-27 20:00:35.jpg
inflating: monet2photo/trainB/2014-02-11 16:22:06.jpg
inflating: monet2photo/trainB/2014-01-05 05:17:23.jpg
inflating: monet2photo/trainB/2015-08-28 15:58:17.jpg
inflating: monet2photo/trainB/2016-03-27 14:33:21.jpg
inflating: monet2photo/trainB/2015-01-25 07:33:17.jpg
inflating: monet2photo/trainB/2016-03-24 20:59:14.jpg
inflating: monet2photo/trainB/2015-09-10 05:55:17.jpg
inflating: monet2photo/trainB/2016-07-17 14:39:06.jpg
inflating: monet2photo/trainB/2015-03-27 09:45:23.jpg
inflating: monet2photo/trainB/2015-11-07 09:22:24.jpg
inflating: monet2photo/trainB/2016-11-16 12:21:52.jpg
inflating: monet2photo/trainB/2016-01-12 19:23:33.jpg
inflating: monet2photo/trainB/2016-05-19 12:40:37.jpg
inflating: monet2photo/trainB/2016-05-13 23:55:06.jpg
inflating: monet2photo/trainB/2015-07-02 07:17:31.jpg
inflating: monet2photo/trainB/2015-08-08 05:04:28.jpg
inflating: monet2photo/trainB/2016-03-05 23:31:41.jpg
inflating: monet2photo/trainB/2015-09-21 21:34:20.jpg
inflating: monet2photo/trainB/2015-10-26 01:58:49.jpg
inflating: monet2photo/trainB/2015-06-30 14:43:26.jpg
inflating: monet2photo/trainB/2015-08-17 13:25:05.jpg
inflating: monet2photo/trainB/2015-10-19 18:15:20.jpg
inflating: monet2photo/trainB/2016-12-18 07:06:22.jpg
inflating: monet2photo/trainB/2016-03-05 01:27:30.jpg
inflating: monet2photo/trainB/2015-06-10 09:21:44.jpg
inflating: monet2photo/trainB/2016-06-11 09:07:48.jpg
inflating: monet2photo/trainB/2016-11-23 06:06:39.jpg
inflating: monet2photo/trainB/2016-07-14 21:11:37.jpg
inflating: monet2photo/trainB/2015-02-12 10:37:21.jpg
inflating: monet2photo/trainB/2015-12-17 05:06:59.jpg
inflating: monet2photo/trainB/2015-06-21 16:44:24.jpg
inflating: monet2photo/trainB/2015-11-12 22:49:40.jpg
inflating: monet2photo/trainB/2015-07-29 16:48:13.jpg
inflating: monet2photo/trainB/2014-02-17 08:12:24.jpg
inflating: monet2photo/trainB/2016-02-28 08:12:59.jpg
inflating: monet2photo/trainB/2014-06-01 05:38:36.jpg
inflating: monet2photo/trainB/2015-06-02 20:50:34.jpg
inflating: monet2photo/trainB/2014-11-20 03:41:45.jpg
inflating: monet2photo/trainB/2014-11-10 03:46:57.jpg
inflating: monet2photo/trainB/2015-02-23 11:42:26.jpg
inflating: monet2photo/trainB/2014-07-02 07:43:30.jpg
inflating: monet2photo/trainB/2015-02-15 07:47:07.jpg
inflating: monet2photo/trainB/2014-02-01 11:24:41.jpg
inflating: monet2photo/trainB/2016-02-18 06:43:01.jpg
inflating: monet2photo/trainB/2015-12-29 15:12:49.jpg
inflating: monet2photo/trainB/2015-11-03 18:29:36.jpg
inflating: monet2photo/trainB/2015-10-17 13:21:32.jpg
inflating: monet2photo/trainB/2016-06-17 01:58:07.jpg
inflating: monet2photo/trainB/2014-06-09 11:25:28.jpg
inflating: monet2photo/trainB/2015-09-22 14:04:43.jpg
inflating: monet2photo/trainB/2016-11-28 12:31:24.jpg
inflating: monet2photo/trainB/2016-05-14 22:13:02.jpg
inflating: monet2photo/trainB/2015-09-06 12:43:37.jpg
inflating: monet2photo/trainB/2016-07-25 15:07:02.jpg
inflating: monet2photo/trainB/2015-10-08 20:21:53.jpg
inflating: monet2photo/trainB/2015-07-23 03:29:55.jpg
inflating: monet2photo/trainB/2016-08-29 11:01:19.jpg
inflating: monet2photo/trainB/2015-10-28 19:54:53.jpg
inflating: monet2photo/trainB/2014-05-30 12:37:35.jpg
inflating: monet2photo/trainB/2015-09-15 05:53:58.jpg
inflating: monet2photo/trainB/2016-08-04 18:54:45.jpg
inflating: monet2photo/trainB/2014-11-06 13:49:05.jpg
inflating: monet2photo/trainB/2014-04-16 18:55:24.jpg
inflating: monet2photo/trainB/2014-04-25 13:37:00.jpg
inflating: monet2photo/trainB/2016-02-06 01:59:56.jpg
inflating: monet2photo/trainB/2016-06-28 19:00:19.jpg
inflating: monet2photo/trainB/2016-06-17 15:24:45.jpg
inflating: monet2photo/trainB/2016-04-01 00:54:21.jpg
inflating: monet2photo/trainB/2015-03-27 08:45:15.jpg
inflating: monet2photo/trainB/2015-08-20 20:36:24.jpg
inflating: monet2photo/trainB/2015-10-09 19:14:53.jpg
inflating: monet2photo/trainB/2015-03-26 05:22:45.jpg
inflating: monet2photo/trainB/2015-07-28 10:25:01.jpg
inflating: monet2photo/trainB/2015-06-27 05:19:35.jpg
inflating: monet2photo/trainB/2016-05-26 00:52:28.jpg
inflating: monet2photo/trainB/2016-02-18 13:08:34.jpg
inflating: monet2photo/trainB/2015-09-27 20:08:41.jpg
inflating: monet2photo/trainB/2015-07-14 09:14:47.jpg
inflating: monet2photo/trainB/2014-04-16 21:43:55.jpg
inflating: monet2photo/trainB/2014-11-04 16:16:25.jpg
inflating: monet2photo/trainB/2016-12-02 18:27:55.jpg
inflating: monet2photo/trainB/2015-01-09 02:00:22.jpg
inflating: monet2photo/trainB/2015-01-08 02:44:01.jpg
inflating: monet2photo/trainB/2015-07-23 10:15:26.jpg
inflating: monet2photo/trainB/2015-05-12 05:30:12.jpg
inflating: monet2photo/trainB/2016-03-21 11:07:42.jpg
inflating: monet2photo/trainB/2016-02-07 10:10:02.jpg
inflating: monet2photo/trainB/2014-06-07 19:37:03.jpg
inflating: monet2photo/trainB/2016-08-22 13:06:42.jpg
inflating: monet2photo/trainB/2015-07-12 09:21:35.jpg
inflating: monet2photo/trainB/2016-03-22 03:37:09.jpg
inflating: monet2photo/trainB/2016-05-12 06:06:33.jpg
inflating: monet2photo/trainB/2015-12-21 09:06:46.jpg
inflating: monet2photo/trainB/2016-05-07 18:21:10.jpg
inflating: monet2photo/trainB/2015-08-08 05:58:44.jpg
inflating: monet2photo/trainB/2014-01-10 06:57:47.jpg
inflating: monet2photo/trainB/2015-03-03 01:40:59.jpg
inflating: monet2photo/trainB/2015-03-25 19:32:47.jpg
inflating: monet2photo/trainB/2016-08-31 07:53:14.jpg
inflating: monet2photo/trainB/2016-01-13 04:54:12.jpg
inflating: monet2photo/trainB/2016-12-25 15:10:03.jpg
inflating: monet2photo/trainB/2016-07-21 09:45:45.jpg
inflating: monet2photo/trainB/2015-10-09 10:57:19.jpg
inflating: monet2photo/trainB/2016-05-01 11:00:34.jpg
inflating: monet2photo/trainB/2016-12-06 06:53:29.jpg
inflating: monet2photo/trainB/2015-08-05 19:56:11.jpg
inflating: monet2photo/trainB/2016-12-21 06:07:27.jpg
inflating: monet2photo/trainB/2015-03-27 08:10:39.jpg
inflating: monet2photo/trainB/2014-04-30 01:08:44.jpg
inflating: monet2photo/trainB/2014-04-02 04:15:17.jpg
inflating: monet2photo/trainB/2015-12-26 18:36:43.jpg
inflating: monet2photo/trainB/2014-05-05 20:33:12.jpg
inflating: monet2photo/trainB/2015-07-29 23:48:51.jpg
inflating: monet2photo/trainB/2015-10-30 04:55:56.jpg
inflating: monet2photo/trainB/2016-07-14 11:09:57.jpg
inflating: monet2photo/trainB/2015-07-10 10:32:59.jpg
inflating: monet2photo/trainB/2015-10-08 12:58:30.jpg
inflating: monet2photo/trainB/2015-07-13 21:12:41.jpg
inflating: monet2photo/trainB/2015-06-05 18:46:52.jpg
inflating: monet2photo/trainB/2014-03-10 00:50:18.jpg
inflating: monet2photo/trainB/2015-07-13 10:59:34.jpg
inflating: monet2photo/trainB/2016-08-14 04:28:43.jpg
inflating: monet2photo/trainB/2016-12-13 05:40:50.jpg
inflating: monet2photo/trainB/2014-04-28 18:30:18.jpg
inflating: monet2photo/trainB/2016-03-09 11:51:59.jpg
inflating: monet2photo/trainB/2015-06-04 14:20:04.jpg
inflating: monet2photo/trainB/2014-01-24 12:55:00.jpg
inflating: monet2photo/trainB/2015-01-28 05:24:25.jpg
inflating: monet2photo/trainB/2015-07-26 01:31:56.jpg
inflating: monet2photo/trainB/2015-12-14 01:43:52.jpg
inflating: monet2photo/trainB/2015-05-07 04:50:19.jpg
inflating: monet2photo/trainB/2016-11-20 23:52:46.jpg
inflating: monet2photo/trainB/2015-12-25 09:14:49.jpg
inflating: monet2photo/trainB/2016-03-08 15:49:27.jpg
inflating: monet2photo/trainB/2016-05-20 10:59:47.jpg
inflating: monet2photo/trainB/2015-10-03 14:54:31.jpg
inflating: monet2photo/trainB/2016-05-22 19:44:32.jpg
inflating: monet2photo/trainB/2016-11-17 19:05:44.jpg
inflating: monet2photo/trainB/2016-07-18 18:32:50.jpg
inflating: monet2photo/trainB/2013-11-29 10:01:07.jpg
inflating: monet2photo/trainB/2015-02-15 13:52:44.jpg
inflating: monet2photo/trainB/2016-08-16 08:59:43.jpg
inflating: monet2photo/trainB/2015-01-15 19:33:19.jpg
inflating: monet2photo/trainB/2015-10-04 03:27:54.jpg
inflating: monet2photo/trainB/2015-11-17 10:33:52.jpg
inflating: monet2photo/trainB/2016-06-28 15:54:53.jpg
inflating: monet2photo/trainB/2015-08-17 01:14:25.jpg
inflating: monet2photo/trainB/2015-09-14 22:18:23.jpg
inflating: monet2photo/trainB/2015-12-25 11:20:53.jpg
inflating: monet2photo/trainB/2016-05-06 10:43:22.jpg
inflating: monet2photo/trainB/2015-06-10 23:22:18.jpg
inflating: monet2photo/trainB/2015-07-20 02:26:28.jpg
inflating: monet2photo/trainB/2016-12-01 15:25:21.jpg
inflating: monet2photo/trainB/2015-10-11 10:11:32.jpg
inflating: monet2photo/trainB/2015-09-24 13:43:11.jpg
inflating: monet2photo/trainB/2016-03-14 08:28:47.jpg
inflating: monet2photo/trainB/2016-01-15 05:40:07.jpg
inflating: monet2photo/trainB/2016-06-24 11:19:53.jpg
inflating: monet2photo/trainB/2015-05-23 01:02:00.jpg
inflating: monet2photo/trainB/2016-07-30 06:56:30.jpg
inflating: monet2photo/trainB/2016-06-15 11:45:07.jpg
inflating: monet2photo/trainB/2017-01-02 05:31:52.jpg
inflating: monet2photo/trainB/2015-08-14 07:37:49.jpg
inflating: monet2photo/trainB/2014-11-24 11:45:54.jpg
inflating: monet2photo/trainB/2014-06-23 14:40:10.jpg
inflating: monet2photo/trainB/2014-07-02 15:37:24.jpg
inflating: monet2photo/trainB/2016-11-16 11:44:44.jpg
inflating: monet2photo/trainB/2013-11-14 07:02:49.jpg
inflating: monet2photo/trainB/2015-07-28 19:00:34.jpg
inflating: monet2photo/trainB/2014-04-27 08:47:15.jpg
inflating: monet2photo/trainB/2015-08-04 16:30:34.jpg
inflating: monet2photo/trainB/2015-06-10 15:36:08.jpg
inflating: monet2photo/trainB/2015-11-16 15:53:25.jpg
inflating: monet2photo/trainB/2015-10-18 03:37:03.jpg
inflating: monet2photo/trainB/2016-04-17 16:06:07.jpg
inflating: monet2photo/trainB/2016-03-28 07:02:22.jpg
inflating: monet2photo/trainB/2014-11-10 05:21:53.jpg
inflating: monet2photo/trainB/2014-05-22 09:31:07.jpg
inflating: monet2photo/trainB/2015-11-01 15:59:28.jpg
inflating: monet2photo/trainB/2015-11-15 01:46:08.jpg
inflating: monet2photo/trainB/2016-06-20 22:15:07.jpg
inflating: monet2photo/trainB/2015-11-09 15:21:47.jpg
inflating: monet2photo/trainB/2016-11-23 04:42:44.jpg
inflating: monet2photo/trainB/2015-11-10 14:40:00.jpg
inflating: monet2photo/trainB/2016-04-26 05:16:59.jpg
inflating: monet2photo/trainB/2015-07-30 23:57:56.jpg
inflating: monet2photo/trainB/2015-02-17 12:41:08.jpg
inflating: monet2photo/trainB/2016-04-18 00:20:33.jpg
inflating: monet2photo/trainB/2015-10-08 20:43:38.jpg
inflating: monet2photo/trainB/2015-09-07 02:25:56.jpg
inflating: monet2photo/trainB/2015-12-12 16:01:32.jpg
inflating: monet2photo/trainB/2015-11-22 07:58:18.jpg
inflating: monet2photo/trainB/2015-08-11 16:57:52.jpg
inflating: monet2photo/trainB/2015-06-03 12:57:57.jpg
inflating: monet2photo/trainB/2016-04-26 10:12:53.jpg
inflating: monet2photo/trainB/2016-06-28 13:32:23.jpg
inflating: monet2photo/trainB/2016-02-09 08:17:52.jpg
inflating: monet2photo/trainB/2016-06-17 01:01:44.jpg
inflating: monet2photo/trainB/2016-04-05 13:06:53.jpg
inflating: monet2photo/trainB/2015-01-10 04:16:00.jpg
inflating: monet2photo/trainB/2016-06-29 13:37:59.jpg
inflating: monet2photo/trainB/2015-12-29 17:16:43.jpg
inflating: monet2photo/trainB/2014-03-21 19:12:26.jpg
inflating: monet2photo/trainB/2016-08-05 08:22:26.jpg
inflating: monet2photo/trainB/2016-12-29 13:27:40.jpg
inflating: monet2photo/trainB/2014-02-04 01:03:01.jpg
inflating: monet2photo/trainB/2015-09-11 11:08:30.jpg
inflating: monet2photo/trainB/2016-05-19 00:07:51.jpg
inflating: monet2photo/trainB/2015-07-19 15:43:40.jpg
inflating: monet2photo/trainB/2016-08-01 07:29:00.jpg
inflating: monet2photo/trainB/2016-07-30 09:32:36.jpg
inflating: monet2photo/trainB/2015-01-09 21:12:58.jpg
inflating: monet2photo/trainB/2016-04-29 17:56:43.jpg
inflating: monet2photo/trainB/2016-08-26 19:25:29.jpg
inflating: monet2photo/trainB/2016-02-20 16:54:25.jpg
inflating: monet2photo/trainB/2015-05-19 19:43:44.jpg
inflating: monet2photo/trainB/2015-10-26 21:18:58.jpg
inflating: monet2photo/trainB/2014-07-19 15:39:53.jpg
inflating: monet2photo/trainB/2015-06-13 21:21:54.jpg
inflating: monet2photo/trainB/2015-06-04 14:10:33.jpg
inflating: monet2photo/trainB/2014-06-18 12:46:34.jpg
inflating: monet2photo/trainB/2016-03-17 18:07:22.jpg
inflating: monet2photo/trainB/2015-01-24 17:24:29.jpg
inflating: monet2photo/trainB/2016-01-27 12:45:41.jpg
inflating: monet2photo/trainB/2016-06-14 05:57:28.jpg
inflating: monet2photo/trainB/2015-12-24 01:48:36.jpg
inflating: monet2photo/trainB/2015-10-18 05:19:51.jpg
inflating: monet2photo/trainB/2015-01-23 07:43:34.jpg
inflating: monet2photo/trainB/2016-04-29 18:08:01.jpg
inflating: monet2photo/trainB/2015-02-13 13:57:11.jpg
inflating: monet2photo/trainB/2016-11-27 08:00:47.jpg
inflating: monet2photo/trainB/2015-01-22 19:00:27.jpg
inflating: monet2photo/trainB/2015-06-08 17:03:22.jpg
inflating: monet2photo/trainB/2015-05-07 20:19:34.jpg
inflating: monet2photo/trainB/2016-01-18 13:29:53.jpg
inflating: monet2photo/trainB/2016-06-29 23:49:05.jpg
inflating: monet2photo/trainB/2015-12-30 09:57:44.jpg
inflating: monet2photo/trainB/2016-05-22 22:22:31.jpg
inflating: monet2photo/trainB/2015-11-07 15:50:35.jpg
inflating: monet2photo/trainB/2015-05-12 19:45:09.jpg
inflating: monet2photo/trainB/2015-08-22 08:14:02.jpg
inflating: monet2photo/trainB/2016-07-09 04:10:09.jpg
inflating: monet2photo/trainB/2015-10-19 09:43:31.jpg
inflating: monet2photo/trainB/2016-03-16 14:14:17.jpg
inflating: monet2photo/trainB/2015-12-19 07:23:09.jpg
inflating: monet2photo/trainB/2015-08-17 13:08:59.jpg
inflating: monet2photo/trainB/2015-12-19 16:55:15.jpg
inflating: monet2photo/trainB/2014-03-07 05:18:17.jpg
inflating: monet2photo/trainB/2016-08-28 22:14:38.jpg
inflating: monet2photo/trainB/2015-02-20 01:02:21.jpg
inflating: monet2photo/trainB/2016-12-04 20:45:59.jpg
inflating: monet2photo/trainB/2016-01-10 06:35:51.jpg
inflating: monet2photo/trainB/2015-02-21 17:52:10.jpg
inflating: monet2photo/trainB/2013-11-14 12:47:50.jpg
inflating: monet2photo/trainB/2015-10-22 00:43:21.jpg
inflating: monet2photo/trainB/2014-06-01 10:50:53.jpg
inflating: monet2photo/trainB/2014-01-18 23:58:31.jpg
inflating: monet2photo/trainB/2016-02-06 23:36:52.jpg
inflating: monet2photo/trainB/2014-02-09 00:44:16.jpg
inflating: monet2photo/trainB/2015-09-23 13:28:26.jpg
inflating: monet2photo/trainB/2014-01-21 11:08:09.jpg
inflating: monet2photo/trainB/2015-01-18 23:31:20.jpg
inflating: monet2photo/trainB/2015-09-09 22:06:43.jpg
inflating: monet2photo/trainB/2015-08-06 05:15:47.jpg
inflating: monet2photo/trainB/2015-12-27 02:31:29.jpg
inflating: monet2photo/trainB/2015-11-14 10:06:01.jpg
inflating: monet2photo/trainB/2015-08-01 14:26:52.jpg
inflating: monet2photo/trainB/2015-10-08 12:52:51.jpg
inflating: monet2photo/trainB/2016-11-19 05:56:53.jpg
inflating: monet2photo/trainB/2016-11-17 11:10:54.jpg
inflating: monet2photo/trainB/2015-08-31 17:35:31.jpg
inflating: monet2photo/trainB/2015-01-25 13:30:50.jpg
inflating: monet2photo/trainB/2016-11-20 08:50:41.jpg
inflating: monet2photo/trainB/2016-12-12 11:00:15.jpg
inflating: monet2photo/trainB/2016-05-16 01:04:27.jpg
inflating: monet2photo/trainB/2015-10-01 06:10:39.jpg
inflating: monet2photo/trainB/2016-12-30 08:47:15.jpg
inflating: monet2photo/trainB/2013-12-20 05:20:33.jpg
inflating: monet2photo/trainB/2016-06-07 07:31:24.jpg
inflating: monet2photo/trainB/2015-01-13 20:35:55.jpg
inflating: monet2photo/trainB/2016-04-11 18:09:38.jpg
inflating: monet2photo/trainB/2016-08-25 18:29:19.jpg
inflating: monet2photo/trainB/2015-06-01 04:55:15.jpg
inflating: monet2photo/trainB/2015-07-06 19:48:43.jpg
inflating: monet2photo/trainB/2014-04-26 06:16:25.jpg
inflating: monet2photo/trainB/2016-07-28 08:00:14.jpg
inflating: monet2photo/trainB/2016-06-24 23:30:21.jpg
inflating: monet2photo/trainB/2015-02-05 18:28:09.jpg
inflating: monet2photo/trainB/2015-11-05 12:43:45.jpg
inflating: monet2photo/trainB/2016-01-05 06:59:58.jpg
inflating: monet2photo/trainB/2016-12-15 17:31:41.jpg
inflating: monet2photo/trainB/2016-11-20 09:30:30.jpg
inflating: monet2photo/trainB/2015-10-04 14:31:09.jpg
inflating: monet2photo/trainB/2015-03-09 15:24:13.jpg
inflating: monet2photo/trainB/2015-12-22 17:25:40.jpg
inflating: monet2photo/trainB/2016-05-16 01:28:17.jpg
inflating: monet2photo/trainB/2015-06-27 10:32:21.jpg
inflating: monet2photo/trainB/2015-03-19 05:43:16.jpg
inflating: monet2photo/trainB/2016-04-15 19:35:15.jpg
inflating: monet2photo/trainB/2016-04-17 02:10:00.jpg
inflating: monet2photo/trainB/2013-11-25 10:46:18.jpg
inflating: monet2photo/trainB/2015-12-26 00:38:31.jpg
inflating: monet2photo/trainB/2016-08-13 10:51:48.jpg
inflating: monet2photo/trainB/2015-08-12 07:31:15.jpg
inflating: monet2photo/trainB/2015-12-30 15:38:35.jpg
inflating: monet2photo/trainB/2016-12-03 11:27:27.jpg
inflating: monet2photo/trainB/2016-08-28 06:46:33.jpg
inflating: monet2photo/trainB/2014-03-21 23:11:54.jpg
inflating: monet2photo/trainB/2014-07-13 03:00:07.jpg
inflating: monet2photo/trainB/2015-03-26 22:09:14.jpg
inflating: monet2photo/trainB/2015-07-21 07:11:56.jpg
inflating: monet2photo/trainB/2016-06-20 15:16:19.jpg
inflating: monet2photo/trainB/2013-12-08 17:16:07.jpg
inflating: monet2photo/trainB/2015-09-27 09:17:09.jpg
inflating: monet2photo/trainB/2016-07-14 17:35:41.jpg
inflating: monet2photo/trainB/2016-05-25 23:42:56.jpg
inflating: monet2photo/trainB/2014-05-01 07:20:59.jpg
inflating: monet2photo/trainB/2017-01-02 09:13:16.jpg
inflating: monet2photo/trainB/2015-05-09 18:59:43.jpg
inflating: monet2photo/trainB/2014-11-26 22:28:33.jpg
inflating: monet2photo/trainB/2016-08-04 19:43:22.jpg
inflating: monet2photo/trainB/2015-09-20 15:51:33.jpg
inflating: monet2photo/trainB/2016-05-25 12:08:10.jpg
inflating: monet2photo/trainB/2015-05-04 11:11:22.jpg
inflating: monet2photo/trainB/2015-11-11 17:23:20.jpg
inflating: monet2photo/trainB/2016-01-10 13:31:58.jpg
inflating: monet2photo/trainB/2015-08-24 20:10:59.jpg
inflating: monet2photo/trainB/2015-06-14 20:23:03.jpg
inflating: monet2photo/trainB/2016-06-24 06:40:35.jpg
inflating: monet2photo/trainB/2014-02-02 02:17:38.jpg
inflating: monet2photo/trainB/2015-08-31 11:13:22.jpg
inflating: monet2photo/trainB/2016-08-11 21:20:03.jpg
inflating: monet2photo/trainB/2016-06-06 08:06:06.jpg
inflating: monet2photo/trainB/2016-11-15 11:42:23.jpg
inflating: monet2photo/trainB/2015-05-08 03:45:47.jpg
inflating: monet2photo/trainB/2015-09-21 16:25:50.jpg
inflating: monet2photo/trainB/2015-11-19 06:45:32.jpg
inflating: monet2photo/trainB/2017-01-02 18:42:16.jpg
inflating: monet2photo/trainB/2015-05-18 20:53:58.jpg
inflating: monet2photo/trainB/2016-08-14 11:10:10.jpg
inflating: monet2photo/trainB/2016-03-13 05:01:25.jpg
inflating: monet2photo/trainB/2016-01-05 00:06:19.jpg
inflating: monet2photo/trainB/2016-04-14 02:56:40.jpg
inflating: monet2photo/trainB/2015-05-17 08:50:46.jpg
inflating: monet2photo/trainB/2015-05-30 03:40:35.jpg
inflating: monet2photo/trainB/2016-12-12 02:49:37.jpg
inflating: monet2photo/trainB/2015-12-30 08:53:38.jpg
inflating: monet2photo/trainB/2016-07-06 11:32:04.jpg
inflating: monet2photo/trainB/2016-05-26 02:41:30.jpg
inflating: monet2photo/trainB/2015-08-15 18:20:49.jpg
inflating: monet2photo/trainB/2016-07-04 07:47:48.jpg
inflating: monet2photo/trainB/2016-12-11 03:45:56.jpg
inflating: monet2photo/trainB/2016-05-09 10:55:11.jpg
inflating: monet2photo/trainB/2016-05-22 07:13:20.jpg
inflating: monet2photo/trainB/2016-06-27 04:19:28.jpg
inflating: monet2photo/trainB/2015-01-29 15:28:43.jpg
inflating: monet2photo/trainB/2016-01-26 11:39:08.jpg
inflating: monet2photo/trainB/2014-04-24 06:07:50.jpg
inflating: monet2photo/trainB/2015-01-02 09:18:57.jpg
inflating: monet2photo/trainB/2016-12-04 12:57:23.jpg
inflating: monet2photo/trainB/2015-03-28 11:00:02.jpg
inflating: monet2photo/trainB/2016-04-20 03:27:00.jpg
inflating: monet2photo/trainB/2015-08-11 01:48:21.jpg
inflating: monet2photo/trainB/2015-01-27 02:09:13.jpg
inflating: monet2photo/trainB/2016-07-14 11:21:51.jpg
inflating: monet2photo/trainB/2016-08-27 19:39:16.jpg
inflating: monet2photo/trainB/2016-08-14 09:19:51.jpg
inflating: monet2photo/trainB/2016-04-06 14:50:57.jpg
inflating: monet2photo/trainB/2014-06-01 08:13:56.jpg
inflating: monet2photo/trainB/2016-11-25 03:11:36.jpg
inflating: monet2photo/trainB/2016-08-29 16:18:55.jpg
inflating: monet2photo/trainB/2014-04-08 22:04:04.jpg
inflating: monet2photo/trainB/2015-02-14 23:02:26.jpg
inflating: monet2photo/trainB/2015-12-20 04:44:20.jpg
inflating: monet2photo/trainB/2014-01-02 19:55:59.jpg
inflating: monet2photo/trainB/2016-03-09 14:20:00.jpg
inflating: monet2photo/trainB/2016-07-24 13:41:58.jpg
inflating: monet2photo/trainB/2015-09-10 11:59:47.jpg
inflating: monet2photo/trainB/2016-11-22 10:45:57.jpg
inflating: monet2photo/trainB/2015-07-20 21:46:07.jpg
inflating: monet2photo/trainB/2015-08-13 09:06:17.jpg
inflating: monet2photo/trainB/2015-03-11 05:30:00.jpg
inflating: monet2photo/trainB/2015-09-25 12:20:15.jpg
inflating: monet2photo/trainB/2014-04-10 15:31:57.jpg
inflating: monet2photo/trainB/2016-11-26 13:14:02.jpg
inflating: monet2photo/trainB/2015-10-22 09:49:37.jpg
inflating: monet2photo/trainB/2015-06-14 04:04:46.jpg
inflating: monet2photo/trainB/2016-03-26 23:58:01.jpg
inflating: monet2photo/trainB/2015-11-12 00:02:16.jpg
inflating: monet2photo/trainB/2016-07-09 10:27:12.jpg
inflating: monet2photo/trainB/2014-03-11 15:13:59.jpg
inflating: monet2photo/trainB/2014-03-28 16:20:29.jpg
inflating: monet2photo/trainB/2016-06-02 11:47:18.jpg
inflating: monet2photo/trainB/2015-10-05 00:50:04.jpg
inflating: monet2photo/trainB/2016-08-01 03:39:51.jpg
inflating: monet2photo/trainB/2016-01-10 08:42:32.jpg
inflating: monet2photo/trainB/2016-05-31 14:55:09.jpg
inflating: monet2photo/trainB/2014-01-20 02:25:44.jpg
inflating: monet2photo/trainB/2015-10-05 13:31:50.jpg
inflating: monet2photo/trainB/2013-11-11 22:03:00.jpg
inflating: monet2photo/trainB/2014-07-25 10:44:40.jpg
inflating: monet2photo/trainB/2015-05-05 00:14:38.jpg
inflating: monet2photo/trainB/2015-03-16 11:02:42.jpg
inflating: monet2photo/trainB/2016-05-25 14:32:06.jpg
inflating: monet2photo/trainB/2015-07-20 08:20:31.jpg
inflating: monet2photo/trainB/2016-08-07 08:34:58.jpg
inflating: monet2photo/trainB/2015-05-22 15:53:38.jpg
inflating: monet2photo/trainB/2015-09-12 20:49:50.jpg
inflating: monet2photo/trainB/2015-08-24 17:14:07.jpg
inflating: monet2photo/trainB/2014-01-24 07:04:39.jpg
inflating: monet2photo/trainB/2015-08-06 15:30:37.jpg
inflating: monet2photo/trainB/2015-05-08 09:49:39.jpg
inflating: monet2photo/trainB/2016-03-12 02:04:22.jpg
inflating: monet2photo/trainB/2016-08-23 17:02:34.jpg
inflating: monet2photo/trainB/2016-02-25 14:51:15.jpg
inflating: monet2photo/trainB/2016-05-30 11:26:31.jpg
inflating: monet2photo/trainB/2016-11-17 03:19:58.jpg
inflating: monet2photo/trainB/2016-01-24 19:44:53.jpg
inflating: monet2photo/trainB/2016-07-29 05:12:01.jpg
inflating: monet2photo/trainB/2014-03-11 17:18:39.jpg
inflating: monet2photo/trainB/2014-11-06 06:30:44.jpg
inflating: monet2photo/trainB/2014-06-30 08:35:34.jpg
inflating: monet2photo/trainB/2015-05-28 09:20:02.jpg
inflating: monet2photo/trainB/2015-08-04 21:13:39.jpg
inflating: monet2photo/trainB/2014-07-07 19:26:53.jpg
inflating: monet2photo/trainB/2016-07-31 22:07:00.jpg
inflating: monet2photo/trainB/2015-09-21 01:46:22.jpg
inflating: monet2photo/trainB/2016-05-21 01:21:19.jpg
inflating: monet2photo/trainB/2015-05-19 04:36:59.jpg
inflating: monet2photo/trainB/2015-06-11 10:03:54.jpg
inflating: monet2photo/trainB/2014-01-02 18:58:53.jpg
inflating: monet2photo/trainB/2014-06-01 04:11:54.jpg
inflating: monet2photo/trainB/2015-06-30 22:12:27.jpg
inflating: monet2photo/trainB/2013-12-12 03:32:04.jpg
inflating: monet2photo/trainB/2014-02-09 00:12:22.jpg
inflating: monet2photo/trainB/2016-01-07 13:04:04.jpg
inflating: monet2photo/trainB/2014-05-28 15:28:30.jpg
inflating: monet2photo/trainB/2015-12-09 15:20:22.jpg
inflating: monet2photo/trainB/2016-01-16 15:11:56.jpg
inflating: monet2photo/trainB/2016-06-03 16:21:36.jpg
inflating: monet2photo/trainB/2016-04-19 09:17:25.jpg
inflating: monet2photo/trainB/2014-11-26 13:32:12.jpg
inflating: monet2photo/trainB/2014-01-13 15:47:39.jpg
inflating: monet2photo/trainB/2014-07-04 08:34:48.jpg
inflating: monet2photo/trainB/2015-10-15 09:57:25.jpg
inflating: monet2photo/trainB/2015-11-15 08:24:54.jpg
inflating: monet2photo/trainB/2013-12-23 12:45:35.jpg
inflating: monet2photo/trainB/2015-07-15 21:07:11.jpg
inflating: monet2photo/trainB/2015-11-19 14:01:06.jpg
inflating: monet2photo/trainB/2013-11-14 07:04:51.jpg
inflating: monet2photo/trainB/2015-08-16 00:39:23.jpg
inflating: monet2photo/trainB/2014-03-23 01:00:52.jpg
inflating: monet2photo/trainB/2014-11-06 16:08:11.jpg
inflating: monet2photo/trainB/2015-11-25 06:53:36.jpg
inflating: monet2photo/trainB/2016-08-10 03:34:57.jpg
inflating: monet2photo/trainB/2015-12-11 08:00:13.jpg
inflating: monet2photo/trainB/2013-11-13 08:43:01.jpg
inflating: monet2photo/trainB/2016-05-17 19:48:38.jpg
inflating: monet2photo/trainB/2016-02-01 08:41:09.jpg
inflating: monet2photo/trainB/2015-11-08 08:02:10.jpg
inflating: monet2photo/trainB/2015-12-10 00:30:03.jpg
inflating: monet2photo/trainB/2015-12-26 14:51:00.jpg
inflating: monet2photo/trainB/2014-01-27 04:25:13.jpg
inflating: monet2photo/trainB/2015-11-29 17:52:54.jpg
inflating: monet2photo/trainB/2016-05-05 13:19:46.jpg
inflating: monet2photo/trainB/2016-11-16 15:54:48.jpg
inflating: monet2photo/trainB/2014-02-05 07:34:32.jpg
inflating: monet2photo/trainB/2015-07-05 16:09:13.jpg
inflating: monet2photo/trainB/2015-06-16 18:05:31.jpg
inflating: monet2photo/trainB/2016-01-06 03:02:44.jpg
inflating: monet2photo/trainB/2016-08-20 10:17:37.jpg
inflating: monet2photo/trainB/2013-11-25 16:11:50.jpg
inflating: monet2photo/trainB/2016-04-26 10:03:52.jpg
inflating: monet2photo/trainB/2014-05-22 06:33:15.jpg
inflating: monet2photo/trainB/2015-11-19 22:13:47.jpg
inflating: monet2photo/trainB/2016-12-31 03:49:43.jpg
inflating: monet2photo/trainB/2015-07-05 00:27:47.jpg
inflating: monet2photo/trainB/2015-07-25 19:27:51.jpg
inflating: monet2photo/trainB/2016-06-02 09:00:15.jpg
inflating: monet2photo/trainB/2014-01-26 21:53:51.jpg
inflating: monet2photo/trainB/2016-11-20 10:52:59.jpg
inflating: monet2photo/trainB/2016-03-04 16:21:31.jpg
inflating: monet2photo/trainB/2015-11-25 12:55:42.jpg
inflating: monet2photo/trainB/2015-08-05 09:54:04.jpg
inflating: monet2photo/trainB/2016-05-31 12:52:30.jpg
inflating: monet2photo/trainB/2016-08-17 17:13:05.jpg
inflating: monet2photo/trainB/2015-12-04 13:30:24.jpg
inflating: monet2photo/trainB/2015-07-28 11:14:37.jpg
inflating: monet2photo/trainB/2014-06-26 20:56:15.jpg
inflating: monet2photo/trainB/2016-07-23 17:42:57.jpg
inflating: monet2photo/trainB/2016-02-19 06:36:10.jpg
inflating: monet2photo/trainB/2015-10-14 06:13:21.jpg
inflating: monet2photo/trainB/2014-05-24 17:41:41.jpg
inflating: monet2photo/trainB/2015-12-02 10:13:07.jpg
inflating: monet2photo/trainB/2016-07-23 06:49:13.jpg
inflating: monet2photo/trainB/2015-02-02 17:03:05.jpg
inflating: monet2photo/trainB/2014-03-07 05:53:08.jpg
inflating: monet2photo/trainB/2016-03-09 13:51:06.jpg
inflating: monet2photo/trainB/2016-06-27 00:53:41.jpg
inflating: monet2photo/trainB/2014-02-08 09:50:11.jpg
inflating: monet2photo/trainB/2016-04-24 11:26:13.jpg
inflating: monet2photo/trainB/2016-12-18 03:13:18.jpg
inflating: monet2photo/trainB/2016-12-15 04:07:58.jpg
inflating: monet2photo/trainB/2016-03-11 06:21:11.jpg
inflating: monet2photo/trainB/2016-12-09 06:45:33.jpg
inflating: monet2photo/trainB/2016-08-15 17:34:15.jpg
inflating: monet2photo/trainB/2016-01-17 17:09:31.jpg
inflating: monet2photo/trainB/2016-08-31 12:37:06.jpg
inflating: monet2photo/trainB/2016-06-14 12:25:11.jpg
inflating: monet2photo/trainB/2013-12-18 10:24:10.jpg
inflating: monet2photo/trainB/2015-01-02 15:10:26.jpg
inflating: monet2photo/trainB/2016-06-02 05:32:30.jpg
inflating: monet2photo/trainB/2015-08-03 18:51:21.jpg
inflating: monet2photo/trainB/2016-06-03 05:40:33.jpg
inflating: monet2photo/trainB/2016-01-02 14:42:24.jpg
inflating: monet2photo/trainB/2015-11-09 18:41:00.jpg
inflating: monet2photo/trainB/2017-01-03 00:52:47.jpg
inflating: monet2photo/trainB/2015-11-14 06:35:08.jpg
inflating: monet2photo/trainB/2015-12-30 04:09:02.jpg
inflating: monet2photo/trainB/2014-05-02 07:36:07.jpg
inflating: monet2photo/trainB/2016-02-12 03:13:59.jpg
inflating: monet2photo/trainB/2016-08-26 20:02:18.jpg
inflating: monet2photo/trainB/2015-05-29 09:16:39.jpg
inflating: monet2photo/trainB/2016-04-17 08:10:10.jpg
inflating: monet2photo/trainB/2015-07-03 06:08:58.jpg
inflating: monet2photo/trainB/2016-02-19 10:37:01.jpg
inflating: monet2photo/trainB/2015-02-15 00:28:30.jpg
inflating: monet2photo/trainB/2015-08-01 05:49:58.jpg
inflating: monet2photo/trainB/2016-01-03 08:32:53.jpg
inflating: monet2photo/trainB/2015-11-13 16:16:48.jpg
inflating: monet2photo/trainB/2014-02-19 07:01:44.jpg
inflating: monet2photo/trainB/2013-12-09 01:12:14.jpg
inflating: monet2photo/trainB/2016-03-25 09:02:10.jpg
inflating: monet2photo/trainB/2013-11-19 22:47:07.jpg
inflating: monet2photo/trainB/2014-06-10 17:07:58.jpg
inflating: monet2photo/trainB/2014-07-11 04:48:17.jpg
inflating: monet2photo/trainB/2014-02-23 04:41:31.jpg
inflating: monet2photo/trainB/2014-01-05 23:04:28.jpg
inflating: monet2photo/trainB/2015-01-30 17:06:15.jpg
inflating: monet2photo/trainB/2016-12-14 21:24:09.jpg
inflating: monet2photo/trainB/2016-02-28 18:01:09.jpg
inflating: monet2photo/trainB/2016-02-13 08:02:25.jpg
inflating: monet2photo/trainB/2016-02-23 09:21:45.jpg
inflating: monet2photo/trainB/2015-03-22 22:55:32.jpg
inflating: monet2photo/trainB/2015-12-08 09:39:54.jpg
inflating: monet2photo/trainB/2015-07-08 20:16:22.jpg
inflating: monet2photo/trainB/2016-06-13 15:01:24.jpg
inflating: monet2photo/trainB/2015-05-24 20:35:08.jpg
inflating: monet2photo/trainB/2016-08-16 03:29:43.jpg
inflating: monet2photo/trainB/2016-07-22 09:41:37.jpg
inflating: monet2photo/trainB/2016-12-24 02:38:49.jpg
inflating: monet2photo/trainB/2016-05-31 16:07:04.jpg
inflating: monet2photo/trainB/2015-10-03 05:04:57.jpg
inflating: monet2photo/trainB/2013-11-30 23:35:13.jpg
inflating: monet2photo/trainB/2015-11-28 10:04:43.jpg
inflating: monet2photo/trainB/2015-08-03 02:35:38.jpg
inflating: monet2photo/trainB/2016-03-30 22:23:56.jpg
inflating: monet2photo/trainB/2015-10-22 06:16:55.jpg
inflating: monet2photo/trainB/2016-01-17 09:12:11.jpg
inflating: monet2photo/trainB/2016-04-27 02:27:48.jpg
inflating: monet2photo/trainB/2014-07-28 10:21:35.jpg
inflating: monet2photo/trainB/2015-05-09 05:02:59.jpg
inflating: monet2photo/trainB/2016-06-04 23:08:09.jpg
inflating: monet2photo/trainB/2015-09-29 12:35:03.jpg
inflating: monet2photo/trainB/2015-08-04 16:42:07.jpg
inflating: monet2photo/trainB/2016-12-31 08:15:37.jpg
inflating: monet2photo/trainB/2015-10-15 19:53:07.jpg
inflating: monet2photo/trainB/2015-08-24 06:58:39.jpg
inflating: monet2photo/trainB/2014-02-17 08:09:48.jpg
inflating: monet2photo/trainB/2016-03-15 00:07:32.jpg
inflating: monet2photo/trainB/2016-12-22 09:08:04.jpg
inflating: monet2photo/trainB/2015-03-13 18:34:49.jpg
inflating: monet2photo/trainB/2015-05-25 14:27:22.jpg
inflating: monet2photo/trainB/2016-02-02 19:47:47.jpg
inflating: monet2photo/trainB/2016-12-30 01:47:59.jpg
inflating: monet2photo/trainB/2016-08-14 18:48:49.jpg
inflating: monet2photo/trainB/2015-09-05 14:15:05.jpg
inflating: monet2photo/trainB/2015-06-27 14:06:17.jpg
inflating: monet2photo/trainB/2015-11-11 18:46:59.jpg
inflating: monet2photo/trainB/2015-06-04 18:32:21.jpg
inflating: monet2photo/trainB/2014-06-19 22:54:48.jpg
inflating: monet2photo/trainB/2016-05-09 19:16:13.jpg
inflating: monet2photo/trainB/2016-04-29 10:16:25.jpg
inflating: monet2photo/trainB/2016-08-31 14:35:41.jpg
inflating: monet2photo/trainB/2014-06-29 06:21:34.jpg
inflating: monet2photo/trainB/2015-10-20 10:39:51.jpg
inflating: monet2photo/trainB/2015-02-13 10:07:16.jpg
inflating: monet2photo/trainB/2015-03-16 11:30:57.jpg
inflating: monet2photo/trainB/2016-05-24 00:02:17.jpg
inflating: monet2photo/trainB/2015-08-13 06:26:49.jpg
inflating: monet2photo/trainB/2016-07-02 06:14:41.jpg
inflating: monet2photo/trainB/2015-09-05 06:12:51.jpg
inflating: monet2photo/trainB/2015-09-15 08:56:17.jpg
inflating: monet2photo/trainB/2015-03-08 14:03:13.jpg
inflating: monet2photo/trainB/2014-06-11 05:51:06.jpg
inflating: monet2photo/trainB/2015-05-15 12:53:32.jpg
inflating: monet2photo/trainB/2016-04-04 08:10:43.jpg
inflating: monet2photo/trainB/2015-07-13 04:56:59.jpg
inflating: monet2photo/trainB/2016-02-17 07:25:24.jpg
inflating: monet2photo/trainB/2014-03-07 08:01:30.jpg
inflating: monet2photo/trainB/2013-11-22 14:15:50.jpg
inflating: monet2photo/trainB/2015-12-30 21:44:41.jpg
inflating: monet2photo/trainB/2015-12-19 21:31:38.jpg
inflating: monet2photo/trainB/2015-09-08 06:13:36.jpg
inflating: monet2photo/trainB/2015-08-31 09:53:25.jpg
inflating: monet2photo/trainB/2015-07-22 07:32:34.jpg
inflating: monet2photo/trainB/2016-01-24 00:48:56.jpg
inflating: monet2photo/trainB/2015-10-23 10:48:56.jpg
inflating: monet2photo/trainB/2016-11-22 07:58:40.jpg
inflating: monet2photo/trainB/2015-12-28 00:46:02.jpg
inflating: monet2photo/trainB/2016-05-11 19:46:31.jpg
inflating: monet2photo/trainB/2015-08-31 02:23:38.jpg
inflating: monet2photo/trainB/2015-11-24 13:31:11.jpg
inflating: monet2photo/trainB/2015-07-02 03:47:41.jpg
inflating: monet2photo/trainB/2015-07-28 02:09:00.jpg
inflating: monet2photo/trainB/2015-10-03 18:17:01.jpg
inflating: monet2photo/trainB/2016-12-12 15:51:07.jpg
inflating: monet2photo/trainB/2016-11-30 03:02:19.jpg
inflating: monet2photo/trainB/2016-12-13 14:42:41.jpg
inflating: monet2photo/trainB/2016-07-17 04:06:50.jpg
inflating: monet2photo/trainB/2014-11-18 09:58:08.jpg
inflating: monet2photo/trainB/2016-08-29 12:29:07.jpg
inflating: monet2photo/trainB/2016-05-23 11:35:36.jpg
inflating: monet2photo/trainB/2016-08-17 17:04:38.jpg
inflating: monet2photo/trainB/2016-08-19 11:26:53.jpg
inflating: monet2photo/trainB/2015-10-09 14:14:35.jpg
inflating: monet2photo/trainB/2014-11-12 08:02:18.jpg
inflating: monet2photo/trainB/2015-07-31 16:39:46.jpg
inflating: monet2photo/trainB/2015-05-24 14:06:46.jpg
inflating: monet2photo/trainB/2016-05-27 12:18:03.jpg
inflating: monet2photo/trainB/2016-07-10 12:55:38.jpg
inflating: monet2photo/trainB/2014-11-20 16:16:19.jpg
inflating: monet2photo/trainB/2015-11-30 09:46:36.jpg
inflating: monet2photo/trainB/2016-12-14 08:28:05.jpg
inflating: monet2photo/trainB/2014-05-10 23:26:43.jpg
inflating: monet2photo/trainB/2015-10-02 07:36:42.jpg
inflating: monet2photo/trainB/2014-02-21 16:57:52.jpg
inflating: monet2photo/trainB/2016-07-28 11:34:06.jpg
inflating: monet2photo/trainB/2015-12-26 09:17:34.jpg
inflating: monet2photo/trainB/2015-07-10 13:49:52.jpg
inflating: monet2photo/trainB/2015-01-25 04:49:36.jpg
inflating: monet2photo/trainB/2017-01-03 07:18:12.jpg
inflating: monet2photo/trainB/2016-02-10 09:55:16.jpg
inflating: monet2photo/trainB/2015-11-26 08:53:32.jpg
inflating: monet2photo/trainB/2015-02-03 07:55:54.jpg
inflating: monet2photo/trainB/2015-02-08 06:39:36.jpg
inflating: monet2photo/trainB/2016-03-17 18:45:25.jpg
inflating: monet2photo/trainB/2016-01-15 02:23:19.jpg
inflating: monet2photo/trainB/2016-04-02 03:15:29.jpg
inflating: monet2photo/trainB/2015-12-10 11:55:36.jpg
inflating: monet2photo/trainB/2016-08-22 21:33:33.jpg
inflating: monet2photo/trainB/2016-05-02 13:21:16.jpg
inflating: monet2photo/trainB/2016-07-11 20:07:06.jpg
inflating: monet2photo/trainB/2015-06-02 19:09:43.jpg
inflating: monet2photo/trainB/2015-05-12 15:25:22.jpg
inflating: monet2photo/trainB/2015-03-12 03:00:37.jpg
inflating: monet2photo/trainB/2016-05-02 11:55:01.jpg
inflating: monet2photo/trainB/2016-03-26 13:30:42.jpg
inflating: monet2photo/trainB/2016-01-26 02:54:00.jpg
inflating: monet2photo/trainB/2015-12-07 20:45:03.jpg
inflating: monet2photo/trainB/2014-11-28 10:16:36.jpg
inflating: monet2photo/trainB/2016-08-22 10:36:48.jpg
inflating: monet2photo/trainB/2015-05-10 06:40:43.jpg
inflating: monet2photo/trainB/2016-05-26 20:19:41.jpg
inflating: monet2photo/trainB/2016-04-11 05:45:10.jpg
inflating: monet2photo/trainB/2014-03-07 04:30:31.jpg
inflating: monet2photo/trainB/2016-02-23 23:35:48.jpg
inflating: monet2photo/trainB/2016-02-25 08:42:30.jpg
inflating: monet2photo/trainB/2015-01-25 02:04:22.jpg
inflating: monet2photo/trainB/2014-04-26 11:24:49.jpg
inflating: monet2photo/trainB/2015-12-22 10:28:08.jpg
inflating: monet2photo/trainB/2015-09-08 10:16:13.jpg
inflating: monet2photo/trainB/2016-02-18 12:39:41.jpg
inflating: monet2photo/trainB/2016-08-08 21:49:30.jpg
inflating: monet2photo/trainB/2016-01-23 14:33:08.jpg
inflating: monet2photo/trainB/2016-08-13 01:01:48.jpg
inflating: monet2photo/trainB/2016-11-26 09:47:47.jpg
inflating: monet2photo/trainB/2016-05-20 16:05:25.jpg
inflating: monet2photo/trainB/2016-05-07 13:09:27.jpg
inflating: monet2photo/trainB/2016-02-24 17:54:35.jpg
inflating: monet2photo/trainB/2015-06-01 12:40:36.jpg
inflating: monet2photo/trainB/2015-01-01 10:56:29.jpg
inflating: monet2photo/trainB/2015-06-27 13:50:43.jpg
inflating: monet2photo/trainB/2015-01-09 17:42:15.jpg
inflating: monet2photo/trainB/2013-12-07 05:14:07.jpg
inflating: monet2photo/trainB/2015-08-04 11:38:30.jpg
inflating: monet2photo/trainB/2016-01-07 22:23:39.jpg
inflating: monet2photo/trainB/2014-06-26 20:59:38.jpg
inflating: monet2photo/trainB/2016-04-08 20:04:18.jpg
inflating: monet2photo/trainB/2016-05-29 04:10:42.jpg
inflating: monet2photo/trainB/2015-03-25 20:16:51.jpg
inflating: monet2photo/trainB/2016-08-10 05:26:36.jpg
inflating: monet2photo/trainB/2016-04-26 18:43:47.jpg
inflating: monet2photo/trainB/2016-04-24 22:41:10.jpg
inflating: monet2photo/trainB/2015-08-01 01:03:58.jpg
inflating: monet2photo/trainB/2015-01-27 11:44:34.jpg
inflating: monet2photo/trainB/2016-08-14 13:17:26.jpg
inflating: monet2photo/trainB/2015-01-27 08:56:04.jpg
inflating: monet2photo/trainB/2016-11-24 10:56:13.jpg
inflating: monet2photo/trainB/2015-08-29 15:12:28.jpg
inflating: monet2photo/trainB/2015-12-19 06:01:03.jpg
inflating: monet2photo/trainB/2016-07-02 00:10:23.jpg
inflating: monet2photo/trainB/2016-06-26 15:01:28.jpg
inflating: monet2photo/trainB/2015-05-21 02:22:17.jpg
inflating: monet2photo/trainB/2016-08-09 04:36:31.jpg
inflating: monet2photo/trainB/2016-05-29 07:30:43.jpg
inflating: monet2photo/trainB/2015-10-17 10:57:14.jpg
inflating: monet2photo/trainB/2015-12-29 16:20:22.jpg
inflating: monet2photo/trainB/2014-06-15 20:35:15.jpg
inflating: monet2photo/trainB/2015-09-13 13:36:38.jpg
inflating: monet2photo/trainB/2015-03-09 09:21:22.jpg
inflating: monet2photo/trainB/2016-01-27 12:01:55.jpg
inflating: monet2photo/trainB/2015-05-25 14:43:52.jpg
inflating: monet2photo/trainB/2016-06-27 21:22:54.jpg
inflating: monet2photo/trainB/2016-12-11 05:05:25.jpg
inflating: monet2photo/trainB/2014-05-11 14:43:56.jpg
inflating: monet2photo/trainB/2014-02-02 03:16:56.jpg
inflating: monet2photo/trainB/2013-12-21 02:39:34.jpg
inflating: monet2photo/trainB/2016-11-19 20:30:09.jpg
inflating: monet2photo/trainB/2016-12-21 06:59:29.jpg
inflating: monet2photo/trainB/2016-06-24 23:06:55.jpg
inflating: monet2photo/trainB/2016-06-30 18:16:45.jpg
inflating: monet2photo/trainB/2016-04-18 02:28:37.jpg
inflating: monet2photo/trainB/2015-06-29 21:48:31.jpg
inflating: monet2photo/trainB/2016-05-31 17:46:05.jpg
inflating: monet2photo/trainB/2016-03-31 07:43:15.jpg
inflating: monet2photo/trainB/2015-03-23 08:58:44.jpg
inflating: monet2photo/trainB/2015-07-01 02:57:09.jpg
inflating: monet2photo/trainB/2015-03-22 12:34:58.jpg
inflating: monet2photo/trainB/2015-06-04 21:01:37.jpg
inflating: monet2photo/trainB/2016-02-05 06:30:43.jpg
inflating: monet2photo/trainB/2016-12-04 15:05:50.jpg
inflating: monet2photo/trainB/2014-03-23 21:49:20.jpg
inflating: monet2photo/trainB/2016-04-06 22:22:32.jpg
inflating: monet2photo/trainB/2015-09-08 02:51:35.jpg
inflating: monet2photo/trainB/2016-03-16 17:41:15.jpg
inflating: monet2photo/trainB/2014-05-03 05:05:28.jpg
inflating: monet2photo/trainB/2015-12-06 01:22:51.jpg
inflating: monet2photo/trainB/2016-05-19 18:49:52.jpg
inflating: monet2photo/trainB/2014-01-13 10:13:18.jpg
inflating: monet2photo/trainB/2015-09-06 07:23:57.jpg
inflating: monet2photo/trainB/2016-02-17 18:54:44.jpg
inflating: monet2photo/trainB/2015-11-17 22:33:01.jpg
inflating: monet2photo/trainB/2015-06-21 09:23:20.jpg
inflating: monet2photo/trainB/2015-12-23 02:34:58.jpg
inflating: monet2photo/trainB/2015-07-08 01:53:33.jpg
inflating: monet2photo/trainB/2015-09-21 11:43:49.jpg
inflating: monet2photo/trainB/2014-07-08 17:05:51.jpg
inflating: monet2photo/trainB/2016-12-28 08:34:16.jpg
inflating: monet2photo/trainB/2016-08-04 18:11:40.jpg
inflating: monet2photo/trainB/2014-02-28 22:44:33.jpg
inflating: monet2photo/trainB/2014-07-06 19:49:46.jpg
inflating: monet2photo/trainB/2016-12-31 05:21:49.jpg
inflating: monet2photo/trainB/2016-11-24 16:51:14.jpg
inflating: monet2photo/trainB/2016-05-22 22:11:20.jpg
inflating: monet2photo/trainB/2015-07-04 01:13:05.jpg
inflating: monet2photo/trainB/2015-09-20 01:42:42.jpg
inflating: monet2photo/trainB/2016-12-08 17:06:21.jpg
inflating: monet2photo/trainB/2017-01-02 11:20:43.jpg
inflating: monet2photo/trainB/2014-11-05 15:23:02.jpg
inflating: monet2photo/trainB/2016-01-29 11:53:47.jpg
inflating: monet2photo/trainB/2015-05-10 08:04:03.jpg
inflating: monet2photo/trainB/2016-07-09 21:07:11.jpg
inflating: monet2photo/trainB/2015-05-28 14:09:54.jpg
inflating: monet2photo/trainB/2016-12-18 07:55:29.jpg
inflating: monet2photo/trainB/2015-11-04 10:13:37.jpg
inflating: monet2photo/trainB/2016-08-30 11:46:44.jpg
inflating: monet2photo/trainB/2015-12-18 20:50:29.jpg
inflating: monet2photo/trainB/2015-08-14 06:13:19.jpg
inflating: monet2photo/trainB/2014-07-06 15:40:47.jpg
inflating: monet2photo/trainB/2015-11-09 11:33:45.jpg
inflating: monet2photo/trainB/2016-06-18 02:04:45.jpg
inflating: monet2photo/trainB/2013-11-25 20:28:30.jpg
inflating: monet2photo/trainB/2015-05-24 23:37:26.jpg
inflating: monet2photo/trainB/2015-03-09 08:09:17.jpg
inflating: monet2photo/trainB/2016-05-01 07:43:38.jpg
inflating: monet2photo/trainB/2015-09-02 00:01:06.jpg
inflating: monet2photo/trainB/2013-11-17 14:54:20.jpg
inflating: monet2photo/trainB/2016-06-14 06:24:11.jpg
inflating: monet2photo/trainB/2016-02-03 16:49:41.jpg
inflating: monet2photo/trainB/2015-08-08 22:40:16.jpg
inflating: monet2photo/trainB/2015-06-10 06:03:42.jpg
inflating: monet2photo/trainB/2014-02-02 21:31:06.jpg
inflating: monet2photo/trainB/2014-04-22 06:40:19.jpg
inflating: monet2photo/trainB/2016-05-25 05:27:09.jpg
inflating: monet2photo/trainB/2015-06-12 01:37:34.jpg
inflating: monet2photo/trainB/2014-01-31 04:36:12.jpg
inflating: monet2photo/trainB/2015-11-14 03:56:48.jpg
inflating: monet2photo/trainB/2015-06-14 07:45:22.jpg
inflating: monet2photo/trainB/2014-06-30 19:13:41.jpg
inflating: monet2photo/trainB/2015-03-16 14:10:04.jpg
inflating: monet2photo/trainB/2015-11-08 19:44:38.jpg
inflating: monet2photo/trainB/2015-08-17 21:44:24.jpg
inflating: monet2photo/trainB/2016-05-27 15:59:46.jpg
inflating: monet2photo/trainB/2014-11-20 01:50:02.jpg
inflating: monet2photo/trainB/2016-12-20 19:56:15.jpg
inflating: monet2photo/trainB/2015-11-17 02:08:33.jpg
inflating: monet2photo/trainB/2016-11-30 10:38:56.jpg
inflating: monet2photo/trainB/2015-09-05 14:10:11.jpg
inflating: monet2photo/trainB/2015-08-10 13:09:24.jpg
inflating: monet2photo/trainB/2015-02-12 19:51:27.jpg
inflating: monet2photo/trainB/2016-07-21 05:17:08.jpg
inflating: monet2photo/trainB/2016-02-06 11:16:28.jpg
inflating: monet2photo/trainB/2014-05-15 11:06:24.jpg
inflating: monet2photo/trainB/2015-07-06 00:16:17.jpg
inflating: monet2photo/trainB/2015-09-21 10:56:20.jpg
inflating: monet2photo/trainB/2016-08-04 00:49:55.jpg
inflating: monet2photo/trainB/2014-03-31 14:58:07.jpg
inflating: monet2photo/trainB/2016-03-06 09:19:53.jpg
inflating: monet2photo/trainB/2014-11-27 16:46:00.jpg
inflating: monet2photo/trainB/2015-05-16 22:06:56.jpg
inflating: monet2photo/trainB/2016-12-19 18:16:32.jpg
inflating: monet2photo/trainB/2014-02-11 05:48:28.jpg
inflating: monet2photo/trainB/2014-01-13 07:06:30.jpg
inflating: monet2photo/trainB/2015-10-24 21:00:35.jpg
inflating: monet2photo/trainB/2016-05-15 11:23:12.jpg
inflating: monet2photo/trainB/2016-07-18 01:31:25.jpg
inflating: monet2photo/trainB/2016-12-22 00:11:57.jpg
inflating: monet2photo/trainB/2014-05-09 21:48:23.jpg
inflating: monet2photo/trainB/2015-09-03 11:51:25.jpg
inflating: monet2photo/trainB/2016-01-24 08:20:34.jpg
inflating: monet2photo/trainB/2015-10-14 01:54:13.jpg
inflating: monet2photo/trainB/2015-08-30 09:31:07.jpg
inflating: monet2photo/trainB/2016-04-21 12:32:32.jpg
inflating: monet2photo/trainB/2015-02-04 16:18:05.jpg
inflating: monet2photo/trainB/2016-03-08 00:04:31.jpg
inflating: monet2photo/trainB/2016-11-22 07:40:20.jpg
inflating: monet2photo/trainB/2016-08-11 01:32:07.jpg
inflating: monet2photo/trainB/2014-02-09 12:31:22.jpg
inflating: monet2photo/trainB/2016-02-02 02:08:41.jpg
inflating: monet2photo/trainB/2015-07-20 10:14:07.jpg
inflating: monet2photo/trainB/2015-11-04 17:57:10.jpg
inflating: monet2photo/trainB/2013-11-17 18:08:26.jpg
inflating: monet2photo/trainB/2016-02-26 04:25:16.jpg
inflating: monet2photo/trainB/2015-03-17 13:48:40.jpg
inflating: monet2photo/trainB/2015-06-24 06:05:32.jpg
inflating: monet2photo/trainB/2014-01-15 18:05:15.jpg
inflating: monet2photo/trainB/2016-08-26 10:12:33.jpg
inflating: monet2photo/trainB/2015-07-14 03:06:42.jpg
inflating: monet2photo/trainB/2014-06-20 01:26:13.jpg
inflating: monet2photo/trainB/2015-09-07 15:54:35.jpg
inflating: monet2photo/trainB/2016-04-26 05:41:38.jpg
inflating: monet2photo/trainB/2016-08-02 08:42:27.jpg
inflating: monet2photo/trainB/2016-04-21 19:38:09.jpg
inflating: monet2photo/trainB/2016-06-14 05:45:29.jpg
inflating: monet2photo/trainB/2015-11-20 01:58:00.jpg
inflating: monet2photo/trainB/2016-04-24 05:48:37.jpg
inflating: monet2photo/trainB/2015-10-13 21:31:14.jpg
inflating: monet2photo/trainB/2013-11-21 05:56:32.jpg
inflating: monet2photo/trainB/2014-11-17 19:55:20.jpg
inflating: monet2photo/trainB/2015-12-10 11:52:20.jpg
inflating: monet2photo/trainB/2015-09-10 02:43:06.jpg
inflating: monet2photo/trainB/2015-10-03 06:16:35.jpg
inflating: monet2photo/trainB/2015-02-11 08:13:16.jpg
inflating: monet2photo/trainB/2016-12-05 17:48:13.jpg
inflating: monet2photo/trainB/2016-05-06 17:15:01.jpg
inflating: monet2photo/trainB/2016-03-14 14:16:48.jpg
inflating: monet2photo/trainB/2016-06-29 16:27:30.jpg
inflating: monet2photo/trainB/2016-01-24 09:05:46.jpg
inflating: monet2photo/trainB/2015-08-24 20:59:35.jpg
inflating: monet2photo/trainB/2013-12-09 17:31:48.jpg
inflating: monet2photo/trainB/2015-06-27 18:57:34.jpg
inflating: monet2photo/trainB/2016-11-24 05:48:35.jpg
inflating: monet2photo/trainB/2014-04-26 07:14:43.jpg
inflating: monet2photo/trainB/2016-12-13 16:24:50.jpg
inflating: monet2photo/trainB/2015-05-18 17:12:29.jpg
inflating: monet2photo/trainB/2016-06-04 02:48:02.jpg
inflating: monet2photo/trainB/2016-11-16 13:45:37.jpg
inflating: monet2photo/trainB/2016-06-20 03:06:38.jpg
inflating: monet2photo/trainB/2016-08-07 22:23:06.jpg
inflating: monet2photo/trainB/2014-05-02 11:52:52.jpg
inflating: monet2photo/trainB/2016-08-16 08:15:07.jpg
inflating: monet2photo/trainB/2014-05-26 11:45:33.jpg
inflating: monet2photo/trainB/2014-07-26 15:59:25.jpg
inflating: monet2photo/trainB/2015-07-15 10:58:06.jpg
inflating: monet2photo/trainB/2014-04-19 05:20:31.jpg
inflating: monet2photo/trainB/2016-11-19 12:50:59.jpg
inflating: monet2photo/trainB/2015-12-25 13:08:25.jpg
inflating: monet2photo/trainB/2017-01-02 08:07:40.jpg
inflating: monet2photo/trainB/2015-06-07 09:38:21.jpg
inflating: monet2photo/trainB/2016-07-16 06:25:04.jpg
inflating: monet2photo/trainB/2014-03-31 05:38:43.jpg
inflating: monet2photo/trainB/2016-06-15 21:47:53.jpg
inflating: monet2photo/trainB/2016-04-17 14:06:24.jpg
inflating: monet2photo/trainB/2014-04-11 05:20:11.jpg
inflating: monet2photo/trainB/2016-05-03 19:56:36.jpg
inflating: monet2photo/trainB/2016-12-24 12:18:47.jpg
inflating: monet2photo/trainB/2016-01-17 07:16:51.jpg
inflating: monet2photo/trainB/2015-07-16 05:22:06.jpg
inflating: monet2photo/trainB/2015-06-15 02:20:30.jpg
inflating: monet2photo/trainB/2016-05-04 05:56:09.jpg
inflating: monet2photo/trainB/2016-01-10 09:16:04.jpg
inflating: monet2photo/trainB/2015-08-30 01:43:17.jpg
inflating: monet2photo/trainB/2016-05-02 14:06:27.jpg
inflating: monet2photo/trainB/2013-12-17 15:08:32.jpg
inflating: monet2photo/trainB/2016-12-30 12:31:20.jpg
inflating: monet2photo/trainB/2016-02-24 01:11:13.jpg
inflating: monet2photo/trainB/2016-01-30 07:29:02.jpg
inflating: monet2photo/trainB/2016-05-22 13:34:30.jpg
inflating: monet2photo/trainB/2014-02-25 21:00:04.jpg
inflating: monet2photo/trainB/2016-04-23 16:29:17.jpg
inflating: monet2photo/trainB/2016-12-21 05:01:09.jpg
inflating: monet2photo/trainB/2015-08-25 13:33:48.jpg
inflating: monet2photo/trainB/2016-05-26 13:42:34.jpg
inflating: monet2photo/trainB/2015-08-05 12:31:17.jpg
inflating: monet2photo/trainB/2015-06-24 12:40:43.jpg
inflating: monet2photo/trainB/2016-02-05 01:49:14.jpg
inflating: monet2photo/trainB/2015-01-12 18:57:17.jpg
inflating: monet2photo/trainB/2014-05-02 01:30:07.jpg
inflating: monet2photo/trainB/2014-11-23 04:49:27.jpg
inflating: monet2photo/trainB/2015-08-24 15:02:17.jpg
inflating: monet2photo/trainB/2016-12-12 16:25:33.jpg
inflating: monet2photo/trainB/2016-12-16 09:08:50.jpg
inflating: monet2photo/trainB/2015-09-05 07:39:37.jpg
inflating: monet2photo/trainB/2015-12-21 19:26:21.jpg
inflating: monet2photo/trainB/2015-07-28 11:58:57.jpg
inflating: monet2photo/trainB/2016-08-12 16:49:36.jpg
inflating: monet2photo/trainB/2014-02-10 06:32:16.jpg
inflating: monet2photo/trainB/2015-09-07 10:10:38.jpg
inflating: monet2photo/trainB/2014-04-08 03:38:26.jpg
inflating: monet2photo/trainB/2016-02-14 18:04:04.jpg
inflating: monet2photo/trainB/2016-05-23 17:06:29.jpg
inflating: monet2photo/trainB/2015-09-16 13:17:29.jpg
inflating: monet2photo/trainB/2015-08-22 08:14:52.jpg
inflating: monet2photo/trainB/2015-10-04 23:05:43.jpg
inflating: monet2photo/trainB/2015-07-23 05:09:12.jpg
inflating: monet2photo/trainB/2015-12-30 11:29:34.jpg
inflating: monet2photo/trainB/2016-06-18 14:32:38.jpg
inflating: monet2photo/trainB/2016-01-09 12:08:05.jpg
inflating: monet2photo/trainB/2016-05-07 02:33:28.jpg
inflating: monet2photo/trainB/2015-08-29 06:11:27.jpg
inflating: monet2photo/trainB/2015-10-21 08:57:53.jpg
inflating: monet2photo/trainB/2015-07-22 09:22:02.jpg
inflating: monet2photo/trainB/2015-12-26 08:38:18.jpg
inflating: monet2photo/trainB/2013-12-27 15:18:33.jpg
inflating: monet2photo/trainB/2016-12-06 03:53:55.jpg
inflating: monet2photo/trainB/2016-07-16 04:47:05.jpg
inflating: monet2photo/trainB/2015-09-28 08:32:28.jpg
inflating: monet2photo/trainB/2016-12-31 19:25:55.jpg
inflating: monet2photo/trainB/2016-07-24 22:24:02.jpg
inflating: monet2photo/trainB/2015-01-21 03:22:50.jpg
inflating: monet2photo/trainB/2015-02-09 14:11:07.jpg
inflating: monet2photo/trainB/2015-07-31 15:44:15.jpg
inflating: monet2photo/trainB/2016-03-15 06:31:00.jpg
inflating: monet2photo/trainB/2015-03-08 09:30:22.jpg
inflating: monet2photo/trainB/2014-06-13 21:59:59.jpg
inflating: monet2photo/trainB/2015-07-15 21:14:06.jpg
inflating: monet2photo/trainB/2016-01-31 05:13:23.jpg
inflating: monet2photo/trainB/2015-01-21 21:41:54.jpg
inflating: monet2photo/trainB/2014-01-17 17:22:48.jpg
inflating: monet2photo/trainB/2015-12-03 11:43:02.jpg
inflating: monet2photo/trainB/2015-07-18 10:25:50.jpg
inflating: monet2photo/trainB/2015-01-26 09:55:41.jpg
inflating: monet2photo/trainB/2015-05-31 19:49:09.jpg
inflating: monet2photo/trainB/2015-12-01 20:48:01.jpg
inflating: monet2photo/trainB/2015-05-24 02:43:47.jpg
inflating: monet2photo/trainB/2016-08-25 14:44:40.jpg
inflating: monet2photo/trainB/2015-02-06 10:02:23.jpg
inflating: monet2photo/trainB/2015-07-03 14:53:10.jpg
inflating: monet2photo/trainB/2016-06-17 12:53:43.jpg
inflating: monet2photo/trainB/2015-12-22 16:39:19.jpg
inflating: monet2photo/trainB/2016-07-26 20:43:12.jpg
inflating: monet2photo/trainB/2015-05-16 23:04:56.jpg
inflating: monet2photo/trainB/2015-09-22 14:17:40.jpg
inflating: monet2photo/trainB/2016-01-14 12:26:41.jpg
inflating: monet2photo/trainB/2015-06-07 08:21:33.jpg
inflating: monet2photo/trainB/2016-03-02 02:08:06.jpg
inflating: monet2photo/trainB/2016-05-18 13:15:56.jpg
inflating: monet2photo/trainB/2015-11-02 22:17:20.jpg
inflating: monet2photo/trainB/2016-01-18 20:14:56.jpg
inflating: monet2photo/trainB/2015-01-03 16:02:46.jpg
inflating: monet2photo/trainB/2016-12-02 09:06:59.jpg
inflating: monet2photo/trainB/2016-03-09 11:57:40.jpg
inflating: monet2photo/trainB/2015-11-01 01:26:02.jpg
inflating: monet2photo/trainB/2016-04-01 12:44:27.jpg
inflating: monet2photo/trainB/2015-06-14 22:24:07.jpg
inflating: monet2photo/trainB/2016-05-21 23:50:10.jpg
inflating: monet2photo/trainB/2014-01-26 18:52:53.jpg
inflating: monet2photo/trainB/2015-09-08 22:19:24.jpg
inflating: monet2photo/trainB/2016-05-02 13:24:03.jpg
inflating: monet2photo/trainB/2016-01-31 04:11:04.jpg
inflating: monet2photo/trainB/2016-04-17 06:09:52.jpg
inflating: monet2photo/trainB/2015-03-26 00:06:30.jpg
inflating: monet2photo/trainB/2015-11-15 16:04:42.jpg
inflating: monet2photo/trainB/2014-11-03 01:09:06.jpg
inflating: monet2photo/trainB/2013-12-16 19:40:09.jpg
inflating: monet2photo/trainB/2015-08-14 13:44:16.jpg
inflating: monet2photo/trainB/2015-11-27 19:05:03.jpg
inflating: monet2photo/trainB/2014-05-03 09:40:46.jpg
inflating: monet2photo/trainB/2016-03-14 05:50:56.jpg
inflating: monet2photo/trainB/2015-05-15 16:46:25.jpg
inflating: monet2photo/trainB/2016-12-10 04:09:33.jpg
inflating: monet2photo/trainB/2015-10-17 05:49:55.jpg
inflating: monet2photo/trainB/2014-07-13 01:14:00.jpg
inflating: monet2photo/trainB/2016-02-18 19:29:56.jpg
inflating: monet2photo/trainB/2016-12-05 06:45:12.jpg
inflating: monet2photo/trainB/2016-07-09 14:41:46.jpg
inflating: monet2photo/trainB/2014-05-13 08:52:22.jpg
inflating: monet2photo/trainB/2014-07-20 16:26:31.jpg
inflating: monet2photo/trainB/2016-08-04 22:47:08.jpg
inflating: monet2photo/trainB/2016-05-30 04:24:24.jpg
inflating: monet2photo/trainB/2015-09-03 19:41:24.jpg
inflating: monet2photo/trainB/2016-04-06 22:12:48.jpg
inflating: monet2photo/trainB/2015-02-18 00:04:34.jpg
inflating: monet2photo/trainB/2015-06-11 19:21:57.jpg
inflating: monet2photo/trainB/2016-08-04 12:49:50.jpg
inflating: monet2photo/trainB/2016-08-23 14:17:19.jpg
inflating: monet2photo/trainB/2014-07-27 12:48:21.jpg
inflating: monet2photo/trainB/2014-07-12 06:57:16.jpg
inflating: monet2photo/trainB/2015-03-08 13:18:42.jpg
inflating: monet2photo/trainB/2014-05-30 23:08:05.jpg
inflating: monet2photo/trainB/2014-03-31 12:01:26.jpg
inflating: monet2photo/trainB/2016-07-01 01:50:32.jpg
inflating: monet2photo/trainB/2016-07-08 19:52:47.jpg
inflating: monet2photo/trainB/2015-10-31 06:33:24.jpg
inflating: monet2photo/trainB/2014-11-01 13:40:31.jpg
inflating: monet2photo/trainB/2015-08-04 23:28:44.jpg
inflating: monet2photo/trainB/2015-02-21 01:42:12.jpg
inflating: monet2photo/trainB/2015-06-03 11:52:28.jpg
inflating: monet2photo/trainB/2014-11-10 14:02:12.jpg
inflating: monet2photo/trainB/2014-02-17 21:38:31.jpg
inflating: monet2photo/trainB/2015-02-15 22:58:40.jpg
inflating: monet2photo/trainB/2014-06-04 12:00:00.jpg
inflating: monet2photo/trainB/2016-03-05 10:50:36.jpg
inflating: monet2photo/trainB/2016-03-23 17:33:06.jpg
inflating: monet2photo/trainB/2015-11-19 18:47:21.jpg
inflating: monet2photo/trainB/2015-06-20 19:27:33.jpg
inflating: monet2photo/trainB/2013-12-28 14:17:59.jpg
inflating: monet2photo/trainB/2016-02-24 00:11:57.jpg
inflating: monet2photo/trainB/2016-05-16 08:00:42.jpg
inflating: monet2photo/trainB/2016-12-22 00:48:27.jpg
inflating: monet2photo/trainB/2016-08-18 03:12:52.jpg
inflating: monet2photo/trainB/2015-08-26 17:35:08.jpg
inflating: monet2photo/trainB/2015-11-30 19:53:56.jpg
inflating: monet2photo/trainB/2014-05-28 10:23:36.jpg
inflating: monet2photo/trainB/2015-03-30 02:34:48.jpg
inflating: monet2photo/trainB/2014-03-31 08:12:35.jpg
inflating: monet2photo/trainB/2013-12-24 22:03:10.jpg
inflating: monet2photo/trainB/2014-04-18 17:57:21.jpg
inflating: monet2photo/trainB/2016-12-09 10:08:35.jpg
inflating: monet2photo/trainB/2015-11-29 17:32:26.jpg
inflating: monet2photo/trainB/2016-07-28 10:34:30.jpg
inflating: monet2photo/trainB/2014-05-09 21:58:43.jpg
inflating: monet2photo/trainB/2016-01-10 03:43:41.jpg
inflating: monet2photo/trainB/2016-01-11 06:42:35.jpg
inflating: monet2photo/trainB/2016-05-23 05:07:56.jpg
inflating: monet2photo/trainB/2015-12-01 22:25:51.jpg
inflating: monet2photo/trainB/2016-12-30 01:29:21.jpg
inflating: monet2photo/trainB/2016-06-24 03:48:12.jpg
inflating: monet2photo/trainB/2014-03-16 19:38:41.jpg
inflating: monet2photo/trainB/2014-11-17 03:24:56.jpg
inflating: monet2photo/trainB/2015-09-10 10:28:45.jpg
inflating: monet2photo/trainB/2015-05-28 20:23:38.jpg
inflating: monet2photo/trainB/2016-05-13 03:05:44.jpg
inflating: monet2photo/trainB/2016-02-10 18:02:52.jpg
inflating: monet2photo/trainB/2016-01-22 10:34:47.jpg
inflating: monet2photo/trainB/2016-11-24 19:06:02.jpg
inflating: monet2photo/trainB/2014-07-29 16:25:06.jpg
inflating: monet2photo/trainB/2014-01-05 10:42:35.jpg
inflating: monet2photo/trainB/2016-02-20 15:34:25.jpg
inflating: monet2photo/trainB/2015-10-09 06:16:10.jpg
inflating: monet2photo/trainB/2015-09-30 06:23:02.jpg
inflating: monet2photo/trainB/2016-01-25 14:46:56.jpg
inflating: monet2photo/trainB/2015-03-28 12:24:36.jpg
inflating: monet2photo/trainB/2015-11-01 01:54:43.jpg
inflating: monet2photo/trainB/2014-07-22 23:43:39.jpg
inflating: monet2photo/trainB/2016-01-27 17:48:16.jpg
inflating: monet2photo/trainB/2016-11-28 06:16:53.jpg
inflating: monet2photo/trainB/2015-07-20 07:03:37.jpg
inflating: monet2photo/trainB/2016-01-07 15:51:48.jpg
inflating: monet2photo/trainB/2015-11-29 06:51:05.jpg
inflating: monet2photo/trainB/2016-06-04 17:19:09.jpg
inflating: monet2photo/trainB/2015-12-22 16:11:10.jpg
inflating: monet2photo/trainB/2014-03-09 08:54:12.jpg
inflating: monet2photo/trainB/2015-12-18 18:32:29.jpg
inflating: monet2photo/trainB/2015-05-29 04:29:22.jpg
inflating: monet2photo/trainB/2015-11-01 12:53:12.jpg
inflating: monet2photo/trainB/2016-08-08 14:02:52.jpg
inflating: monet2photo/trainB/2014-01-30 14:02:47.jpg
inflating: monet2photo/trainB/2016-12-29 09:03:46.jpg
inflating: monet2photo/trainB/2015-03-26 05:07:21.jpg
inflating: monet2photo/trainB/2014-07-22 11:25:08.jpg
inflating: monet2photo/trainB/2015-08-03 06:36:44.jpg
inflating: monet2photo/trainB/2015-03-12 02:17:55.jpg
inflating: monet2photo/trainB/2013-12-28 15:24:06.jpg
inflating: monet2photo/trainB/2016-04-10 13:14:43.jpg
inflating: monet2photo/trainB/2016-12-22 04:57:55.jpg
inflating: monet2photo/trainB/2014-06-21 00:49:40.jpg
inflating: monet2photo/trainB/2016-07-06 14:25:51.jpg
inflating: monet2photo/trainB/2015-05-24 12:27:02.jpg
inflating: monet2photo/trainB/2015-02-13 16:02:50.jpg
inflating: monet2photo/trainB/2015-12-05 10:23:52.jpg
inflating: monet2photo/trainB/2016-11-27 08:57:55.jpg
inflating: monet2photo/trainB/2016-01-17 09:20:22.jpg
inflating: monet2photo/trainB/2013-11-12 16:58:40.jpg
inflating: monet2photo/trainB/2015-08-22 11:06:18.jpg
inflating: monet2photo/trainB/2016-05-23 14:51:08.jpg
inflating: monet2photo/trainB/2016-02-03 09:08:24.jpg
inflating: monet2photo/trainB/2016-12-26 01:45:37.jpg
inflating: monet2photo/trainB/2015-02-08 05:56:46.jpg
inflating: monet2photo/trainB/2014-03-19 17:35:44.jpg
inflating: monet2photo/trainB/2015-09-10 06:01:27.jpg
inflating: monet2photo/trainB/2015-05-25 00:50:56.jpg
inflating: monet2photo/trainB/2015-05-29 10:54:36.jpg
inflating: monet2photo/trainB/2016-11-27 20:19:58.jpg
inflating: monet2photo/trainB/2016-06-21 03:17:56.jpg
inflating: monet2photo/trainB/2014-02-02 20:33:07.jpg
inflating: monet2photo/trainB/2016-03-02 05:50:49.jpg
inflating: monet2photo/trainB/2015-05-20 08:26:48.jpg
inflating: monet2photo/trainB/2016-12-22 06:09:34.jpg
inflating: monet2photo/trainB/2015-10-30 14:28:20.jpg
inflating: monet2photo/trainB/2016-02-21 18:31:08.jpg
inflating: monet2photo/trainB/2016-04-27 19:33:00.jpg
inflating: monet2photo/trainB/2015-10-03 09:51:26.jpg
inflating: monet2photo/trainB/2015-12-22 01:57:49.jpg
inflating: monet2photo/trainB/2015-09-27 14:55:14.jpg
inflating: monet2photo/trainB/2014-11-01 12:29:01.jpg
inflating: monet2photo/trainB/2016-02-27 16:43:03.jpg
inflating: monet2photo/trainB/2015-12-28 07:38:46.jpg
inflating: monet2photo/trainB/2014-02-26 12:19:27.jpg
inflating: monet2photo/trainB/2016-12-04 23:45:54.jpg
inflating: monet2photo/trainB/2015-07-21 12:00:32.jpg
inflating: monet2photo/trainB/2016-06-21 16:05:29.jpg
inflating: monet2photo/trainB/2016-02-22 19:42:45.jpg
inflating: monet2photo/trainB/2015-11-19 08:12:55.jpg
inflating: monet2photo/trainB/2016-12-19 09:54:40.jpg
inflating: monet2photo/trainB/2015-02-19 13:12:33.jpg
inflating: monet2photo/trainB/2016-11-21 02:08:08.jpg
inflating: monet2photo/trainB/2014-07-28 18:03:25.jpg
inflating: monet2photo/trainB/2016-05-12 17:10:14.jpg
inflating: monet2photo/trainB/2015-07-09 19:04:29.jpg
inflating: monet2photo/trainB/2016-07-15 12:08:20.jpg
inflating: monet2photo/trainB/2016-04-19 06:55:38.jpg
inflating: monet2photo/trainB/2016-07-23 15:50:21.jpg
inflating: monet2photo/trainB/2015-06-05 18:44:16.jpg
inflating: monet2photo/trainB/2014-07-18 01:02:22.jpg
inflating: monet2photo/trainB/2016-11-30 16:41:52.jpg
inflating: monet2photo/trainB/2015-03-17 07:43:33.jpg
inflating: monet2photo/trainB/2015-08-05 15:50:37.jpg
inflating: monet2photo/trainB/2015-01-16 06:42:03.jpg
inflating: monet2photo/trainB/2016-05-28 04:01:28.jpg
inflating: monet2photo/trainB/2016-05-01 18:05:54.jpg
inflating: monet2photo/trainB/2016-05-01 09:22:05.jpg
inflating: monet2photo/trainB/2014-07-11 04:50:03.jpg
inflating: monet2photo/trainB/2015-07-07 17:33:53.jpg
inflating: monet2photo/trainB/2014-04-30 22:47:05.jpg
inflating: monet2photo/trainB/2016-03-08 17:09:56.jpg
inflating: monet2photo/trainB/2015-05-15 17:26:30.jpg
inflating: monet2photo/trainB/2016-01-15 06:15:00.jpg
inflating: monet2photo/trainB/2015-11-01 01:33:14.jpg
inflating: monet2photo/trainB/2015-11-27 18:29:30.jpg
inflating: monet2photo/trainB/2015-09-04 06:39:29.jpg
inflating: monet2photo/trainB/2014-11-26 15:02:45.jpg
inflating: monet2photo/trainB/2016-03-26 22:33:52.jpg
inflating: monet2photo/trainB/2015-12-24 02:50:45.jpg
inflating: monet2photo/trainB/2016-02-21 00:59:20.jpg
inflating: monet2photo/trainB/2015-01-19 10:36:21.jpg
inflating: monet2photo/trainB/2013-12-21 09:33:38.jpg
inflating: monet2photo/trainB/2016-08-20 01:14:23.jpg
inflating: monet2photo/trainB/2016-07-04 03:10:15.jpg
inflating: monet2photo/trainB/2016-03-29 06:41:40.jpg
inflating: monet2photo/trainB/2013-12-04 15:07:28.jpg
inflating: monet2photo/trainB/2015-08-23 16:21:45.jpg
inflating: monet2photo/trainB/2014-03-25 23:55:40.jpg
inflating: monet2photo/trainB/2015-10-28 17:46:01.jpg
inflating: monet2photo/trainB/2016-12-31 06:26:58.jpg
inflating: monet2photo/trainB/2016-01-23 00:44:33.jpg
inflating: monet2photo/trainB/2016-08-11 08:30:09.jpg
inflating: monet2photo/trainB/2016-06-21 03:59:02.jpg
inflating: monet2photo/trainB/2015-07-04 20:40:21.jpg
inflating: monet2photo/trainB/2016-01-01 08:54:42.jpg
inflating: monet2photo/trainB/2014-06-14 16:40:58.jpg
inflating: monet2photo/trainB/2016-03-25 18:03:05.jpg
inflating: monet2photo/trainB/2016-12-09 05:28:19.jpg
inflating: monet2photo/trainB/2016-02-02 13:52:24.jpg
inflating: monet2photo/trainB/2015-11-11 13:16:58.jpg
inflating: monet2photo/trainB/2016-02-21 09:48:31.jpg
inflating: monet2photo/trainB/2015-07-14 13:47:08.jpg
inflating: monet2photo/trainB/2015-12-13 11:52:55.jpg
inflating: monet2photo/trainB/2013-12-08 12:08:38.jpg
inflating: monet2photo/trainB/2015-08-13 09:37:41.jpg
inflating: monet2photo/trainB/2016-03-13 05:09:54.jpg
inflating: monet2photo/trainB/2016-04-25 23:38:54.jpg
inflating: monet2photo/trainB/2014-01-12 19:20:52.jpg
inflating: monet2photo/trainB/2016-02-10 07:18:26.jpg
inflating: monet2photo/trainB/2015-12-29 13:35:40.jpg
inflating: monet2photo/trainB/2015-12-18 11:33:34.jpg
inflating: monet2photo/trainB/2016-05-02 10:32:16.jpg
inflating: monet2photo/trainB/2016-04-28 10:02:01.jpg
inflating: monet2photo/trainB/2015-09-24 07:40:18.jpg
inflating: monet2photo/trainB/2016-11-26 07:54:45.jpg
inflating: monet2photo/trainB/2015-11-18 12:48:43.jpg
inflating: monet2photo/trainB/2015-11-01 09:08:23.jpg
inflating: monet2photo/trainB/2016-03-15 21:57:00.jpg
inflating: monet2photo/trainB/2014-03-02 03:53:51.jpg
inflating: monet2photo/trainB/2015-08-29 04:57:20.jpg
inflating: monet2photo/trainB/2015-03-03 06:47:37.jpg
inflating: monet2photo/trainB/2016-07-19 09:59:42.jpg
inflating: monet2photo/trainB/2015-10-12 03:54:14.jpg
inflating: monet2photo/trainB/2016-08-31 10:20:32.jpg
inflating: monet2photo/trainB/2015-02-15 07:46:55.jpg
inflating: monet2photo/trainB/2013-11-27 08:23:33.jpg
inflating: monet2photo/trainB/2015-07-04 05:35:50.jpg
inflating: monet2photo/trainB/2015-05-22 13:27:32.jpg
inflating: monet2photo/trainB/2015-01-10 14:09:08.jpg
inflating: monet2photo/trainB/2016-07-31 11:29:21.jpg
inflating: monet2photo/trainB/2014-06-16 09:54:54.jpg
inflating: monet2photo/trainB/2015-08-17 00:20:18.jpg
inflating: monet2photo/trainB/2015-08-19 04:32:12.jpg
inflating: monet2photo/trainB/2016-12-22 17:44:41.jpg
inflating: monet2photo/trainB/2013-12-09 17:58:01.jpg
inflating: monet2photo/trainB/2015-01-15 21:09:31.jpg
inflating: monet2photo/trainB/2015-01-17 02:25:28.jpg
inflating: monet2photo/trainB/2015-11-15 08:52:17.jpg
inflating: monet2photo/trainB/2016-08-19 03:45:28.jpg
inflating: monet2photo/trainB/2016-11-24 16:59:46.jpg
inflating: monet2photo/trainB/2016-05-14 00:33:39.jpg
inflating: monet2photo/trainB/2016-07-14 10:18:27.jpg
inflating: monet2photo/trainB/2016-12-18 12:35:35.jpg
inflating: monet2photo/trainB/2016-11-25 08:51:21.jpg
inflating: monet2photo/trainB/2014-07-27 21:38:47.jpg
inflating: monet2photo/trainB/2016-01-16 01:57:35.jpg
inflating: monet2photo/trainB/2016-08-03 12:21:15.jpg
inflating: monet2photo/trainB/2016-12-13 14:55:30.jpg
inflating: monet2photo/trainB/2015-07-11 21:33:11.jpg
inflating: monet2photo/trainB/2016-01-22 20:34:18.jpg
inflating: monet2photo/trainB/2015-09-24 18:38:48.jpg
inflating: monet2photo/trainB/2015-01-11 04:12:27.jpg
inflating: monet2photo/trainB/2014-11-13 00:04:29.jpg
inflating: monet2photo/trainB/2015-03-23 12:06:56.jpg
inflating: monet2photo/trainB/2015-02-27 06:05:50.jpg
inflating: monet2photo/trainB/2015-10-14 09:27:08.jpg
inflating: monet2photo/trainB/2016-04-10 00:25:10.jpg
inflating: monet2photo/trainB/2016-05-31 01:29:29.jpg
inflating: monet2photo/trainB/2016-12-14 02:32:52.jpg
inflating: monet2photo/trainB/2015-05-25 20:19:28.jpg
inflating: monet2photo/trainB/2015-08-26 06:02:52.jpg
inflating: monet2photo/trainB/2016-11-19 17:22:08.jpg
inflating: monet2photo/trainB/2014-03-30 22:34:24.jpg
inflating: monet2photo/trainB/2015-09-04 04:22:37.jpg
inflating: monet2photo/trainB/2016-12-16 23:59:37.jpg
inflating: monet2photo/trainB/2015-11-26 06:55:41.jpg
inflating: monet2photo/trainB/2015-03-01 06:15:32.jpg
inflating: monet2photo/trainB/2015-06-19 04:20:33.jpg
inflating: monet2photo/trainB/2016-03-28 04:40:38.jpg
inflating: monet2photo/trainB/2016-05-15 21:43:30.jpg
inflating: monet2photo/trainB/2014-02-01 13:29:25.jpg
inflating: monet2photo/trainB/2016-04-11 18:39:56.jpg
inflating: monet2photo/trainB/2014-11-20 09:01:44.jpg
inflating: monet2photo/trainB/2014-07-25 23:06:25.jpg
inflating: monet2photo/trainB/2016-02-23 09:05:50.jpg
inflating: monet2photo/trainB/2016-01-01 13:00:53.jpg
inflating: monet2photo/trainB/2015-07-21 07:52:42.jpg
inflating: monet2photo/trainB/2016-06-30 20:17:16.jpg
inflating: monet2photo/trainB/2015-10-22 12:42:10.jpg
inflating: monet2photo/trainB/2016-03-28 07:16:46.jpg
inflating: monet2photo/trainB/2015-01-11 07:45:27.jpg
inflating: monet2photo/trainB/2015-03-16 20:23:18.jpg
inflating: monet2photo/trainB/2016-06-08 22:05:08.jpg
inflating: monet2photo/trainB/2015-10-11 04:17:28.jpg
inflating: monet2photo/trainB/2013-11-12 10:29:19.jpg
inflating: monet2photo/trainB/2015-03-24 21:35:21.jpg
inflating: monet2photo/trainB/2015-08-07 17:13:46.jpg
inflating: monet2photo/trainB/2015-12-17 08:24:47.jpg
inflating: monet2photo/trainB/2015-06-05 22:34:51.jpg
inflating: monet2photo/trainB/2015-12-16 21:15:16.jpg
inflating: monet2photo/trainB/2015-07-07 08:34:40.jpg
inflating: monet2photo/trainB/2014-06-06 19:28:05.jpg
inflating: monet2photo/trainB/2016-07-12 11:07:01.jpg
inflating: monet2photo/trainB/2016-01-03 16:11:50.jpg
inflating: monet2photo/trainB/2016-08-12 08:37:38.jpg
inflating: monet2photo/trainB/2014-01-13 19:08:05.jpg
inflating: monet2photo/trainB/2015-05-16 22:43:50.jpg
inflating: monet2photo/trainB/2015-05-09 04:52:42.jpg
inflating: monet2photo/trainB/2015-09-29 04:54:55.jpg
inflating: monet2photo/trainB/2016-12-01 06:14:32.jpg
inflating: monet2photo/trainB/2014-07-09 10:12:44.jpg
inflating: monet2photo/trainB/2015-08-31 01:39:57.jpg
inflating: monet2photo/trainB/2016-01-21 17:47:32.jpg
inflating: monet2photo/trainB/2015-08-02 07:49:29.jpg
inflating: monet2photo/trainB/2015-12-02 10:03:42.jpg
inflating: monet2photo/trainB/2016-07-02 00:05:57.jpg
inflating: monet2photo/trainB/2015-02-21 17:13:12.jpg
inflating: monet2photo/trainB/2016-07-19 19:26:34.jpg
inflating: monet2photo/trainB/2016-07-16 10:27:24.jpg
inflating: monet2photo/trainB/2016-08-18 12:22:31.jpg
inflating: monet2photo/trainB/2014-04-10 00:23:05.jpg
inflating: monet2photo/trainB/2016-08-28 13:00:47.jpg
inflating: monet2photo/trainB/2016-05-26 07:27:14.jpg
inflating: monet2photo/trainB/2016-01-09 12:38:30.jpg
inflating: monet2photo/trainB/2016-11-20 23:54:33.jpg
inflating: monet2photo/trainB/2016-08-13 23:10:55.jpg
inflating: monet2photo/trainB/2016-12-05 12:31:20.jpg
inflating: monet2photo/trainB/2015-02-15 08:34:46.jpg
inflating: monet2photo/trainB/2015-05-05 14:18:03.jpg
inflating: monet2photo/trainB/2016-03-09 11:30:09.jpg
inflating: monet2photo/trainB/2014-01-02 21:25:05.jpg
inflating: monet2photo/trainB/2015-10-05 02:22:32.jpg
inflating: monet2photo/trainB/2015-12-12 00:29:45.jpg
inflating: monet2photo/trainB/2015-06-22 00:37:03.jpg
inflating: monet2photo/trainB/2016-12-08 09:21:31.jpg
inflating: monet2photo/trainB/2016-01-17 16:16:26.jpg
inflating: monet2photo/trainB/2015-12-20 09:18:08.jpg
inflating: monet2photo/trainB/2015-01-11 07:07:37.jpg
inflating: monet2photo/trainB/2016-08-29 17:37:07.jpg
inflating: monet2photo/trainB/2015-12-31 16:37:21.jpg
inflating: monet2photo/trainB/2015-01-29 18:13:48.jpg
inflating: monet2photo/trainB/2016-07-19 02:38:58.jpg
inflating: monet2photo/trainB/2015-06-08 04:55:13.jpg
inflating: monet2photo/trainB/2015-09-03 13:55:29.jpg
inflating: monet2photo/trainB/2015-05-22 23:37:14.jpg
inflating: monet2photo/trainB/2015-08-22 02:49:57.jpg
inflating: monet2photo/trainB/2015-08-01 04:15:43.jpg
inflating: monet2photo/trainB/2015-01-12 13:06:46.jpg
inflating: monet2photo/trainB/2016-05-07 04:36:40.jpg
inflating: monet2photo/trainB/2013-12-15 22:36:06.jpg
inflating: monet2photo/trainB/2016-04-02 01:17:26.jpg
inflating: monet2photo/trainB/2015-09-17 14:43:24.jpg
inflating: monet2photo/trainB/2015-06-25 16:26:34.jpg
inflating: monet2photo/trainB/2014-07-20 05:06:57.jpg
inflating: monet2photo/trainB/2015-10-09 03:27:18.jpg
inflating: monet2photo/trainB/2015-02-08 00:20:21.jpg
inflating: monet2photo/trainB/2015-03-19 07:51:09.jpg
inflating: monet2photo/trainB/2014-01-19 14:49:42.jpg
inflating: monet2photo/trainB/2015-11-07 20:35:02.jpg
inflating: monet2photo/trainB/2016-05-27 20:35:21.jpg
inflating: monet2photo/trainB/2016-02-14 10:08:08.jpg
inflating: monet2photo/trainB/2015-09-08 23:51:25.jpg
inflating: monet2photo/trainB/2015-08-15 10:47:05.jpg
inflating: monet2photo/trainB/2014-05-07 19:25:18.jpg
inflating: monet2photo/trainB/2015-11-01 09:39:37.jpg
inflating: monet2photo/trainB/2016-05-06 02:27:14.jpg
inflating: monet2photo/trainB/2015-03-10 04:20:14.jpg
inflating: monet2photo/trainB/2015-10-27 10:04:39.jpg
inflating: monet2photo/trainB/2015-11-13 13:14:52.jpg
inflating: monet2photo/trainB/2015-02-18 04:12:40.jpg
inflating: monet2photo/trainB/2014-11-08 16:10:48.jpg
inflating: monet2photo/trainB/2015-03-18 06:47:54.jpg
inflating: monet2photo/trainB/2016-08-26 12:26:47.jpg
inflating: monet2photo/trainB/2014-06-20 09:11:00.jpg
inflating: monet2photo/trainB/2015-06-13 13:07:11.jpg
inflating: monet2photo/trainB/2015-05-09 19:51:54.jpg
inflating: monet2photo/trainB/2015-09-24 10:57:45.jpg
inflating: monet2photo/trainB/2015-06-16 15:29:24.jpg
inflating: monet2photo/trainB/2014-07-23 03:39:26.jpg
inflating: monet2photo/trainB/2016-02-12 13:04:34.jpg
inflating: monet2photo/trainB/2016-08-06 04:57:54.jpg
inflating: monet2photo/trainB/2016-07-15 01:48:59.jpg
inflating: monet2photo/trainB/2016-08-30 01:31:59.jpg
inflating: monet2photo/trainB/2015-01-07 22:21:32.jpg
inflating: monet2photo/trainB/2016-04-02 10:10:15.jpg
inflating: monet2photo/trainB/2015-10-18 06:30:54.jpg
inflating: monet2photo/trainB/2016-08-26 16:00:00.jpg
inflating: monet2photo/trainB/2016-04-26 05:54:25.jpg
inflating: monet2photo/trainB/2016-04-11 13:57:01.jpg
inflating: monet2photo/trainB/2015-11-21 04:14:23.jpg
inflating: monet2photo/trainB/2016-03-22 16:03:52.jpg
inflating: monet2photo/trainB/2016-08-09 19:21:12.jpg
inflating: monet2photo/trainB/2016-03-10 11:48:58.jpg
inflating: monet2photo/trainB/2016-03-30 21:24:12.jpg
inflating: monet2photo/trainB/2015-12-15 19:27:12.jpg
inflating: monet2photo/trainB/2016-02-27 01:09:42.jpg
inflating: monet2photo/trainB/2014-11-03 11:56:42.jpg
inflating: monet2photo/trainB/2015-01-05 14:09:40.jpg
inflating: monet2photo/trainB/2013-11-18 02:42:31.jpg
inflating: monet2photo/trainB/2016-12-16 06:01:49.jpg
inflating: monet2photo/trainB/2016-08-31 10:45:23.jpg
inflating: monet2photo/trainB/2015-05-26 10:52:09.jpg
inflating: monet2photo/trainB/2015-03-05 00:09:08.jpg
inflating: monet2photo/trainB/2015-01-03 14:01:54.jpg
inflating: monet2photo/trainB/2013-11-28 02:41:01.jpg
inflating: monet2photo/trainB/2016-08-30 09:39:16.jpg
inflating: monet2photo/trainB/2016-06-20 05:31:48.jpg
inflating: monet2photo/trainB/2016-05-24 11:52:59.jpg
inflating: monet2photo/trainB/2014-07-07 23:49:50.jpg
inflating: monet2photo/trainB/2017-01-02 22:42:51.jpg
inflating: monet2photo/trainB/2016-01-10 01:13:54.jpg
inflating: monet2photo/trainB/2015-05-05 21:07:21.jpg
inflating: monet2photo/trainB/2015-10-14 03:18:17.jpg
inflating: monet2photo/trainB/2015-01-11 16:57:20.jpg
inflating: monet2photo/trainB/2014-07-21 22:30:14.jpg
inflating: monet2photo/trainB/2016-11-29 09:22:52.jpg
inflating: monet2photo/trainB/2016-06-24 11:39:54.jpg
inflating: monet2photo/trainB/2015-07-18 15:39:30.jpg
inflating: monet2photo/trainB/2015-11-02 03:09:23.jpg
inflating: monet2photo/trainB/2015-06-01 08:43:04.jpg
inflating: monet2photo/trainB/2014-07-02 12:33:13.jpg
inflating: monet2photo/trainB/2015-01-01 14:52:21.jpg
inflating: monet2photo/trainB/2014-04-27 10:25:14.jpg
inflating: monet2photo/trainB/2015-12-06 16:03:29.jpg
inflating: monet2photo/trainB/2015-07-05 14:03:53.jpg
inflating: monet2photo/trainB/2015-01-25 08:21:06.jpg
inflating: monet2photo/trainB/2016-11-21 16:02:18.jpg
inflating: monet2photo/trainB/2014-07-09 19:17:25.jpg
inflating: monet2photo/trainB/2015-08-04 12:07:48.jpg
inflating: monet2photo/trainB/2016-04-04 22:58:35.jpg
inflating: monet2photo/trainB/2016-11-27 13:26:35.jpg
inflating: monet2photo/trainB/2014-01-25 08:24:04.jpg
inflating: monet2photo/trainB/2014-03-31 09:45:23.jpg
inflating: monet2photo/trainB/2015-11-08 03:18:01.jpg
inflating: monet2photo/trainB/2014-04-27 15:40:34.jpg
inflating: monet2photo/trainB/2014-06-21 04:45:06.jpg
inflating: monet2photo/trainB/2016-03-07 18:32:33.jpg
inflating: monet2photo/trainB/2015-05-02 20:37:00.jpg
inflating: monet2photo/trainB/2016-02-10 02:37:01.jpg
inflating: monet2photo/trainB/2015-07-10 18:00:33.jpg
inflating: monet2photo/trainB/2015-05-23 05:40:33.jpg
inflating: monet2photo/trainB/2014-05-11 16:08:11.jpg
inflating: monet2photo/trainB/2016-06-03 06:41:08.jpg
inflating: monet2photo/trainB/2015-09-29 07:39:00.jpg
inflating: monet2photo/trainB/2016-05-04 11:31:39.jpg
inflating: monet2photo/trainB/2016-05-08 10:42:33.jpg
inflating: monet2photo/trainB/2016-05-28 19:58:31.jpg
inflating: monet2photo/trainB/2017-01-02 13:37:42.jpg
inflating: monet2photo/trainB/2014-07-27 16:06:00.jpg
inflating: monet2photo/trainB/2015-11-13 09:06:27.jpg
inflating: monet2photo/trainB/2015-08-01 10:16:47.jpg
inflating: monet2photo/trainB/2014-04-17 06:27:52.jpg
inflating: monet2photo/trainB/2016-02-03 07:20:31.jpg
inflating: monet2photo/trainB/2016-04-04 07:47:01.jpg
inflating: monet2photo/trainB/2014-05-04 00:29:33.jpg
inflating: monet2photo/trainB/2015-01-11 00:36:20.jpg
inflating: monet2photo/trainB/2016-07-07 10:13:29.jpg
inflating: monet2photo/trainB/2016-02-18 17:57:34.jpg
inflating: monet2photo/trainB/2015-06-26 03:53:24.jpg
inflating: monet2photo/trainB/2016-08-03 11:08:50.jpg
inflating: monet2photo/trainB/2013-11-23 02:19:20.jpg
inflating: monet2photo/trainB/2015-10-10 14:21:12.jpg
inflating: monet2photo/trainB/2015-02-03 17:41:46.jpg
inflating: monet2photo/trainB/2014-11-13 14:36:29.jpg
inflating: monet2photo/trainB/2015-05-31 11:10:07.jpg
inflating: monet2photo/trainB/2015-10-23 20:28:47.jpg
inflating: monet2photo/trainB/2014-11-21 01:50:42.jpg
inflating: monet2photo/trainB/2016-11-18 16:25:29.jpg
inflating: monet2photo/trainB/2016-04-01 12:51:57.jpg
inflating: monet2photo/trainB/2016-08-29 06:00:10.jpg
inflating: monet2photo/trainB/2015-01-26 03:46:26.jpg
inflating: monet2photo/trainB/2016-03-31 12:20:00.jpg
inflating: monet2photo/trainB/2016-02-13 07:06:52.jpg
inflating: monet2photo/trainB/2016-06-09 02:17:04.jpg
inflating: monet2photo/trainB/2015-07-28 04:36:52.jpg
inflating: monet2photo/trainB/2015-01-02 20:30:18.jpg
inflating: monet2photo/trainB/2015-10-05 16:18:06.jpg
inflating: monet2photo/trainB/2015-05-01 22:52:58.jpg
inflating: monet2photo/trainB/2015-03-10 16:44:07.jpg
inflating: monet2photo/trainB/2017-01-03 08:19:17.jpg
inflating: monet2photo/trainB/2015-05-10 13:47:58.jpg
inflating: monet2photo/trainB/2016-12-06 15:15:23.jpg
inflating: monet2photo/trainB/2016-11-30 13:32:26.jpg
inflating: monet2photo/trainB/2015-11-03 23:48:08.jpg
inflating: monet2photo/trainB/2015-11-04 16:21:11.jpg
inflating: monet2photo/trainB/2016-02-09 10:12:20.jpg
inflating: monet2photo/trainB/2015-02-15 02:39:15.jpg
inflating: monet2photo/trainB/2016-04-29 07:13:44.jpg
inflating: monet2photo/trainB/2016-01-04 23:13:37.jpg
inflating: monet2photo/trainB/2016-11-28 16:05:33.jpg
inflating: monet2photo/trainB/2016-04-03 12:01:19.jpg
inflating: monet2photo/trainB/2015-06-23 06:30:12.jpg
inflating: monet2photo/trainB/2016-11-22 08:34:09.jpg
inflating: monet2photo/trainB/2016-11-27 02:55:52.jpg
inflating: monet2photo/trainB/2014-06-29 04:36:04.jpg
inflating: monet2photo/trainB/2016-06-30 21:00:34.jpg
inflating: monet2photo/trainB/2016-01-09 08:33:41.jpg
inflating: monet2photo/trainB/2014-03-20 18:12:54.jpg
inflating: monet2photo/trainB/2016-01-08 22:15:50.jpg
inflating: monet2photo/trainB/2016-08-26 12:45:32.jpg
inflating: monet2photo/trainB/2015-05-01 22:15:11.jpg
inflating: monet2photo/trainB/2015-02-28 16:11:03.jpg
inflating: monet2photo/trainB/2015-12-21 07:45:26.jpg
inflating: monet2photo/trainB/2016-03-05 11:10:42.jpg
inflating: monet2photo/trainB/2015-11-20 12:03:52.jpg
inflating: monet2photo/trainB/2016-01-05 16:32:53.jpg
inflating: monet2photo/trainB/2015-12-21 14:41:18.jpg
inflating: monet2photo/trainB/2015-01-31 05:12:08.jpg
inflating: monet2photo/trainB/2016-05-30 11:23:32.jpg
inflating: monet2photo/trainB/2016-04-26 00:43:25.jpg
inflating: monet2photo/trainB/2015-07-03 10:09:55.jpg
inflating: monet2photo/trainB/2015-09-17 08:32:55.jpg
inflating: monet2photo/trainB/2015-07-26 06:31:24.jpg
inflating: monet2photo/trainB/2016-06-11 18:21:20.jpg
inflating: monet2photo/trainB/2016-12-08 12:40:39.jpg
inflating: monet2photo/trainB/2015-08-08 12:23:05.jpg
inflating: monet2photo/trainB/2016-02-06 20:34:16.jpg
inflating: monet2photo/trainB/2016-03-20 12:38:53.jpg
inflating: monet2photo/trainB/2015-02-03 21:51:43.jpg
inflating: monet2photo/trainB/2015-07-14 03:52:36.jpg
inflating: monet2photo/trainB/2015-08-17 01:41:52.jpg
inflating: monet2photo/trainB/2015-09-25 11:13:51.jpg
inflating: monet2photo/trainB/2015-09-14 17:45:20.jpg
inflating: monet2photo/trainB/2014-05-18 18:42:19.jpg
inflating: monet2photo/trainB/2015-12-28 20:03:35.jpg
inflating: monet2photo/trainB/2015-01-28 18:21:38.jpg
inflating: monet2photo/trainB/2017-01-02 19:46:34.jpg
inflating: monet2photo/trainB/2015-10-28 19:21:30.jpg
inflating: monet2photo/trainB/2014-01-23 20:24:06.jpg
inflating: monet2photo/trainB/2016-08-24 02:51:40.jpg
inflating: monet2photo/trainB/2015-10-12 10:52:33.jpg
inflating: monet2photo/trainB/2015-01-26 18:15:54.jpg
inflating: monet2photo/trainB/2016-06-05 14:51:12.jpg
inflating: monet2photo/trainB/2015-07-04 22:17:41.jpg
inflating: monet2photo/trainB/2014-06-08 19:36:09.jpg
inflating: monet2photo/trainB/2016-06-25 13:03:36.jpg
inflating: monet2photo/trainB/2016-06-21 18:43:50.jpg
inflating: monet2photo/trainB/2015-08-07 13:05:03.jpg
inflating: monet2photo/trainB/2014-03-01 16:12:00.jpg
inflating: monet2photo/trainB/2016-04-19 03:59:26.jpg
inflating: monet2photo/trainB/2016-03-26 09:33:48.jpg
inflating: monet2photo/trainB/2016-05-14 05:05:23.jpg
inflating: monet2photo/trainB/2015-05-01 11:50:01.jpg
inflating: monet2photo/trainB/2015-02-10 10:21:03.jpg
inflating: monet2photo/trainB/2015-09-23 15:24:46.jpg
inflating: monet2photo/trainB/2015-03-19 07:55:50.jpg
inflating: monet2photo/trainB/2014-06-02 05:29:38.jpg
inflating: monet2photo/trainB/2014-02-05 02:49:51.jpg
inflating: monet2photo/trainB/2015-10-16 17:12:50.jpg
inflating: monet2photo/trainB/2015-05-05 19:11:12.jpg
inflating: monet2photo/trainB/2016-02-26 22:21:05.jpg
inflating: monet2photo/trainB/2015-11-01 02:05:32.jpg
inflating: monet2photo/trainB/2015-09-24 03:29:46.jpg
inflating: monet2photo/trainB/2015-05-29 07:36:30.jpg
inflating: monet2photo/trainB/2016-05-31 08:33:15.jpg
inflating: monet2photo/trainB/2015-06-10 18:41:08.jpg
inflating: monet2photo/trainB/2014-05-30 01:32:56.jpg
inflating: monet2photo/trainB/2016-03-27 09:54:49.jpg
inflating: monet2photo/trainB/2015-05-24 01:00:02.jpg
inflating: monet2photo/trainB/2015-12-21 01:19:05.jpg
inflating: monet2photo/trainB/2014-11-15 22:16:33.jpg
inflating: monet2photo/trainB/2016-07-09 20:02:52.jpg
inflating: monet2photo/trainB/2015-08-18 10:08:53.jpg
inflating: monet2photo/trainB/2015-05-20 04:43:53.jpg
inflating: monet2photo/trainB/2016-07-04 15:44:23.jpg
inflating: monet2photo/trainB/2015-08-18 08:17:29.jpg
inflating: monet2photo/trainB/2015-09-28 10:10:57.jpg
inflating: monet2photo/trainB/2016-05-31 07:41:36.jpg
inflating: monet2photo/trainB/2017-01-02 12:28:13.jpg
inflating: monet2photo/trainB/2015-07-23 04:27:14.jpg
inflating: monet2photo/trainB/2016-03-06 19:27:17.jpg
inflating: monet2photo/trainB/2015-11-28 13:58:26.jpg
inflating: monet2photo/trainB/2016-11-29 00:10:41.jpg
inflating: monet2photo/trainB/2016-08-28 04:11:52.jpg
inflating: monet2photo/trainB/2015-09-21 10:54:11.jpg
inflating: monet2photo/trainB/2015-10-19 22:35:04.jpg
inflating: monet2photo/trainB/2016-06-30 13:28:05.jpg
inflating: monet2photo/trainB/2015-05-03 18:33:31.jpg
inflating: monet2photo/trainB/2015-02-08 19:00:37.jpg
inflating: monet2photo/trainB/2015-01-06 03:39:05.jpg
inflating: monet2photo/trainB/2014-01-03 15:12:40.jpg
inflating: monet2photo/trainB/2016-02-01 06:38:25.jpg
inflating: monet2photo/trainB/2014-07-23 10:49:54.jpg
inflating: monet2photo/trainB/2016-06-29 07:59:05.jpg
inflating: monet2photo/trainB/2015-03-22 22:55:43.jpg
inflating: monet2photo/trainB/2015-02-02 23:42:14.jpg
inflating: monet2photo/trainB/2014-05-21 06:30:24.jpg
inflating: monet2photo/trainB/2015-08-07 10:04:39.jpg
inflating: monet2photo/trainB/2015-05-17 20:47:02.jpg
inflating: monet2photo/trainB/2015-12-29 16:59:22.jpg
inflating: monet2photo/trainB/2015-01-09 18:39:13.jpg
inflating: monet2photo/trainB/2015-05-17 09:09:49.jpg
inflating: monet2photo/trainB/2015-09-07 13:41:26.jpg
inflating: monet2photo/trainB/2016-03-07 11:18:16.jpg
inflating: monet2photo/trainB/2014-02-03 18:52:08.jpg
inflating: monet2photo/trainB/2016-08-16 02:49:22.jpg
inflating: monet2photo/trainB/2014-05-04 13:36:00.jpg
inflating: monet2photo/trainB/2016-07-20 14:52:08.jpg
inflating: monet2photo/trainB/2015-08-17 12:41:12.jpg
inflating: monet2photo/trainB/2015-12-03 05:19:44.jpg
inflating: monet2photo/trainB/2016-11-15 12:06:28.jpg
inflating: monet2photo/trainB/2016-03-23 03:49:28.jpg
inflating: monet2photo/trainB/2017-01-03 07:00:30.jpg
inflating: monet2photo/trainB/2014-11-07 19:21:04.jpg
inflating: monet2photo/trainB/2015-02-04 09:52:09.jpg
inflating: monet2photo/trainB/2013-12-11 14:52:20.jpg
inflating: monet2photo/trainB/2016-02-18 11:06:00.jpg
inflating: monet2photo/trainB/2015-08-31 13:02:30.jpg
inflating: monet2photo/trainB/2016-07-24 09:21:33.jpg
inflating: monet2photo/trainB/2016-03-18 15:53:12.jpg
inflating: monet2photo/trainB/2015-02-24 17:32:05.jpg
inflating: monet2photo/trainB/2016-04-26 15:49:49.jpg
inflating: monet2photo/trainB/2016-07-29 17:28:42.jpg
inflating: monet2photo/trainB/2015-08-29 05:49:06.jpg
inflating: monet2photo/trainB/2015-12-01 15:45:27.jpg
inflating: monet2photo/trainB/2015-08-13 21:42:37.jpg
inflating: monet2photo/trainB/2015-01-26 08:37:24.jpg
inflating: monet2photo/trainB/2015-01-08 21:12:12.jpg
inflating: monet2photo/trainB/2015-12-05 10:27:18.jpg
inflating: monet2photo/trainB/2016-08-27 04:15:34.jpg
inflating: monet2photo/trainB/2016-01-09 01:14:43.jpg
inflating: monet2photo/trainB/2016-04-28 21:03:17.jpg
inflating: monet2photo/trainB/2016-06-21 16:15:47.jpg
inflating: monet2photo/trainB/2016-11-23 09:17:56.jpg
inflating: monet2photo/trainB/2015-05-04 02:38:55.jpg
inflating: monet2photo/trainB/2016-08-18 12:00:30.jpg
inflating: monet2photo/trainB/2015-10-20 10:06:21.jpg
inflating: monet2photo/trainB/2016-12-09 19:03:52.jpg
inflating: monet2photo/trainB/2016-06-24 10:29:57.jpg
inflating: monet2photo/trainB/2015-10-13 09:18:35.jpg
inflating: monet2photo/trainB/2016-04-27 02:52:39.jpg
inflating: monet2photo/trainB/2016-02-21 23:41:53.jpg
inflating: monet2photo/trainB/2015-05-18 19:28:58.jpg
inflating: monet2photo/trainB/2015-07-11 10:26:44.jpg
inflating: monet2photo/trainB/2016-12-10 14:48:52.jpg
inflating: monet2photo/trainB/2015-12-09 11:57:04.jpg
inflating: monet2photo/trainB/2016-12-25 18:34:28.jpg
inflating: monet2photo/trainB/2016-07-06 08:15:55.jpg
inflating: monet2photo/trainB/2015-10-23 06:24:34.jpg
inflating: monet2photo/trainB/2015-12-14 11:30:58.jpg
inflating: monet2photo/trainB/2016-02-26 20:17:09.jpg
inflating: monet2photo/trainB/2015-10-17 01:41:46.jpg
inflating: monet2photo/trainB/2016-04-22 04:01:58.jpg
inflating: monet2photo/trainB/2016-02-03 16:46:07.jpg
inflating: monet2photo/trainB/2015-11-05 13:14:11.jpg
inflating: monet2photo/trainB/2015-12-08 12:05:15.jpg
inflating: monet2photo/trainB/2016-12-02 09:32:59.jpg
inflating: monet2photo/trainB/2015-05-22 00:50:48.jpg
inflating: monet2photo/trainB/2015-10-21 04:38:12.jpg
inflating: monet2photo/trainB/2014-03-27 15:28:17.jpg
inflating: monet2photo/trainB/2015-09-15 12:54:14.jpg
inflating: monet2photo/trainB/2015-01-26 11:30:39.jpg
inflating: monet2photo/trainB/2015-10-14 06:18:09.jpg
inflating: monet2photo/trainB/2016-05-26 12:58:30.jpg
inflating: monet2photo/trainB/2014-02-05 06:27:30.jpg
inflating: monet2photo/trainB/2015-07-24 19:25:29.jpg
inflating: monet2photo/trainB/2015-05-31 19:00:46.jpg
inflating: monet2photo/trainB/2015-12-31 03:49:37.jpg
inflating: monet2photo/trainB/2015-06-19 20:33:49.jpg
inflating: monet2photo/trainB/2015-03-03 03:03:55.jpg
inflating: monet2photo/trainB/2014-06-01 08:30:07.jpg
inflating: monet2photo/trainB/2015-05-23 06:51:12.jpg
inflating: monet2photo/trainB/2015-08-10 22:45:28.jpg
inflating: monet2photo/trainB/2016-05-15 16:48:00.jpg
inflating: monet2photo/trainB/2015-06-05 02:13:18.jpg
inflating: monet2photo/trainB/2015-05-03 05:30:29.jpg
inflating: monet2photo/trainB/2016-12-02 12:46:11.jpg
inflating: monet2photo/trainB/2016-02-29 00:00:39.jpg
inflating: monet2photo/trainB/2015-11-05 12:26:48.jpg
inflating: monet2photo/trainB/2014-03-09 13:17:59.jpg
inflating: monet2photo/trainB/2015-09-06 12:31:16.jpg
inflating: monet2photo/trainB/2015-08-24 16:51:56.jpg
inflating: monet2photo/trainB/2015-12-08 14:29:37.jpg
inflating: monet2photo/trainB/2016-01-29 10:16:18.jpg
inflating: monet2photo/trainB/2016-05-24 06:16:07.jpg
inflating: monet2photo/trainB/2016-04-18 04:35:34.jpg
inflating: monet2photo/trainB/2016-08-28 18:19:41.jpg
inflating: monet2photo/trainB/2015-05-29 09:45:04.jpg
inflating: monet2photo/trainB/2015-01-26 22:43:31.jpg
inflating: monet2photo/trainB/2015-12-30 06:37:50.jpg
inflating: monet2photo/trainB/2015-06-29 14:00:17.jpg
inflating: monet2photo/trainB/2016-03-06 09:32:18.jpg
inflating: monet2photo/trainB/2016-01-09 10:16:37.jpg
inflating: monet2photo/trainB/2015-12-14 12:12:56.jpg
inflating: monet2photo/trainB/2015-08-24 11:29:39.jpg
inflating: monet2photo/trainB/2016-02-22 23:41:07.jpg
inflating: monet2photo/trainB/2016-06-27 23:07:56.jpg
inflating: monet2photo/trainB/2014-03-04 19:40:11.jpg
inflating: monet2photo/trainB/2014-01-24 21:28:49.jpg
inflating: monet2photo/trainB/2015-10-22 14:59:55.jpg
inflating: monet2photo/trainB/2015-06-08 00:27:48.jpg
inflating: monet2photo/trainB/2016-01-28 13:21:26.jpg
inflating: monet2photo/trainB/2015-10-24 02:17:13.jpg
inflating: monet2photo/trainB/2015-02-01 01:53:53.jpg
inflating: monet2photo/trainB/2013-12-25 15:23:46.jpg
inflating: monet2photo/trainB/2015-06-12 09:32:05.jpg
inflating: monet2photo/trainB/2015-08-27 09:05:39.jpg
inflating: monet2photo/trainB/2016-04-20 11:01:37.jpg
inflating: monet2photo/trainB/2014-11-28 13:17:27.jpg
inflating: monet2photo/trainB/2015-06-25 06:14:49.jpg
inflating: monet2photo/trainB/2014-04-24 15:24:20.jpg
inflating: monet2photo/trainB/2016-07-31 20:09:21.jpg
inflating: monet2photo/trainB/2014-03-01 03:26:04.jpg
inflating: monet2photo/trainB/2015-03-21 15:25:58.jpg
inflating: monet2photo/trainB/2015-11-14 00:29:33.jpg
inflating: monet2photo/trainB/2015-10-07 09:54:49.jpg
inflating: monet2photo/trainB/2014-06-13 00:06:14.jpg
inflating: monet2photo/trainB/2015-09-22 12:52:44.jpg
inflating: monet2photo/trainB/2016-11-18 23:38:50.jpg
inflating: monet2photo/trainB/2015-06-06 02:48:27.jpg
inflating: monet2photo/trainB/2014-02-02 10:34:50.jpg
inflating: monet2photo/trainB/2016-05-20 19:06:38.jpg
inflating: monet2photo/trainB/2016-08-12 12:27:06.jpg
inflating: monet2photo/trainB/2016-06-17 22:32:13.jpg
inflating: monet2photo/trainB/2016-12-06 23:12:04.jpg
inflating: monet2photo/trainB/2015-08-26 09:03:22.jpg
inflating: monet2photo/trainB/2015-08-13 06:41:22.jpg
inflating: monet2photo/trainB/2016-04-12 07:48:14.jpg
inflating: monet2photo/trainB/2016-01-16 00:17:15.jpg
inflating: monet2photo/trainB/2014-11-25 08:04:25.jpg
inflating: monet2photo/trainB/2013-12-31 11:02:55.jpg
inflating: monet2photo/trainB/2016-12-20 16:19:58.jpg
inflating: monet2photo/trainB/2016-11-19 12:24:20.jpg
inflating: monet2photo/trainB/2016-04-23 13:46:50.jpg
inflating: monet2photo/trainB/2016-01-17 10:53:47.jpg
inflating: monet2photo/trainB/2016-07-29 00:55:24.jpg
inflating: monet2photo/trainB/2016-12-04 22:10:34.jpg
inflating: monet2photo/trainB/2016-06-10 00:43:42.jpg
inflating: monet2photo/trainB/2016-08-05 22:22:14.jpg
inflating: monet2photo/trainB/2016-08-03 13:21:58.jpg
inflating: monet2photo/trainB/2015-02-10 17:00:03.jpg
inflating: monet2photo/trainB/2015-08-12 04:56:35.jpg
inflating: monet2photo/trainB/2014-11-12 08:44:36.jpg
inflating: monet2photo/trainB/2016-07-04 09:58:11.jpg
inflating: monet2photo/trainB/2015-02-28 22:41:46.jpg
inflating: monet2photo/trainB/2016-07-01 13:56:41.jpg
inflating: monet2photo/trainB/2015-09-27 01:01:36.jpg
inflating: monet2photo/trainB/2015-03-07 08:46:36.jpg
inflating: monet2photo/trainB/2015-10-19 20:42:55.jpg
inflating: monet2photo/trainB/2015-08-31 02:30:10.jpg
inflating: monet2photo/trainB/2015-08-16 18:07:08.jpg
inflating: monet2photo/trainB/2016-05-20 01:13:44.jpg
inflating: monet2photo/trainB/2014-04-30 14:29:32.jpg
inflating: monet2photo/trainB/2015-08-17 13:34:56.jpg
inflating: monet2photo/trainB/2014-05-04 12:31:08.jpg
inflating: monet2photo/trainB/2015-12-14 18:58:44.jpg
inflating: monet2photo/trainB/2014-11-24 00:21:42.jpg
inflating: monet2photo/trainB/2015-08-25 15:08:03.jpg
inflating: monet2photo/trainB/2014-11-19 14:11:37.jpg
inflating: monet2photo/trainB/2016-06-03 09:36:37.jpg
inflating: monet2photo/trainB/2016-12-05 00:03:39.jpg
inflating: monet2photo/trainB/2015-03-22 08:49:10.jpg
inflating: monet2photo/trainB/2014-11-29 08:15:46.jpg
inflating: monet2photo/trainB/2016-08-16 07:26:25.jpg
inflating: monet2photo/trainB/2015-09-01 13:30:45.jpg
inflating: monet2photo/trainB/2016-12-17 07:00:14.jpg
inflating: monet2photo/trainB/2016-01-26 12:04:26.jpg
inflating: monet2photo/trainB/2015-01-02 13:10:38.jpg
inflating: monet2photo/trainB/2015-12-11 20:44:26.jpg
inflating: monet2photo/trainB/2015-07-12 20:45:33.jpg
inflating: monet2photo/trainB/2016-08-04 02:58:56.jpg
inflating: monet2photo/trainB/2016-03-06 22:30:22.jpg
inflating: monet2photo/trainB/2014-01-02 22:57:21.jpg
inflating: monet2photo/trainB/2015-01-04 07:58:50.jpg
inflating: monet2photo/trainB/2015-03-18 07:59:16.jpg
inflating: monet2photo/trainB/2016-11-27 04:28:47.jpg
inflating: monet2photo/trainB/2016-06-09 14:33:39.jpg
inflating: monet2photo/trainB/2016-04-30 03:58:03.jpg
inflating: monet2photo/trainB/2014-06-08 12:58:15.jpg
inflating: monet2photo/trainB/2016-12-18 05:52:35.jpg
inflating: monet2photo/trainB/2014-02-09 00:50:14.jpg
inflating: monet2photo/trainB/2016-02-13 12:07:08.jpg
inflating: monet2photo/trainB/2015-12-14 12:09:18.jpg
inflating: monet2photo/trainB/2013-12-01 14:25:51.jpg
inflating: monet2photo/trainB/2016-01-23 03:26:51.jpg
inflating: monet2photo/trainB/2014-01-30 10:11:54.jpg
inflating: monet2photo/trainB/2014-07-12 22:53:29.jpg
inflating: monet2photo/trainB/2015-11-15 21:15:02.jpg
inflating: monet2photo/trainB/2015-12-26 22:29:40.jpg
inflating: monet2photo/trainB/2015-09-17 10:12:24.jpg
inflating: monet2photo/trainB/2016-02-02 07:35:00.jpg
inflating: monet2photo/trainB/2016-04-06 04:34:37.jpg
inflating: monet2photo/trainB/2016-07-11 11:44:59.jpg
inflating: monet2photo/trainB/2015-01-24 08:21:58.jpg
inflating: monet2photo/trainB/2015-02-05 12:56:04.jpg
inflating: monet2photo/trainB/2015-05-26 09:09:38.jpg
inflating: monet2photo/trainB/2015-08-23 15:36:32.jpg
inflating: monet2photo/trainB/2015-02-15 03:52:31.jpg
inflating: monet2photo/trainB/2016-08-21 10:03:39.jpg
inflating: monet2photo/trainB/2016-08-21 08:26:28.jpg
inflating: monet2photo/trainB/2015-10-14 04:51:40.jpg
inflating: monet2photo/trainB/2015-01-24 03:08:54.jpg
inflating: monet2photo/trainB/2016-02-21 02:26:48.jpg
inflating: monet2photo/trainB/2014-11-30 23:52:34.jpg
inflating: monet2photo/trainB/2016-08-07 08:52:49.jpg
inflating: monet2photo/trainB/2015-06-08 15:02:59.jpg
inflating: monet2photo/trainB/2015-03-25 14:40:59.jpg
inflating: monet2photo/trainB/2016-03-29 12:55:05.jpg
inflating: monet2photo/trainB/2015-12-28 08:09:44.jpg
inflating: monet2photo/trainB/2014-02-20 20:01:04.jpg
inflating: monet2photo/trainB/2016-05-01 18:53:11.jpg
inflating: monet2photo/trainB/2016-06-08 15:35:58.jpg
inflating: monet2photo/trainB/2016-05-18 04:37:12.jpg
inflating: monet2photo/trainB/2014-01-15 04:32:40.jpg
inflating: monet2photo/trainB/2015-03-24 01:18:43.jpg
inflating: monet2photo/trainB/2015-10-06 03:03:39.jpg
inflating: monet2photo/trainB/2016-04-20 19:49:51.jpg
inflating: monet2photo/trainB/2015-01-04 12:06:04.jpg
inflating: monet2photo/trainB/2015-03-01 05:22:39.jpg
inflating: monet2photo/trainB/2016-03-24 01:31:29.jpg
inflating: monet2photo/trainB/2015-01-07 05:43:27.jpg
inflating: monet2photo/trainB/2014-06-19 21:02:19.jpg
inflating: monet2photo/trainB/2015-02-12 10:57:51.jpg
inflating: monet2photo/trainB/2015-11-18 20:24:13.jpg
inflating: monet2photo/trainB/2015-11-22 16:10:51.jpg
inflating: monet2photo/trainB/2017-01-03 02:22:06.jpg
inflating: monet2photo/trainB/2016-04-12 12:09:02.jpg
inflating: monet2photo/trainB/2015-06-06 10:40:35.jpg
inflating: monet2photo/trainB/2015-03-07 18:49:30.jpg
inflating: monet2photo/trainB/2014-05-04 08:38:40.jpg
inflating: monet2photo/trainB/2016-06-18 05:04:27.jpg
inflating: monet2photo/trainB/2015-07-03 12:20:03.jpg
inflating: monet2photo/trainB/2016-02-16 20:03:48.jpg
inflating: monet2photo/trainB/2015-09-10 15:03:09.jpg
inflating: monet2photo/trainB/2015-11-29 00:45:40.jpg
inflating: monet2photo/trainB/2015-12-14 10:00:11.jpg
inflating: monet2photo/trainB/2013-11-30 01:14:43.jpg
inflating: monet2photo/trainB/2015-06-02 13:16:18.jpg
inflating: monet2photo/trainB/2016-07-28 19:33:57.jpg
inflating: monet2photo/trainB/2016-02-14 10:25:13.jpg
inflating: monet2photo/trainB/2016-12-11 12:22:04.jpg
inflating: monet2photo/trainB/2016-02-18 17:04:26.jpg
inflating: monet2photo/trainB/2015-03-10 18:02:33.jpg
inflating: monet2photo/trainB/2015-08-06 07:12:19.jpg
inflating: monet2photo/trainB/2016-04-19 05:31:55.jpg
inflating: monet2photo/trainB/2016-08-09 07:23:24.jpg
inflating: monet2photo/trainB/2015-10-24 09:39:22.jpg
inflating: monet2photo/trainB/2014-05-05 14:40:57.jpg
inflating: monet2photo/trainB/2016-03-24 14:45:28.jpg
inflating: monet2photo/trainB/2015-03-23 20:43:53.jpg
inflating: monet2photo/trainB/2015-06-05 03:42:09.jpg
inflating: monet2photo/trainB/2015-07-28 06:06:27.jpg
inflating: monet2photo/trainB/2015-09-06 10:59:42.jpg
inflating: monet2photo/trainB/2015-12-31 20:31:35.jpg
inflating: monet2photo/trainB/2015-07-17 17:31:57.jpg
inflating: monet2photo/trainB/2015-02-28 16:13:56.jpg
inflating: monet2photo/trainB/2015-02-09 10:17:36.jpg
inflating: monet2photo/trainB/2015-03-12 21:11:44.jpg
inflating: monet2photo/trainB/2016-04-19 10:33:49.jpg
inflating: monet2photo/trainB/2015-08-16 09:57:47.jpg
inflating: monet2photo/trainB/2015-02-14 12:37:48.jpg
inflating: monet2photo/trainB/2016-07-09 11:21:51.jpg
inflating: monet2photo/trainB/2016-01-10 13:22:29.jpg
inflating: monet2photo/trainB/2016-07-18 10:35:07.jpg
inflating: monet2photo/trainB/2015-09-07 14:40:38.jpg
inflating: monet2photo/trainB/2015-07-25 00:47:33.jpg
inflating: monet2photo/trainB/2014-03-11 17:56:13.jpg
inflating: monet2photo/trainB/2016-04-26 08:49:34.jpg
inflating: monet2photo/trainB/2015-12-23 06:13:52.jpg
inflating: monet2photo/trainB/2016-03-04 19:43:52.jpg
inflating: monet2photo/trainB/2014-07-05 21:15:29.jpg
inflating: monet2photo/trainB/2015-12-14 07:55:38.jpg
inflating: monet2photo/trainB/2014-01-25 11:27:14.jpg
inflating: monet2photo/trainB/2015-05-27 06:07:55.jpg
inflating: monet2photo/trainB/2015-02-22 19:06:45.jpg
inflating: monet2photo/trainB/2015-06-03 15:36:59.jpg
inflating: monet2photo/trainB/2015-08-10 10:47:21.jpg
inflating: monet2photo/trainB/2014-11-27 18:31:26.jpg
inflating: monet2photo/trainB/2015-10-13 14:31:26.jpg
inflating: monet2photo/trainB/2015-02-03 18:22:28.jpg
inflating: monet2photo/trainB/2016-08-08 07:42:07.jpg
inflating: monet2photo/trainB/2016-04-18 11:49:11.jpg
inflating: monet2photo/trainB/2014-11-23 08:41:52.jpg
inflating: monet2photo/trainB/2015-12-30 23:08:56.jpg
inflating: monet2photo/trainB/2016-07-27 17:03:16.jpg
inflating: monet2photo/trainB/2015-12-25 16:53:00.jpg
inflating: monet2photo/trainB/2015-06-21 00:57:53.jpg
inflating: monet2photo/trainB/2016-12-25 19:31:57.jpg
inflating: monet2photo/trainB/2015-05-06 02:13:45.jpg
inflating: monet2photo/trainB/2016-08-27 03:46:14.jpg
inflating: monet2photo/trainB/2015-06-02 19:10:45.jpg
inflating: monet2photo/trainB/2015-05-13 17:02:45.jpg
inflating: monet2photo/trainB/2016-08-16 20:33:45.jpg
inflating: monet2photo/trainB/2014-11-02 01:10:04.jpg
inflating: monet2photo/trainB/2015-01-02 11:43:51.jpg
inflating: monet2photo/trainB/2016-07-07 13:33:02.jpg
inflating: monet2photo/trainB/2015-07-26 11:18:34.jpg
inflating: monet2photo/trainB/2015-09-23 16:27:11.jpg
inflating: monet2photo/trainB/2016-08-16 12:59:06.jpg
inflating: monet2photo/trainB/2016-01-18 19:49:44.jpg
inflating: monet2photo/trainB/2015-12-18 10:37:05.jpg
inflating: monet2photo/trainB/2015-05-19 00:41:42.jpg
inflating: monet2photo/trainB/2015-05-13 14:09:34.jpg
inflating: monet2photo/trainB/2015-12-03 09:46:45.jpg
inflating: monet2photo/trainB/2016-07-17 14:49:39.jpg
inflating: monet2photo/trainB/2014-11-13 06:09:39.jpg
inflating: monet2photo/trainB/2016-05-08 14:16:36.jpg
inflating: monet2photo/trainB/2014-07-29 08:25:06.jpg
inflating: monet2photo/trainB/2015-08-31 12:57:05.jpg
inflating: monet2photo/trainB/2015-03-30 19:13:49.jpg
inflating: monet2photo/trainB/2015-05-16 04:34:50.jpg
inflating: monet2photo/trainB/2014-07-29 04:19:30.jpg
inflating: monet2photo/trainB/2016-01-15 16:17:33.jpg
inflating: monet2photo/trainB/2015-05-30 12:00:06.jpg
inflating: monet2photo/trainB/2016-07-24 20:34:58.jpg
inflating: monet2photo/trainB/2015-06-06 00:20:46.jpg
inflating: monet2photo/trainB/2015-07-06 14:20:07.jpg
inflating: monet2photo/trainB/2014-04-10 10:48:14.jpg
inflating: monet2photo/trainB/2016-12-24 05:21:35.jpg
inflating: monet2photo/trainB/2013-11-19 00:58:04.jpg
inflating: monet2photo/trainB/2015-07-28 12:13:00.jpg
inflating: monet2photo/trainB/2015-11-22 08:51:22.jpg
inflating: monet2photo/trainB/2015-03-26 10:50:39.jpg
inflating: monet2photo/trainB/2015-06-27 23:58:19.jpg
inflating: monet2photo/trainB/2014-06-11 08:55:38.jpg
inflating: monet2photo/trainB/2016-01-17 10:13:32.jpg
inflating: monet2photo/trainB/2015-10-14 09:23:38.jpg
inflating: monet2photo/trainB/2016-07-24 08:05:58.jpg
inflating: monet2photo/trainB/2015-08-03 17:06:49.jpg
inflating: monet2photo/trainB/2014-11-30 09:06:28.jpg
inflating: monet2photo/trainB/2016-04-06 01:43:30.jpg
inflating: monet2photo/trainB/2015-08-12 03:32:48.jpg
inflating: monet2photo/trainB/2016-12-07 10:12:49.jpg
inflating: monet2photo/trainB/2015-08-05 07:57:00.jpg
inflating: monet2photo/trainB/2016-03-20 15:30:50.jpg
inflating: monet2photo/trainB/2015-05-14 13:15:32.jpg
inflating: monet2photo/trainB/2015-05-02 04:56:52.jpg
inflating: monet2photo/trainB/2014-06-08 20:36:52.jpg
inflating: monet2photo/trainB/2016-12-07 01:26:19.jpg
inflating: monet2photo/trainB/2015-08-16 14:05:33.jpg
inflating: monet2photo/trainB/2014-05-07 13:04:30.jpg
inflating: monet2photo/trainB/2016-04-26 04:51:14.jpg
inflating: monet2photo/trainB/2016-04-08 06:32:55.jpg
inflating: monet2photo/trainB/2015-06-23 06:31:01.jpg
inflating: monet2photo/trainB/2016-01-07 13:24:07.jpg
inflating: monet2photo/trainB/2015-12-05 15:58:41.jpg
inflating: monet2photo/trainB/2015-06-24 19:51:44.jpg
inflating: monet2photo/trainB/2016-12-05 01:05:29.jpg
inflating: monet2photo/trainB/2016-12-31 14:19:21.jpg
inflating: monet2photo/trainB/2016-04-12 02:41:16.jpg
inflating: monet2photo/trainB/2016-08-21 13:13:33.jpg
inflating: monet2photo/trainB/2014-03-22 01:26:12.jpg
inflating: monet2photo/trainB/2016-01-21 13:23:31.jpg
inflating: monet2photo/trainB/2015-05-25 20:11:29.jpg
inflating: monet2photo/trainB/2016-01-13 15:26:34.jpg
inflating: monet2photo/trainB/2015-09-25 06:07:39.jpg
inflating: monet2photo/trainB/2015-09-30 13:55:16.jpg
inflating: monet2photo/trainB/2015-07-02 11:47:23.jpg
inflating: monet2photo/trainB/2016-02-02 07:48:20.jpg
inflating: monet2photo/trainB/2015-05-10 14:46:00.jpg
inflating: monet2photo/trainB/2014-06-01 21:56:45.jpg
inflating: monet2photo/trainB/2016-04-21 19:52:54.jpg
inflating: monet2photo/trainB/2016-11-19 10:20:06.jpg
inflating: monet2photo/trainB/2014-04-03 16:24:42.jpg
inflating: monet2photo/trainB/2014-04-12 16:28:44.jpg
inflating: monet2photo/trainB/2015-08-27 17:17:32.jpg
inflating: monet2photo/trainB/2015-06-29 13:47:13.jpg
inflating: monet2photo/trainB/2016-08-15 14:16:02.jpg
inflating: monet2photo/trainB/2015-12-11 05:08:30.jpg
inflating: monet2photo/trainB/2016-04-01 14:50:01.jpg
inflating: monet2photo/trainB/2015-01-17 21:11:23.jpg
inflating: monet2photo/trainB/2014-07-30 04:56:43.jpg
inflating: monet2photo/trainB/2016-08-09 02:36:39.jpg
inflating: monet2photo/trainB/2016-07-28 03:08:14.jpg
inflating: monet2photo/trainB/2015-02-14 02:21:28.jpg
inflating: monet2photo/trainB/2016-01-17 13:00:04.jpg
inflating: monet2photo/trainB/2015-06-22 08:40:42.jpg
inflating: monet2photo/trainB/2015-10-09 20:36:08.jpg
inflating: monet2photo/trainB/2015-08-25 10:22:04.jpg
inflating: monet2photo/trainB/2015-11-30 12:06:49.jpg
inflating: monet2photo/trainB/2015-01-15 22:01:14.jpg
inflating: monet2photo/trainB/2015-07-05 13:28:35.jpg
inflating: monet2photo/trainB/2014-11-20 06:55:54.jpg
inflating: monet2photo/trainB/2015-10-20 05:34:27.jpg
inflating: monet2photo/trainB/2016-01-07 09:24:49.jpg
inflating: monet2photo/trainB/2015-07-15 18:40:58.jpg
inflating: monet2photo/trainB/2016-02-24 05:55:57.jpg
inflating: monet2photo/trainB/2016-05-15 09:20:59.jpg
inflating: monet2photo/trainB/2015-02-04 08:17:19.jpg
inflating: monet2photo/trainB/2016-04-24 10:26:52.jpg
inflating: monet2photo/trainB/2015-09-22 01:02:22.jpg
inflating: monet2photo/trainB/2015-06-05 03:06:50.jpg
inflating: monet2photo/trainB/2016-12-18 11:45:26.jpg
inflating: monet2photo/trainB/2015-02-22 15:25:59.jpg
inflating: monet2photo/trainB/2016-03-20 17:55:47.jpg
inflating: monet2photo/trainB/2014-06-27 03:40:58.jpg
inflating: monet2photo/trainB/2015-10-18 19:38:10.jpg
inflating: monet2photo/trainB/2014-07-01 16:25:06.jpg
inflating: monet2photo/trainB/2015-08-28 19:36:07.jpg
inflating: monet2photo/trainB/2015-06-30 17:20:03.jpg
inflating: monet2photo/trainB/2016-04-03 11:10:53.jpg
inflating: monet2photo/trainB/2015-08-11 10:31:46.jpg
inflating: monet2photo/trainB/2015-11-23 01:37:16.jpg
inflating: monet2photo/trainB/2016-12-09 23:52:43.jpg
inflating: monet2photo/trainB/2016-01-18 08:42:52.jpg
inflating: monet2photo/trainB/2016-12-04 13:05:42.jpg
inflating: monet2photo/trainB/2015-10-08 13:28:21.jpg
inflating: monet2photo/trainB/2015-10-03 01:07:48.jpg
inflating: monet2photo/trainB/2015-06-14 08:56:45.jpg
inflating: monet2photo/trainB/2016-07-31 02:13:04.jpg
inflating: monet2photo/trainB/2016-12-30 07:55:00.jpg
inflating: monet2photo/trainB/2014-03-22 10:52:40.jpg
inflating: monet2photo/trainB/2015-07-30 19:11:29.jpg
inflating: monet2photo/trainB/2015-12-24 17:04:58.jpg
inflating: monet2photo/trainB/2016-08-10 05:04:37.jpg
inflating: monet2photo/trainB/2014-05-15 16:52:36.jpg
inflating: monet2photo/trainB/2015-06-05 10:00:11.jpg
inflating: monet2photo/trainB/2015-05-14 21:21:36.jpg
inflating: monet2photo/trainB/2015-12-29 10:07:22.jpg
inflating: monet2photo/trainB/2014-07-11 17:12:34.jpg
inflating: monet2photo/trainB/2016-12-15 15:05:57.jpg
inflating: monet2photo/trainB/2016-12-22 09:16:14.jpg
inflating: monet2photo/trainB/2015-08-22 09:25:28.jpg
inflating: monet2photo/trainB/2014-02-21 12:00:40.jpg
inflating: monet2photo/trainB/2016-02-04 07:25:09.jpg
inflating: monet2photo/trainB/2014-06-12 15:24:14.jpg
inflating: monet2photo/trainB/2015-08-09 02:00:38.jpg
inflating: monet2photo/trainB/2015-10-31 07:39:11.jpg
inflating: monet2photo/trainB/2015-05-18 18:52:43.jpg
inflating: monet2photo/trainB/2015-10-10 00:26:48.jpg
inflating: monet2photo/trainB/2015-03-14 00:39:48.jpg
inflating: monet2photo/trainB/2015-08-21 07:15:32.jpg
inflating: monet2photo/trainB/2016-04-17 16:18:16.jpg
inflating: monet2photo/trainB/2015-09-07 14:10:20.jpg
inflating: monet2photo/trainB/2016-06-21 04:14:44.jpg
inflating: monet2photo/trainB/2015-06-04 13:24:15.jpg
inflating: monet2photo/trainB/2016-11-22 04:29:39.jpg
inflating: monet2photo/trainB/2015-12-04 06:02:53.jpg
inflating: monet2photo/trainB/2016-02-07 10:28:25.jpg
inflating: monet2photo/trainB/2014-03-23 21:32:06.jpg
inflating: monet2photo/trainB/2016-11-28 05:40:32.jpg
inflating: monet2photo/trainB/2015-02-15 22:25:01.jpg
inflating: monet2photo/trainB/2016-08-22 14:44:09.jpg
inflating: monet2photo/trainB/2015-01-21 16:59:15.jpg
inflating: monet2photo/trainB/2014-07-27 05:29:55.jpg
inflating: monet2photo/trainB/2015-11-25 21:09:53.jpg
inflating: monet2photo/trainB/2016-07-03 01:06:10.jpg
inflating: monet2photo/trainB/2016-12-13 16:41:11.jpg
inflating: monet2photo/trainB/2016-03-15 12:47:40.jpg
inflating: monet2photo/trainB/2014-04-21 07:37:06.jpg
inflating: monet2photo/trainB/2016-06-07 04:26:02.jpg
inflating: monet2photo/trainB/2015-11-27 17:56:18.jpg
inflating: monet2photo/trainB/2016-01-27 06:35:08.jpg
inflating: monet2photo/trainB/2015-08-04 13:07:30.jpg
inflating: monet2photo/trainB/2015-07-04 07:45:54.jpg
inflating: monet2photo/trainB/2016-07-19 20:07:29.jpg
inflating: monet2photo/trainB/2015-05-07 08:26:47.jpg
inflating: monet2photo/trainB/2016-01-02 02:58:13.jpg
inflating: monet2photo/trainB/2016-04-28 01:13:28.jpg
inflating: monet2photo/trainB/2014-05-20 00:59:34.jpg
inflating: monet2photo/trainB/2016-07-25 04:32:50.jpg
inflating: monet2photo/trainB/2016-04-18 04:29:10.jpg
inflating: monet2photo/trainB/2013-11-18 06:23:04.jpg
inflating: monet2photo/trainB/2016-11-29 08:05:47.jpg
inflating: monet2photo/trainB/2015-12-12 06:47:23.jpg
inflating: monet2photo/trainB/2016-11-22 13:28:22.jpg
inflating: monet2photo/trainB/2014-03-15 05:32:03.jpg
inflating: monet2photo/trainB/2015-11-28 04:36:56.jpg
inflating: monet2photo/trainB/2015-06-04 09:21:27.jpg
inflating: monet2photo/trainB/2016-01-26 02:35:45.jpg
inflating: monet2photo/trainB/2015-12-01 03:04:07.jpg
inflating: monet2photo/trainB/2016-01-01 03:56:01.jpg
inflating: monet2photo/trainB/2015-10-09 10:14:43.jpg
inflating: monet2photo/trainB/2014-05-09 02:56:31.jpg
inflating: monet2photo/trainB/2015-07-17 01:21:50.jpg
inflating: monet2photo/trainB/2015-09-11 12:30:32.jpg
inflating: monet2photo/trainB/2016-03-10 11:21:07.jpg
inflating: monet2photo/trainB/2016-07-03 02:55:20.jpg
inflating: monet2photo/trainB/2015-08-07 12:01:40.jpg
inflating: monet2photo/trainB/2015-08-11 23:35:54.jpg
inflating: monet2photo/trainB/2015-12-06 14:23:29.jpg
inflating: monet2photo/trainB/2015-07-21 18:19:04.jpg
inflating: monet2photo/trainB/2014-04-12 05:09:16.jpg
inflating: monet2photo/trainB/2015-11-01 10:08:49.jpg
inflating: monet2photo/trainB/2015-06-25 03:52:54.jpg
inflating: monet2photo/trainB/2015-06-18 21:25:51.jpg
inflating: monet2photo/trainB/2016-08-26 13:39:27.jpg
inflating: monet2photo/trainB/2016-01-01 08:10:07.jpg
inflating: monet2photo/trainB/2016-01-02 13:40:59.jpg
inflating: monet2photo/trainB/2016-03-26 15:52:02.jpg
inflating: monet2photo/trainB/2014-07-29 05:18:41.jpg
inflating: monet2photo/trainB/2015-12-20 03:08:09.jpg
inflating: monet2photo/trainB/2016-01-30 07:07:30.jpg
inflating: monet2photo/trainB/2015-02-25 01:38:17.jpg
inflating: monet2photo/trainB/2015-07-16 21:17:03.jpg
inflating: monet2photo/trainB/2015-08-28 13:47:31.jpg
inflating: monet2photo/trainB/2015-03-01 04:38:50.jpg
inflating: monet2photo/trainB/2014-02-23 02:40:47.jpg
inflating: monet2photo/trainB/2015-11-23 10:14:15.jpg
inflating: monet2photo/trainB/2016-07-25 21:35:24.jpg
inflating: monet2photo/trainB/2015-09-28 22:14:33.jpg
inflating: monet2photo/trainB/2015-09-16 20:09:39.jpg
inflating: monet2photo/trainB/2016-02-17 12:21:05.jpg
inflating: monet2photo/trainB/2016-02-22 22:29:14.jpg
inflating: monet2photo/trainB/2015-08-02 22:56:47.jpg
inflating: monet2photo/trainB/2015-12-24 11:40:05.jpg
inflating: monet2photo/trainB/2015-11-22 03:51:01.jpg
inflating: monet2photo/trainB/2016-03-20 20:29:08.jpg
inflating: monet2photo/trainB/2016-03-20 03:03:59.jpg
inflating: monet2photo/trainB/2013-12-30 03:25:24.jpg
inflating: monet2photo/trainB/2016-08-19 15:11:56.jpg
inflating: monet2photo/trainB/2015-09-21 02:56:04.jpg
inflating: monet2photo/trainB/2015-01-05 15:15:36.jpg
inflating: monet2photo/trainB/2015-03-08 10:54:57.jpg
inflating: monet2photo/trainB/2015-02-07 01:31:18.jpg
inflating: monet2photo/trainB/2015-12-31 20:53:05.jpg
inflating: monet2photo/trainB/2015-02-10 06:26:52.jpg
inflating: monet2photo/trainB/2016-02-07 02:21:08.jpg
inflating: monet2photo/trainB/2016-06-01 03:13:15.jpg
inflating: monet2photo/trainB/2015-05-29 17:59:48.jpg
inflating: monet2photo/trainB/2013-12-24 04:08:27.jpg
inflating: monet2photo/trainB/2014-05-21 07:07:56.jpg
inflating: monet2photo/trainB/2015-08-07 11:55:02.jpg
inflating: monet2photo/trainB/2013-11-17 23:58:45.jpg
inflating: monet2photo/trainB/2016-12-29 10:39:12.jpg
inflating: monet2photo/trainB/2016-06-02 17:02:39.jpg
inflating: monet2photo/trainB/2014-06-02 23:37:43.jpg
inflating: monet2photo/trainB/2015-12-22 07:16:07.jpg
inflating: monet2photo/trainB/2015-08-17 13:02:11.jpg
inflating: monet2photo/trainB/2015-03-01 11:39:32.jpg
inflating: monet2photo/trainB/2017-01-03 09:45:13.jpg
inflating: monet2photo/trainB/2015-01-06 18:38:53.jpg
inflating: monet2photo/trainB/2014-05-12 15:47:32.jpg
inflating: monet2photo/trainB/2016-06-23 06:57:31.jpg
inflating: monet2photo/trainB/2016-03-05 17:11:06.jpg
inflating: monet2photo/trainB/2016-11-29 12:38:10.jpg
inflating: monet2photo/trainB/2015-01-08 03:48:27.jpg
inflating: monet2photo/trainB/2015-02-22 18:24:19.jpg
inflating: monet2photo/trainB/2015-10-19 07:34:59.jpg
inflating: monet2photo/trainB/2014-02-03 07:55:48.jpg
inflating: monet2photo/trainB/2016-01-25 13:00:37.jpg
inflating: monet2photo/trainB/2016-07-16 21:30:19.jpg
inflating: monet2photo/trainB/2015-06-28 00:41:10.jpg
inflating: monet2photo/trainB/2015-06-17 04:45:18.jpg
inflating: monet2photo/trainB/2016-01-10 00:27:12.jpg
inflating: monet2photo/trainB/2015-10-05 04:34:37.jpg
inflating: monet2photo/trainB/2016-04-14 07:10:23.jpg
inflating: monet2photo/trainB/2016-02-26 06:50:04.jpg
inflating: monet2photo/trainB/2016-05-01 17:05:51.jpg
inflating: monet2photo/trainB/2015-05-14 16:32:59.jpg
inflating: monet2photo/trainB/2015-01-01 10:30:19.jpg
inflating: monet2photo/trainB/2015-05-04 10:11:49.jpg
inflating: monet2photo/trainB/2016-04-17 13:21:37.jpg
inflating: monet2photo/trainB/2015-05-15 09:20:00.jpg
inflating: monet2photo/trainB/2015-09-24 02:12:48.jpg
inflating: monet2photo/trainB/2015-01-17 08:28:05.jpg
inflating: monet2photo/trainB/2015-10-12 23:43:58.jpg
inflating: monet2photo/trainB/2015-07-21 03:20:11.jpg
inflating: monet2photo/trainB/2015-05-19 01:11:55.jpg
inflating: monet2photo/trainB/2016-12-10 09:06:22.jpg
inflating: monet2photo/trainB/2014-03-16 05:44:30.jpg
inflating: monet2photo/trainB/2016-01-23 13:02:36.jpg
inflating: monet2photo/trainB/2016-08-18 14:34:13.jpg
inflating: monet2photo/trainB/2015-03-25 20:45:14.jpg
inflating: monet2photo/trainB/2016-03-12 09:23:24.jpg
inflating: monet2photo/trainB/2016-03-22 06:24:58.jpg
inflating: monet2photo/trainB/2015-01-07 06:01:16.jpg
inflating: monet2photo/trainB/2014-07-09 11:33:08.jpg
inflating: monet2photo/trainB/2015-11-20 10:25:53.jpg
inflating: monet2photo/trainB/2015-10-05 09:38:07.jpg
inflating: monet2photo/trainB/2014-04-21 15:42:14.jpg
inflating: monet2photo/trainB/2016-03-27 17:03:34.jpg
inflating: monet2photo/trainB/2015-05-04 11:04:41.jpg
inflating: monet2photo/trainB/2015-06-27 20:58:07.jpg
inflating: monet2photo/trainB/2015-07-22 19:58:52.jpg
inflating: monet2photo/trainB/2015-05-17 10:32:32.jpg
inflating: monet2photo/trainB/2015-10-01 07:08:13.jpg
inflating: monet2photo/trainB/2016-04-12 23:08:43.jpg
inflating: monet2photo/trainB/2015-02-10 12:26:40.jpg
inflating: monet2photo/trainB/2016-01-17 14:42:24.jpg
inflating: monet2photo/trainB/2014-06-11 18:40:52.jpg
inflating: monet2photo/trainB/2015-01-10 15:19:32.jpg
inflating: monet2photo/trainB/2015-03-08 14:37:55.jpg
inflating: monet2photo/trainB/2014-05-06 13:18:17.jpg
inflating: monet2photo/trainB/2016-07-03 06:45:18.jpg
inflating: monet2photo/trainB/2015-03-03 08:09:38.jpg
inflating: monet2photo/trainB/2015-07-05 08:12:52.jpg
inflating: monet2photo/trainB/2016-05-31 05:57:01.jpg
inflating: monet2photo/trainB/2015-03-07 23:19:50.jpg
inflating: monet2photo/trainB/2015-07-31 19:26:24.jpg
inflating: monet2photo/trainB/2015-05-20 02:19:12.jpg
inflating: monet2photo/trainB/2016-12-04 08:50:57.jpg
inflating: monet2photo/trainB/2015-10-09 12:23:41.jpg
inflating: monet2photo/trainB/2016-08-26 09:24:00.jpg
inflating: monet2photo/trainB/2015-12-13 07:17:41.jpg
inflating: monet2photo/trainB/2016-06-30 06:33:58.jpg
inflating: monet2photo/trainB/2015-06-12 04:38:04.jpg
inflating: monet2photo/trainB/2015-12-31 13:05:50.jpg
inflating: monet2photo/trainB/2014-11-26 09:31:31.jpg
inflating: monet2photo/trainB/2015-08-04 19:48:18.jpg
inflating: monet2photo/trainB/2016-06-30 14:20:47.jpg
inflating: monet2photo/trainB/2015-06-13 11:01:24.jpg
inflating: monet2photo/trainB/2016-01-06 15:32:17.jpg
inflating: monet2photo/trainB/2016-06-08 23:46:16.jpg
inflating: monet2photo/trainB/2015-10-06 18:17:19.jpg
inflating: monet2photo/trainB/2016-05-06 21:47:00.jpg
inflating: monet2photo/trainB/2016-08-07 07:37:42.jpg
inflating: monet2photo/trainB/2016-07-29 23:45:58.jpg
inflating: monet2photo/trainB/2015-11-16 03:32:10.jpg
inflating: monet2photo/trainB/2015-11-07 08:44:05.jpg
inflating: monet2photo/trainB/2016-12-31 20:04:11.jpg
inflating: monet2photo/trainB/2016-11-22 09:22:52.jpg
inflating: monet2photo/trainB/2015-08-16 17:56:11.jpg
inflating: monet2photo/trainB/2015-10-13 20:49:55.jpg
inflating: monet2photo/trainB/2015-05-20 07:08:27.jpg
inflating: monet2photo/trainB/2016-06-11 03:18:44.jpg
inflating: monet2photo/trainB/2015-12-12 00:46:38.jpg
inflating: monet2photo/trainB/2015-07-16 18:09:24.jpg
inflating: monet2photo/trainB/2015-05-27 11:02:36.jpg
inflating: monet2photo/trainB/2015-09-23 14:06:59.jpg
inflating: monet2photo/trainB/2015-11-29 10:16:20.jpg
inflating: monet2photo/trainB/2016-12-24 13:41:46.jpg
inflating: monet2photo/trainB/2015-01-22 09:35:18.jpg
inflating: monet2photo/trainB/2015-11-21 08:57:40.jpg
inflating: monet2photo/trainB/2016-03-22 18:36:41.jpg
inflating: monet2photo/trainB/2015-08-01 10:55:05.jpg
inflating: monet2photo/trainB/2016-12-10 23:22:06.jpg
inflating: monet2photo/trainB/2016-07-21 08:00:06.jpg
inflating: monet2photo/trainB/2015-12-31 16:55:14.jpg
inflating: monet2photo/trainB/2015-10-10 20:11:11.jpg
inflating: monet2photo/trainB/2015-08-02 12:09:21.jpg
inflating: monet2photo/trainB/2015-07-24 21:09:50.jpg
inflating: monet2photo/trainB/2015-03-18 10:37:06.jpg
inflating: monet2photo/trainB/2015-07-25 12:22:57.jpg
inflating: monet2photo/trainB/2014-07-14 00:10:39.jpg
inflating: monet2photo/trainB/2014-11-29 06:22:35.jpg
inflating: monet2photo/trainB/2016-07-23 04:15:32.jpg
inflating: monet2photo/trainB/2016-06-24 04:08:19.jpg
inflating: monet2photo/trainB/2014-07-01 19:04:46.jpg
inflating: monet2photo/trainB/2015-06-05 08:52:54.jpg
inflating: monet2photo/trainB/2015-10-25 02:59:34.jpg
inflating: monet2photo/trainB/2015-05-04 08:30:47.jpg
inflating: monet2photo/trainB/2015-07-21 20:13:18.jpg
inflating: monet2photo/trainB/2015-06-11 20:58:08.jpg
inflating: monet2photo/trainB/2015-12-20 01:52:35.jpg
inflating: monet2photo/trainB/2016-11-19 08:36:08.jpg
inflating: monet2photo/trainB/2016-12-11 07:41:00.jpg
inflating: monet2photo/trainB/2015-06-07 02:08:42.jpg
inflating: monet2photo/trainB/2016-08-30 11:15:34.jpg
inflating: monet2photo/trainB/2016-05-22 14:26:01.jpg
inflating: monet2photo/trainB/2016-02-13 13:05:02.jpg
inflating: monet2photo/trainB/2016-08-03 11:54:06.jpg
inflating: monet2photo/trainB/2015-12-11 14:21:21.jpg
inflating: monet2photo/trainB/2016-04-18 08:27:03.jpg
inflating: monet2photo/trainB/2015-08-02 09:15:54.jpg
inflating: monet2photo/trainB/2016-03-19 18:22:07.jpg
inflating: monet2photo/trainB/2016-05-31 11:35:13.jpg
inflating: monet2photo/trainB/2015-08-31 12:54:35.jpg
inflating: monet2photo/trainB/2016-01-01 05:21:38.jpg
inflating: monet2photo/trainB/2015-12-14 18:53:34.jpg
inflating: monet2photo/trainB/2016-12-04 10:58:15.jpg
inflating: monet2photo/trainB/2016-03-02 03:57:06.jpg
inflating: monet2photo/trainB/2015-07-23 07:41:58.jpg
inflating: monet2photo/trainB/2015-09-24 09:36:35.jpg
inflating: monet2photo/trainB/2015-01-15 20:56:36.jpg
inflating: monet2photo/trainB/2016-06-29 11:07:24.jpg
inflating: monet2photo/trainB/2016-07-24 02:20:11.jpg
inflating: monet2photo/trainB/2015-11-10 12:48:46.jpg
inflating: monet2photo/trainB/2016-11-27 13:30:56.jpg
inflating: monet2photo/trainB/2015-12-02 09:43:09.jpg
inflating: monet2photo/trainB/2016-05-04 17:32:28.jpg
inflating: monet2photo/trainB/2016-04-01 00:15:21.jpg
inflating: monet2photo/trainB/2016-11-17 06:44:40.jpg
inflating: monet2photo/trainB/2015-12-15 13:22:23.jpg
inflating: monet2photo/trainB/2016-03-15 06:22:15.jpg
inflating: monet2photo/trainB/2015-01-04 05:04:07.jpg
inflating: monet2photo/trainB/2015-07-08 12:04:24.jpg
inflating: monet2photo/trainB/2016-08-04 15:58:56.jpg
inflating: monet2photo/trainB/2015-03-26 02:51:54.jpg
inflating: monet2photo/trainB/2015-05-24 23:53:27.jpg
inflating: monet2photo/trainB/2014-04-17 04:29:28.jpg
inflating: monet2photo/trainB/2015-10-16 17:23:20.jpg
inflating: monet2photo/trainB/2015-07-03 11:38:55.jpg
inflating: monet2photo/trainB/2016-07-24 05:28:04.jpg
inflating: monet2photo/trainB/2016-07-04 02:51:18.jpg
inflating: monet2photo/trainB/2014-02-17 20:16:37.jpg
inflating: monet2photo/trainB/2015-02-13 09:22:26.jpg
inflating: monet2photo/trainB/2016-02-22 07:11:44.jpg
inflating: monet2photo/trainB/2016-08-25 10:31:33.jpg
inflating: monet2photo/trainB/2016-12-09 14:27:09.jpg
inflating: monet2photo/trainB/2016-01-04 00:00:06.jpg
inflating: monet2photo/trainB/2016-04-25 05:50:58.jpg
inflating: monet2photo/trainB/2016-04-04 12:54:16.jpg
inflating: monet2photo/trainB/2015-10-16 00:51:22.jpg
inflating: monet2photo/trainB/2015-06-21 01:32:31.jpg
inflating: monet2photo/trainB/2014-06-07 06:07:22.jpg
inflating: monet2photo/trainB/2015-12-29 07:03:33.jpg
inflating: monet2photo/trainB/2015-08-23 08:59:03.jpg
inflating: monet2photo/trainB/2016-08-12 07:00:36.jpg
inflating: monet2photo/trainB/2016-02-29 10:12:21.jpg
inflating: monet2photo/trainB/2015-06-01 07:45:49.jpg
inflating: monet2photo/trainB/2015-05-31 17:15:34.jpg
inflating: monet2photo/trainB/2016-11-28 11:13:47.jpg
inflating: monet2photo/trainB/2016-11-15 10:45:45.jpg
inflating: monet2photo/trainB/2016-02-22 09:31:20.jpg
inflating: monet2photo/trainB/2017-01-03 06:56:45.jpg
inflating: monet2photo/trainB/2016-12-29 14:45:06.jpg
inflating: monet2photo/trainB/2015-09-01 16:37:51.jpg
inflating: monet2photo/trainB/2015-12-07 15:00:30.jpg
inflating: monet2photo/trainB/2015-12-14 14:53:08.jpg
inflating: monet2photo/trainB/2013-12-01 01:54:08.jpg
inflating: monet2photo/trainB/2015-02-08 16:23:35.jpg
inflating: monet2photo/trainB/2014-05-04 20:16:19.jpg
inflating: monet2photo/trainB/2016-06-29 11:25:43.jpg
inflating: monet2photo/trainB/2015-11-21 02:33:38.jpg
inflating: monet2photo/trainB/2016-01-06 12:33:57.jpg
inflating: monet2photo/trainB/2015-05-25 21:44:59.jpg
inflating: monet2photo/trainB/2015-08-27 14:39:38.jpg
inflating: monet2photo/trainB/2014-04-10 09:34:14.jpg
inflating: monet2photo/trainB/2015-01-02 08:09:02.jpg
inflating: monet2photo/trainB/2014-04-11 01:21:00.jpg
inflating: monet2photo/trainB/2015-09-28 07:54:32.jpg
inflating: monet2photo/trainB/2014-11-04 07:56:11.jpg
inflating: monet2photo/trainB/2015-05-14 12:18:55.jpg
inflating: monet2photo/trainB/2016-08-19 13:47:18.jpg
inflating: monet2photo/trainB/2016-07-27 08:52:16.jpg
inflating: monet2photo/trainB/2014-05-15 12:56:42.jpg
inflating: monet2photo/trainB/2016-05-19 05:43:54.jpg
inflating: monet2photo/trainB/2016-04-05 17:23:23.jpg
inflating: monet2photo/trainB/2016-03-03 02:19:17.jpg
inflating: monet2photo/trainB/2015-09-02 05:11:03.jpg
inflating: monet2photo/trainB/2016-07-17 12:42:39.jpg
inflating: monet2photo/trainB/2015-02-16 06:59:29.jpg
inflating: monet2photo/trainB/2015-10-25 03:49:34.jpg
inflating: monet2photo/trainB/2016-12-29 10:05:50.jpg
inflating: monet2photo/trainB/2014-07-03 06:16:22.jpg
inflating: monet2photo/trainB/2016-05-10 15:10:35.jpg
inflating: monet2photo/trainB/2014-05-23 20:22:04.jpg
inflating: monet2photo/trainB/2015-11-16 14:38:30.jpg
inflating: monet2photo/trainB/2016-05-09 09:36:54.jpg
inflating: monet2photo/trainB/2016-04-12 13:54:49.jpg
inflating: monet2photo/trainB/2015-12-28 18:23:18.jpg
inflating: monet2photo/trainB/2014-06-29 18:44:35.jpg
inflating: monet2photo/trainB/2016-01-08 00:26:35.jpg
inflating: monet2photo/trainB/2015-03-21 00:18:46.jpg
inflating: monet2photo/trainB/2016-02-26 09:06:38.jpg
inflating: monet2photo/trainB/2016-06-08 17:22:00.jpg
inflating: monet2photo/trainB/2016-11-27 19:35:40.jpg
inflating: monet2photo/trainB/2016-05-04 11:27:12.jpg
inflating: monet2photo/trainB/2015-02-02 14:48:39.jpg
inflating: monet2photo/trainB/2014-06-20 08:19:59.jpg
inflating: monet2photo/trainB/2016-05-06 19:02:38.jpg
inflating: monet2photo/trainB/2016-05-21 23:12:50.jpg
inflating: monet2photo/trainB/2015-06-13 21:46:43.jpg
inflating: monet2photo/trainB/2013-12-03 21:35:50.jpg
inflating: monet2photo/trainB/2016-01-23 07:50:21.jpg
inflating: monet2photo/trainB/2016-04-19 20:39:47.jpg
inflating: monet2photo/trainB/2016-03-12 07:56:28.jpg
inflating: monet2photo/trainB/2016-07-10 13:10:22.jpg
inflating: monet2photo/trainB/2015-11-25 10:38:35.jpg
inflating: monet2photo/trainB/2014-04-20 05:45:12.jpg
inflating: monet2photo/trainB/2014-06-24 19:56:15.jpg
inflating: monet2photo/trainB/2016-05-05 12:18:25.jpg
inflating: monet2photo/trainB/2014-11-30 08:07:21.jpg
inflating: monet2photo/trainB/2016-04-11 11:07:04.jpg
inflating: monet2photo/trainB/2014-04-08 09:04:17.jpg
inflating: monet2photo/trainB/2016-05-19 08:28:49.jpg
inflating: monet2photo/trainB/2013-11-27 10:00:15.jpg
inflating: monet2photo/trainB/2016-08-12 17:05:44.jpg
inflating: monet2photo/trainB/2015-03-29 16:33:05.jpg
inflating: monet2photo/trainB/2015-07-29 09:22:31.jpg
inflating: monet2photo/trainB/2015-06-28 17:03:14.jpg
inflating: monet2photo/trainB/2016-03-06 10:10:32.jpg
inflating: monet2photo/trainB/2015-07-06 21:37:16.jpg
inflating: monet2photo/trainB/2015-02-24 19:56:03.jpg
inflating: monet2photo/trainB/2015-07-15 22:13:21.jpg
inflating: monet2photo/trainB/2016-01-01 14:41:10.jpg
inflating: monet2photo/trainB/2016-12-21 19:41:18.jpg
inflating: monet2photo/trainB/2016-11-26 03:40:02.jpg
inflating: monet2photo/trainB/2014-07-13 23:25:59.jpg
inflating: monet2photo/trainB/2016-12-28 18:58:57.jpg
inflating: monet2photo/trainB/2015-02-17 23:55:06.jpg
inflating: monet2photo/trainB/2015-01-17 16:38:46.jpg
inflating: monet2photo/trainB/2015-08-30 22:17:50.jpg
inflating: monet2photo/trainB/2014-04-07 08:47:35.jpg
inflating: monet2photo/trainB/2016-05-24 01:54:24.jpg
inflating: monet2photo/trainB/2016-08-01 21:23:51.jpg
inflating: monet2photo/trainB/2016-12-06 23:40:04.jpg
inflating: monet2photo/trainB/2015-06-15 11:08:39.jpg
inflating: monet2photo/trainB/2015-07-17 08:06:27.jpg
inflating: monet2photo/trainB/2015-10-11 06:45:15.jpg
inflating: monet2photo/trainB/2016-08-02 19:32:23.jpg
inflating: monet2photo/trainB/2014-04-12 00:50:36.jpg
inflating: monet2photo/trainB/2015-03-16 13:10:15.jpg
inflating: monet2photo/trainB/2015-08-06 05:37:10.jpg
inflating: monet2photo/trainB/2015-07-02 17:03:52.jpg
inflating: monet2photo/trainB/2015-01-29 03:21:47.jpg
inflating: monet2photo/trainB/2015-11-22 18:19:23.jpg
inflating: monet2photo/trainB/2016-07-06 22:28:50.jpg
inflating: monet2photo/trainB/2016-02-07 07:41:44.jpg
inflating: monet2photo/trainB/2015-02-14 02:26:30.jpg
inflating: monet2photo/trainB/2015-03-13 09:33:31.jpg
inflating: monet2photo/trainB/2015-07-11 13:04:48.jpg
inflating: monet2photo/trainB/2016-12-20 09:21:26.jpg
inflating: monet2photo/trainB/2015-12-27 11:48:41.jpg
inflating: monet2photo/trainB/2015-08-22 17:23:59.jpg
inflating: monet2photo/trainB/2015-11-26 09:01:00.jpg
inflating: monet2photo/trainB/2015-10-03 02:16:13.jpg
inflating: monet2photo/trainB/2015-06-29 12:51:01.jpg
inflating: monet2photo/trainB/2015-08-24 10:41:05.jpg
inflating: monet2photo/trainB/2015-08-10 13:02:35.jpg
inflating: monet2photo/trainB/2014-02-09 18:57:19.jpg
inflating: monet2photo/trainB/2016-08-17 15:28:28.jpg
inflating: monet2photo/trainB/2015-11-26 11:44:52.jpg
inflating: monet2photo/trainB/2016-03-06 13:30:24.jpg
inflating: monet2photo/trainB/2016-08-29 21:26:15.jpg
inflating: monet2photo/trainB/2015-09-07 16:33:58.jpg
inflating: monet2photo/trainB/2015-02-04 04:03:08.jpg
inflating: monet2photo/trainB/2015-10-03 14:17:04.jpg
inflating: monet2photo/trainB/2016-01-18 01:37:37.jpg
inflating: monet2photo/trainB/2015-02-11 03:15:26.jpg
inflating: monet2photo/trainB/2015-09-23 10:31:51.jpg
inflating: monet2photo/trainB/2016-03-24 23:25:13.jpg
inflating: monet2photo/trainB/2016-11-23 13:52:47.jpg
inflating: monet2photo/trainB/2015-10-01 18:38:37.jpg
inflating: monet2photo/trainB/2015-02-14 00:09:27.jpg
inflating: monet2photo/trainB/2015-09-03 03:06:16.jpg
inflating: monet2photo/trainB/2014-03-08 11:53:35.jpg
inflating: monet2photo/trainB/2016-08-31 20:59:54.jpg
inflating: monet2photo/trainB/2016-12-03 14:21:43.jpg
inflating: monet2photo/trainB/2015-07-01 03:26:51.jpg
inflating: monet2photo/trainB/2016-05-18 14:44:53.jpg
inflating: monet2photo/trainB/2016-01-22 05:59:40.jpg
inflating: monet2photo/trainB/2016-03-31 11:30:25.jpg
inflating: monet2photo/trainB/2015-08-31 15:02:34.jpg
inflating: monet2photo/trainB/2015-08-25 21:25:53.jpg
inflating: monet2photo/trainB/2015-02-15 13:19:34.jpg
inflating: monet2photo/trainB/2015-07-13 19:49:11.jpg
inflating: monet2photo/trainB/2014-05-18 19:35:01.jpg
inflating: monet2photo/trainB/2016-06-01 12:58:01.jpg
inflating: monet2photo/trainB/2015-01-07 13:51:57.jpg
inflating: monet2photo/trainB/2014-06-10 21:44:50.jpg
inflating: monet2photo/trainB/2015-05-19 22:55:17.jpg
inflating: monet2photo/trainB/2016-07-14 08:00:10.jpg
inflating: monet2photo/trainB/2014-04-20 09:59:06.jpg
inflating: monet2photo/trainB/2016-12-04 21:08:08.jpg
inflating: monet2photo/trainB/2015-06-08 04:44:08.jpg
inflating: monet2photo/trainB/2016-05-14 09:48:05.jpg
inflating: monet2photo/trainB/2015-06-13 02:22:33.jpg
inflating: monet2photo/trainB/2016-05-12 06:44:43.jpg
inflating: monet2photo/trainB/2016-08-30 15:58:49.jpg
inflating: monet2photo/trainB/2015-11-24 20:11:50.jpg
inflating: monet2photo/trainB/2016-07-30 08:05:20.jpg
inflating: monet2photo/trainB/2013-12-29 00:27:55.jpg
inflating: monet2photo/trainB/2016-03-10 03:22:40.jpg
inflating: monet2photo/trainB/2014-02-02 06:24:48.jpg
inflating: monet2photo/trainB/2015-09-26 00:53:02.jpg
inflating: monet2photo/trainB/2015-12-21 22:45:16.jpg
inflating: monet2photo/trainB/2016-11-20 10:23:01.jpg
inflating: monet2photo/trainB/2015-06-21 03:00:07.jpg
inflating: monet2photo/trainB/2016-08-11 12:23:57.jpg
inflating: monet2photo/trainB/2013-11-12 01:54:20.jpg
inflating: monet2photo/trainB/2016-06-27 21:13:42.jpg
inflating: monet2photo/trainB/2016-02-10 13:11:22.jpg
inflating: monet2photo/trainB/2016-12-19 06:42:00.jpg
inflating: monet2photo/trainB/2016-03-12 04:55:39.jpg
inflating: monet2photo/trainB/2015-09-24 07:47:35.jpg
inflating: monet2photo/trainB/2015-08-18 14:45:49.jpg
inflating: monet2photo/trainB/2016-08-04 11:51:45.jpg
inflating: monet2photo/trainB/2016-12-04 14:34:03.jpg
inflating: monet2photo/trainB/2015-08-05 12:19:27.jpg
inflating: monet2photo/trainB/2015-11-04 14:18:04.jpg
inflating: monet2photo/trainB/2016-08-24 01:21:21.jpg
inflating: monet2photo/trainB/2015-01-12 03:47:25.jpg
inflating: monet2photo/trainB/2015-06-09 10:30:41.jpg
inflating: monet2photo/trainB/2016-05-19 05:37:33.jpg
inflating: monet2photo/trainB/2016-07-31 17:43:14.jpg
inflating: monet2photo/trainB/2016-11-26 09:28:48.jpg
inflating: monet2photo/trainB/2016-05-08 08:50:34.jpg
inflating: monet2photo/trainB/2015-10-17 08:54:51.jpg
inflating: monet2photo/trainB/2015-08-23 20:49:45.jpg
inflating: monet2photo/trainB/2016-12-27 14:23:15.jpg
inflating: monet2photo/trainB/2016-04-19 19:39:59.jpg
inflating: monet2photo/trainB/2015-12-12 04:12:30.jpg
inflating: monet2photo/trainB/2015-01-07 09:29:00.jpg
inflating: monet2photo/trainB/2016-07-17 11:56:02.jpg
inflating: monet2photo/trainB/2016-02-10 12:45:26.jpg
inflating: monet2photo/trainB/2016-04-19 16:24:14.jpg
inflating: monet2photo/trainB/2015-10-20 16:53:24.jpg
inflating: monet2photo/trainB/2016-08-02 18:30:49.jpg
inflating: monet2photo/trainB/2015-01-21 01:43:26.jpg
inflating: monet2photo/trainB/2015-08-27 16:38:21.jpg
inflating: monet2photo/trainB/2014-07-20 02:34:28.jpg
inflating: monet2photo/trainB/2015-09-26 00:42:39.jpg
inflating: monet2photo/trainB/2015-11-06 09:24:04.jpg
inflating: monet2photo/trainB/2016-07-08 23:52:29.jpg
inflating: monet2photo/trainB/2015-02-09 22:45:56.jpg
inflating: monet2photo/trainB/2014-06-28 09:40:25.jpg
inflating: monet2photo/trainB/2014-07-14 10:01:24.jpg
inflating: monet2photo/trainB/2014-07-14 21:10:15.jpg
inflating: monet2photo/trainB/2016-04-04 00:06:21.jpg
inflating: monet2photo/trainB/2015-06-13 05:46:16.jpg
inflating: monet2photo/trainB/2013-12-28 03:03:11.jpg
inflating: monet2photo/trainB/2015-05-18 01:52:22.jpg
inflating: monet2photo/trainB/2015-03-16 19:18:30.jpg
inflating: monet2photo/trainB/2015-09-27 18:02:26.jpg
inflating: monet2photo/trainB/2016-08-30 07:07:32.jpg
inflating: monet2photo/trainB/2015-10-03 16:55:33.jpg
inflating: monet2photo/trainB/2015-09-21 19:11:05.jpg
inflating: monet2photo/trainB/2016-11-23 00:00:08.jpg
inflating: monet2photo/trainB/2014-11-17 03:55:35.jpg
inflating: monet2photo/trainB/2015-06-09 13:31:20.jpg
inflating: monet2photo/trainB/2014-05-31 23:24:49.jpg
inflating: monet2photo/trainB/2015-05-07 00:44:21.jpg
inflating: monet2photo/trainB/2016-04-25 14:38:02.jpg
inflating: monet2photo/trainB/2016-12-27 09:24:35.jpg
inflating: monet2photo/trainB/2016-05-06 22:59:35.jpg
inflating: monet2photo/trainB/2016-06-18 02:15:33.jpg
inflating: monet2photo/trainB/2014-11-18 18:49:38.jpg
inflating: monet2photo/trainB/2015-09-10 10:34:23.jpg
inflating: monet2photo/trainB/2015-12-13 00:12:45.jpg
inflating: monet2photo/trainB/2014-03-18 14:18:45.jpg
inflating: monet2photo/trainB/2014-07-25 07:32:08.jpg
inflating: monet2photo/trainB/2015-12-29 13:06:59.jpg
inflating: monet2photo/trainB/2016-02-25 23:59:36.jpg
inflating: monet2photo/trainB/2016-03-29 03:57:49.jpg
inflating: monet2photo/trainB/2015-08-23 08:59:06.jpg
inflating: monet2photo/trainB/2015-03-20 11:16:20.jpg
inflating: monet2photo/trainB/2016-08-12 04:33:36.jpg
inflating: monet2photo/trainB/2014-07-16 23:25:34.jpg
inflating: monet2photo/trainB/2013-12-16 06:38:39.jpg
inflating: monet2photo/trainB/2015-11-25 19:04:19.jpg
inflating: monet2photo/trainB/2016-07-23 06:56:14.jpg
inflating: monet2photo/trainB/2016-06-22 09:46:51.jpg
inflating: monet2photo/trainB/2016-05-12 18:41:54.jpg
inflating: monet2photo/trainB/2015-09-28 16:01:02.jpg
inflating: monet2photo/trainB/2016-03-29 09:41:59.jpg
inflating: monet2photo/trainB/2016-05-29 09:32:07.jpg
inflating: monet2photo/trainB/2015-08-15 12:28:44.jpg
inflating: monet2photo/trainB/2016-01-02 15:56:26.jpg
inflating: monet2photo/trainB/2015-03-23 03:07:54.jpg
inflating: monet2photo/trainB/2016-02-26 11:08:21.jpg
inflating: monet2photo/trainB/2015-11-25 09:05:33.jpg
inflating: monet2photo/trainB/2015-05-22 09:40:03.jpg
inflating: monet2photo/trainB/2015-07-28 19:37:13.jpg
inflating: monet2photo/trainB/2016-04-21 06:07:20.jpg
inflating: monet2photo/trainB/2015-03-17 22:17:18.jpg
inflating: monet2photo/trainB/2016-06-07 13:02:42.jpg
inflating: monet2photo/trainB/2016-12-19 21:06:49.jpg
inflating: monet2photo/trainB/2016-02-16 17:59:49.jpg
inflating: monet2photo/trainB/2015-10-15 14:47:00.jpg
inflating: monet2photo/trainB/2015-07-09 09:52:26.jpg
inflating: monet2photo/trainB/2016-06-21 08:35:45.jpg
inflating: monet2photo/trainB/2015-09-02 11:00:18.jpg
inflating: monet2photo/trainB/2015-12-01 23:10:09.jpg
inflating: monet2photo/trainB/2015-10-03 07:29:22.jpg
inflating: monet2photo/trainB/2014-11-25 15:02:06.jpg
inflating: monet2photo/trainB/2016-08-06 09:07:07.jpg
inflating: monet2photo/trainB/2015-05-15 06:33:41.jpg
inflating: monet2photo/trainB/2016-05-08 11:38:50.jpg
inflating: monet2photo/trainB/2016-02-05 10:32:06.jpg
inflating: monet2photo/trainB/2016-05-23 09:55:52.jpg
inflating: monet2photo/trainB/2014-04-06 01:27:59.jpg
inflating: monet2photo/trainB/2015-03-27 17:28:31.jpg
inflating: monet2photo/trainB/2014-07-30 22:35:03.jpg
inflating: monet2photo/trainB/2016-12-30 05:15:02.jpg
inflating: monet2photo/trainB/2014-11-18 08:54:50.jpg
inflating: monet2photo/trainB/2016-12-11 01:07:05.jpg
inflating: monet2photo/trainB/2015-10-25 11:50:08.jpg
inflating: monet2photo/trainB/2016-08-07 05:28:56.jpg
inflating: monet2photo/trainB/2015-05-06 17:03:02.jpg
inflating: monet2photo/trainB/2014-11-07 05:54:45.jpg
inflating: monet2photo/trainB/2015-06-11 14:21:25.jpg
inflating: monet2photo/trainB/2014-03-02 15:46:32.jpg
inflating: monet2photo/trainB/2016-07-04 04:12:33.jpg
inflating: monet2photo/trainB/2015-01-01 15:56:12.jpg
inflating: monet2photo/trainB/2015-05-17 09:18:31.jpg
inflating: monet2photo/trainB/2016-08-17 08:14:05.jpg
inflating: monet2photo/trainB/2015-03-27 20:34:30.jpg
inflating: monet2photo/trainB/2016-07-04 06:25:06.jpg
inflating: monet2photo/trainB/2015-10-09 08:53:41.jpg
inflating: monet2photo/trainB/2016-06-12 01:15:00.jpg
inflating: monet2photo/trainB/2015-12-30 19:02:09.jpg
inflating: monet2photo/trainB/2016-02-20 17:41:44.jpg
inflating: monet2photo/trainB/2015-06-21 17:06:12.jpg
inflating: monet2photo/trainB/2016-05-06 19:01:10.jpg
inflating: monet2photo/trainB/2016-12-26 19:45:40.jpg
inflating: monet2photo/trainB/2015-08-09 04:26:27.jpg
inflating: monet2photo/trainB/2014-11-18 23:36:03.jpg
inflating: monet2photo/trainB/2015-11-02 13:43:58.jpg
inflating: monet2photo/trainB/2015-09-04 17:24:13.jpg
inflating: monet2photo/trainB/2016-07-03 11:04:20.jpg
inflating: monet2photo/trainB/2016-03-19 09:55:03.jpg
inflating: monet2photo/trainB/2014-01-12 19:59:36.jpg
inflating: monet2photo/trainB/2015-01-24 17:19:58.jpg
inflating: monet2photo/trainB/2016-08-22 08:21:01.jpg
inflating: monet2photo/trainB/2015-10-31 16:04:03.jpg
inflating: monet2photo/trainB/2016-08-05 08:26:47.jpg
inflating: monet2photo/trainB/2014-07-29 16:14:16.jpg
inflating: monet2photo/trainB/2016-03-06 18:57:34.jpg
inflating: monet2photo/trainB/2015-06-17 23:04:40.jpg
inflating: monet2photo/trainB/2015-09-04 13:25:19.jpg
inflating: monet2photo/trainB/2016-04-10 05:02:57.jpg
inflating: monet2photo/trainB/2015-02-06 09:39:37.jpg
inflating: monet2photo/trainB/2015-10-12 10:13:37.jpg
inflating: monet2photo/trainB/2015-12-22 09:02:59.jpg
inflating: monet2photo/trainB/2013-12-17 20:15:31.jpg
inflating: monet2photo/trainB/2015-05-01 09:24:00.jpg
inflating: monet2photo/trainB/2016-12-31 07:55:18.jpg
inflating: monet2photo/trainB/2016-11-26 20:42:06.jpg
inflating: monet2photo/trainB/2016-05-25 09:02:09.jpg
inflating: monet2photo/trainB/2016-04-26 07:45:21.jpg
inflating: monet2photo/trainB/2015-11-28 21:25:57.jpg
inflating: monet2photo/trainB/2014-05-31 19:06:31.jpg
inflating: monet2photo/trainB/2015-12-17 10:11:32.jpg
inflating: monet2photo/trainB/2016-04-17 09:11:39.jpg
inflating: monet2photo/trainB/2015-10-21 17:47:36.jpg
inflating: monet2photo/trainB/2015-05-31 12:13:48.jpg
inflating: monet2photo/trainB/2016-12-23 05:01:00.jpg
inflating: monet2photo/trainB/2016-12-08 13:47:52.jpg
inflating: monet2photo/trainB/2014-07-23 23:48:53.jpg
inflating: monet2photo/trainB/2014-07-28 23:59:20.jpg
inflating: monet2photo/trainB/2015-12-28 09:26:14.jpg
inflating: monet2photo/trainB/2016-02-19 19:01:44.jpg
inflating: monet2photo/trainB/2015-05-16 00:37:46.jpg
inflating: monet2photo/trainB/2014-04-20 16:32:03.jpg
inflating: monet2photo/trainB/2016-03-09 09:43:22.jpg
inflating: monet2photo/trainB/2014-07-31 19:44:16.jpg
inflating: monet2photo/trainB/2016-03-05 12:32:30.jpg
inflating: monet2photo/trainB/2015-09-13 04:34:34.jpg
inflating: monet2photo/trainB/2014-05-17 09:52:14.jpg
inflating: monet2photo/trainB/2015-08-10 19:34:28.jpg
inflating: monet2photo/trainB/2015-03-17 02:03:38.jpg
inflating: monet2photo/trainB/2015-07-26 17:42:45.jpg
inflating: monet2photo/trainB/2014-04-27 22:00:47.jpg
inflating: monet2photo/trainB/2015-05-24 19:52:28.jpg
inflating: monet2photo/trainB/2015-09-28 10:28:27.jpg
inflating: monet2photo/trainB/2016-04-13 21:48:07.jpg
inflating: monet2photo/trainB/2015-02-11 04:21:42.jpg
inflating: monet2photo/trainB/2016-12-17 17:12:09.jpg
inflating: monet2photo/trainB/2015-12-17 05:39:47.jpg
inflating: monet2photo/trainB/2014-11-05 00:03:36.jpg
inflating: monet2photo/trainB/2015-10-13 06:30:26.jpg
inflating: monet2photo/trainB/2015-06-05 22:36:50.jpg
inflating: monet2photo/trainB/2016-04-19 11:38:22.jpg
inflating: monet2photo/trainB/2014-06-08 08:00:29.jpg
inflating: monet2photo/trainB/2015-09-30 20:58:19.jpg
inflating: monet2photo/trainB/2014-04-08 15:54:15.jpg
inflating: monet2photo/trainB/2016-08-17 05:53:47.jpg
inflating: monet2photo/trainB/2014-02-16 11:26:10.jpg
inflating: monet2photo/trainB/2014-05-06 03:35:48.jpg
inflating: monet2photo/trainB/2015-09-25 19:15:41.jpg
inflating: monet2photo/trainB/2015-10-22 11:30:00.jpg
inflating: monet2photo/trainB/2015-01-04 02:26:57.jpg
inflating: monet2photo/trainB/2015-08-28 22:24:35.jpg
inflating: monet2photo/trainB/2016-07-30 09:45:43.jpg
inflating: monet2photo/trainB/2016-08-09 10:21:10.jpg
inflating: monet2photo/trainB/2016-02-05 02:56:53.jpg
inflating: monet2photo/trainB/2015-11-10 07:28:11.jpg
inflating: monet2photo/trainB/2016-07-10 00:59:43.jpg
inflating: monet2photo/trainB/2014-07-13 20:08:47.jpg
inflating: monet2photo/trainB/2014-11-02 20:03:59.jpg
inflating: monet2photo/trainB/2014-03-02 20:13:05.jpg
inflating: monet2photo/trainB/2015-07-22 07:02:15.jpg
inflating: monet2photo/trainB/2016-08-11 21:43:39.jpg
inflating: monet2photo/trainB/2015-09-04 10:21:01.jpg
inflating: monet2photo/trainB/2016-02-10 23:52:12.jpg
inflating: monet2photo/trainB/2015-06-21 01:53:18.jpg
inflating: monet2photo/trainB/2015-10-03 05:52:30.jpg
inflating: monet2photo/trainB/2015-09-21 14:13:15.jpg
inflating: monet2photo/trainB/2015-05-08 23:51:00.jpg
inflating: monet2photo/trainB/2014-05-01 06:17:05.jpg
inflating: monet2photo/trainB/2016-07-25 09:47:13.jpg
inflating: monet2photo/trainB/2015-06-19 02:38:53.jpg
inflating: monet2photo/trainB/2014-04-26 15:57:19.jpg
inflating: monet2photo/trainB/2015-12-17 07:59:19.jpg
inflating: monet2photo/trainB/2015-03-21 15:49:02.jpg
inflating: monet2photo/trainB/2016-02-07 09:45:46.jpg
inflating: monet2photo/trainB/2014-05-31 21:40:27.jpg
inflating: monet2photo/trainB/2016-03-13 11:25:18.jpg
inflating: monet2photo/trainB/2016-04-24 14:20:38.jpg
inflating: monet2photo/trainB/2015-10-06 06:47:41.jpg
inflating: monet2photo/trainB/2015-06-02 09:19:40.jpg
inflating: monet2photo/trainB/2014-01-27 03:23:04.jpg
inflating: monet2photo/trainB/2014-05-21 09:31:25.jpg
inflating: monet2photo/trainB/2016-08-28 01:04:04.jpg
inflating: monet2photo/trainB/2015-03-24 23:59:25.jpg
inflating: monet2photo/trainB/2015-05-26 14:57:07.jpg
inflating: monet2photo/trainB/2014-11-19 16:38:44.jpg
inflating: monet2photo/trainB/2015-06-27 09:57:36.jpg
inflating: monet2photo/trainB/2014-11-02 23:09:13.jpg
inflating: monet2photo/trainB/2015-11-26 09:36:08.jpg
inflating: monet2photo/trainB/2016-06-06 08:02:19.jpg
inflating: monet2photo/trainB/2014-02-28 10:22:31.jpg
inflating: monet2photo/trainB/2015-09-04 06:50:25.jpg
inflating: monet2photo/trainB/2017-01-02 02:00:18.jpg
inflating: monet2photo/trainB/2016-04-28 11:05:20.jpg
inflating: monet2photo/trainB/2015-10-08 13:29:56.jpg
inflating: monet2photo/trainB/2015-12-24 08:15:06.jpg
inflating: monet2photo/trainB/2013-12-28 23:17:34.jpg
inflating: monet2photo/trainB/2015-06-18 05:31:33.jpg
inflating: monet2photo/trainB/2016-05-03 03:00:34.jpg
inflating: monet2photo/trainB/2015-07-18 01:13:36.jpg
inflating: monet2photo/trainB/2015-12-05 02:33:46.jpg
inflating: monet2photo/trainB/2016-01-10 12:50:02.jpg
inflating: monet2photo/trainB/2016-03-08 01:55:30.jpg
inflating: monet2photo/trainB/2016-12-15 06:27:04.jpg
inflating: monet2photo/trainB/2015-02-23 08:46:29.jpg
inflating: monet2photo/trainB/2015-06-20 03:02:41.jpg
inflating: monet2photo/trainB/2015-07-07 09:10:22.jpg
inflating: monet2photo/trainB/2015-05-04 17:46:06.jpg
inflating: monet2photo/trainB/2016-08-30 19:14:51.jpg
inflating: monet2photo/trainB/2015-01-04 19:38:19.jpg
inflating: monet2photo/trainB/2013-12-16 19:14:05.jpg
inflating: monet2photo/trainB/2015-06-03 13:37:02.jpg
inflating: monet2photo/trainB/2015-02-04 17:41:47.jpg
inflating: monet2photo/trainB/2015-01-20 12:01:31.jpg
inflating: monet2photo/trainB/2015-01-25 19:02:50.jpg
inflating: monet2photo/trainB/2015-07-28 07:22:08.jpg
inflating: monet2photo/trainB/2015-08-17 07:55:14.jpg
inflating: monet2photo/trainB/2016-03-15 06:11:31.jpg
inflating: monet2photo/trainB/2016-04-11 13:32:23.jpg
inflating: monet2photo/trainB/2014-06-22 19:38:38.jpg
inflating: monet2photo/trainB/2015-10-21 01:40:11.jpg
inflating: monet2photo/trainB/2014-06-03 03:19:19.jpg
inflating: monet2photo/trainB/2015-10-18 12:58:48.jpg
inflating: monet2photo/trainB/2015-11-17 10:11:57.jpg
inflating: monet2photo/trainB/2015-07-03 08:38:55.jpg
inflating: monet2photo/trainB/2016-04-06 13:05:20.jpg
inflating: monet2photo/trainB/2016-06-09 19:57:48.jpg
inflating: monet2photo/trainB/2016-11-24 18:33:05.jpg
inflating: monet2photo/trainB/2016-03-29 08:41:57.jpg
inflating: monet2photo/trainB/2015-11-18 05:58:43.jpg
inflating: monet2photo/trainB/2015-03-02 21:51:12.jpg
inflating: monet2photo/trainB/2015-10-10 09:25:02.jpg
inflating: monet2photo/trainB/2015-03-26 11:03:16.jpg
inflating: monet2photo/trainB/2016-01-01 15:13:11.jpg
inflating: monet2photo/trainB/2015-06-10 07:20:15.jpg
inflating: monet2photo/trainB/2015-09-06 00:58:10.jpg
inflating: monet2photo/trainB/2015-12-30 08:56:14.jpg
inflating: monet2photo/trainB/2016-07-25 04:15:29.jpg
inflating: monet2photo/trainB/2015-03-01 11:16:35.jpg
inflating: monet2photo/trainB/2016-02-20 13:17:09.jpg
inflating: monet2photo/trainB/2016-06-21 07:37:03.jpg
inflating: monet2photo/trainB/2015-10-08 19:09:56.jpg
inflating: monet2photo/trainB/2016-12-07 07:35:28.jpg
inflating: monet2photo/trainB/2016-07-09 12:11:32.jpg
inflating: monet2photo/trainB/2015-12-27 17:18:59.jpg
inflating: monet2photo/trainB/2015-06-21 07:10:22.jpg
inflating: monet2photo/trainB/2016-08-26 22:05:09.jpg
inflating: monet2photo/trainB/2014-05-01 08:40:45.jpg
inflating: monet2photo/trainB/2015-05-28 06:03:30.jpg
inflating: monet2photo/trainB/2016-03-28 03:47:28.jpg
inflating: monet2photo/trainB/2016-07-26 05:47:39.jpg
inflating: monet2photo/trainB/2015-11-07 13:07:19.jpg
inflating: monet2photo/trainB/2016-02-14 11:36:24.jpg
inflating: monet2photo/trainB/2015-09-08 01:29:18.jpg
inflating: monet2photo/trainB/2015-05-21 20:16:46.jpg
inflating: monet2photo/trainB/2016-07-08 02:01:55.jpg
inflating: monet2photo/trainB/2017-01-02 11:29:05.jpg
inflating: monet2photo/trainB/2016-05-29 11:22:41.jpg
inflating: monet2photo/trainB/2016-01-21 13:16:37.jpg
inflating: monet2photo/trainB/2016-02-09 22:48:14.jpg
inflating: monet2photo/trainB/2016-08-07 00:57:35.jpg
inflating: monet2photo/trainB/2015-10-25 09:32:53.jpg
inflating: monet2photo/trainB/2015-07-20 12:23:21.jpg
inflating: monet2photo/trainB/2016-05-12 14:40:19.jpg
inflating: monet2photo/trainB/2016-04-02 07:05:32.jpg
inflating: monet2photo/trainB/2015-01-17 14:28:36.jpg
inflating: monet2photo/trainB/2014-05-11 04:45:41.jpg
inflating: monet2photo/trainB/2015-07-01 06:55:59.jpg
inflating: monet2photo/trainB/2015-05-31 06:16:07.jpg
inflating: monet2photo/trainB/2016-03-16 00:29:53.jpg
inflating: monet2photo/trainB/2016-05-02 11:21:33.jpg
inflating: monet2photo/trainB/2016-01-06 09:22:54.jpg
inflating: monet2photo/trainB/2016-08-14 15:27:14.jpg
inflating: monet2photo/trainB/2015-12-14 11:05:40.jpg
inflating: monet2photo/trainB/2014-06-06 06:26:47.jpg
inflating: monet2photo/trainB/2013-12-01 08:27:37.jpg
inflating: monet2photo/trainB/2014-05-28 09:34:12.jpg
inflating: monet2photo/trainB/2015-05-17 20:57:42.jpg
inflating: monet2photo/trainB/2015-02-18 17:34:21.jpg
inflating: monet2photo/trainB/2016-06-20 01:19:47.jpg
inflating: monet2photo/trainB/2014-02-23 12:58:50.jpg
inflating: monet2photo/trainB/2015-09-16 05:02:06.jpg
inflating: monet2photo/trainB/2015-02-07 15:05:23.jpg
inflating: monet2photo/trainB/2016-06-19 05:29:46.jpg
inflating: monet2photo/trainB/2015-12-17 14:23:20.jpg
inflating: monet2photo/trainB/2016-05-11 05:24:41.jpg
inflating: monet2photo/trainB/2016-08-09 11:15:05.jpg
inflating: monet2photo/trainB/2014-04-08 13:29:29.jpg
inflating: monet2photo/trainB/2015-02-15 01:54:05.jpg
inflating: monet2photo/trainB/2015-08-25 06:37:33.jpg
inflating: monet2photo/trainB/2016-11-17 20:43:28.jpg
inflating: monet2photo/trainB/2016-05-11 05:19:58.jpg
inflating: monet2photo/trainB/2014-05-24 22:15:36.jpg
inflating: monet2photo/trainB/2014-07-21 13:40:50.jpg
inflating: monet2photo/trainB/2014-07-20 12:20:03.jpg
inflating: monet2photo/trainB/2016-03-15 13:21:46.jpg
inflating: monet2photo/trainB/2015-12-30 19:39:59.jpg
inflating: monet2photo/trainB/2013-11-20 21:53:23.jpg
inflating: monet2photo/trainB/2016-01-25 22:52:33.jpg
inflating: monet2photo/trainB/2016-05-13 13:51:03.jpg
inflating: monet2photo/trainB/2015-12-09 12:38:37.jpg
inflating: monet2photo/trainB/2014-04-14 18:10:49.jpg
inflating: monet2photo/trainB/2016-07-26 02:01:15.jpg
inflating: monet2photo/trainB/2015-03-27 01:01:14.jpg
inflating: monet2photo/trainB/2015-12-28 12:32:06.jpg
inflating: monet2photo/trainB/2015-08-12 16:31:19.jpg
inflating: monet2photo/trainB/2014-04-23 00:22:14.jpg
inflating: monet2photo/trainB/2013-11-30 10:02:05.jpg
inflating: monet2photo/trainB/2016-06-05 07:42:56.jpg
inflating: monet2photo/trainB/2017-01-03 05:24:57.jpg
inflating: monet2photo/trainB/2016-07-06 02:28:16.jpg
inflating: monet2photo/trainB/2015-10-02 06:37:09.jpg
inflating: monet2photo/trainB/2016-06-13 12:14:15.jpg
inflating: monet2photo/trainB/2014-11-27 06:55:20.jpg
inflating: monet2photo/trainB/2015-10-29 20:09:10.jpg
inflating: monet2photo/trainB/2015-12-03 18:23:39.jpg
inflating: monet2photo/trainB/2015-10-06 11:13:26.jpg
inflating: monet2photo/trainB/2016-04-25 13:36:09.jpg
inflating: monet2photo/trainB/2016-01-28 10:08:59.jpg
inflating: monet2photo/trainB/2014-01-05 10:35:19.jpg
inflating: monet2photo/trainB/2015-08-04 14:56:47.jpg
inflating: monet2photo/trainB/2014-07-16 03:44:04.jpg
inflating: monet2photo/trainB/2017-01-02 15:29:12.jpg
inflating: monet2photo/trainB/2016-07-05 19:10:32.jpg
inflating: monet2photo/trainB/2016-01-06 06:03:11.jpg
inflating: monet2photo/trainB/2016-06-16 05:57:33.jpg
inflating: monet2photo/trainB/2014-07-01 09:32:24.jpg
inflating: monet2photo/trainB/2015-06-01 09:09:53.jpg
inflating: monet2photo/trainB/2014-06-15 07:56:04.jpg
inflating: monet2photo/trainB/2015-11-24 12:31:46.jpg
inflating: monet2photo/trainB/2015-07-15 09:54:12.jpg
inflating: monet2photo/trainB/2015-11-16 01:56:56.jpg
inflating: monet2photo/trainB/2017-01-02 05:36:14.jpg
inflating: monet2photo/trainB/2014-04-30 00:02:56.jpg
inflating: monet2photo/trainB/2015-08-18 05:50:19.jpg
inflating: monet2photo/trainB/2015-10-22 09:48:48.jpg
inflating: monet2photo/trainB/2014-06-02 13:48:47.jpg
inflating: monet2photo/trainB/2013-12-30 21:51:55.jpg
inflating: monet2photo/trainB/2016-04-26 16:46:53.jpg
inflating: monet2photo/trainB/2015-08-22 08:59:35.jpg
inflating: monet2photo/trainB/2016-04-24 01:51:09.jpg
inflating: monet2photo/trainB/2015-08-23 20:13:15.jpg
inflating: monet2photo/trainB/2016-02-29 06:33:01.jpg
inflating: monet2photo/trainB/2016-11-15 13:26:24.jpg
inflating: monet2photo/trainB/2014-06-09 13:17:06.jpg
inflating: monet2photo/trainB/2014-02-12 21:13:29.jpg
inflating: monet2photo/trainB/2015-02-09 01:34:55.jpg
inflating: monet2photo/trainB/2016-08-17 19:18:15.jpg
inflating: monet2photo/trainB/2015-03-24 02:32:44.jpg
inflating: monet2photo/trainB/2015-06-08 17:05:38.jpg
inflating: monet2photo/trainB/2016-08-31 02:14:39.jpg
inflating: monet2photo/trainB/2015-03-11 04:14:41.jpg
inflating: monet2photo/trainB/2016-05-10 02:20:53.jpg
inflating: monet2photo/trainB/2016-12-27 10:38:36.jpg
inflating: monet2photo/trainB/2016-02-26 07:41:10.jpg
inflating: monet2photo/trainB/2016-08-09 06:31:42.jpg
inflating: monet2photo/trainB/2016-12-14 07:56:22.jpg
inflating: monet2photo/trainB/2016-05-26 06:27:50.jpg
inflating: monet2photo/trainB/2014-05-13 23:55:54.jpg
inflating: monet2photo/trainB/2015-12-08 20:18:02.jpg
inflating: monet2photo/trainB/2016-04-06 08:44:55.jpg
inflating: monet2photo/trainB/2016-02-12 13:47:09.jpg
inflating: monet2photo/trainB/2016-02-27 12:03:15.jpg
inflating: monet2photo/trainB/2015-05-08 04:24:32.jpg
inflating: monet2photo/trainB/2014-01-25 11:42:45.jpg
inflating: monet2photo/trainB/2016-07-16 23:14:12.jpg
inflating: monet2photo/trainB/2015-01-04 08:55:45.jpg
inflating: monet2photo/trainB/2016-05-22 21:53:42.jpg
inflating: monet2photo/trainB/2016-03-19 09:19:26.jpg
inflating: monet2photo/trainB/2015-08-03 08:52:05.jpg
inflating: monet2photo/trainB/2015-08-06 13:33:15.jpg
inflating: monet2photo/trainB/2015-02-21 07:26:05.jpg
inflating: monet2photo/trainB/2016-06-19 13:52:38.jpg
inflating: monet2photo/trainB/2015-07-30 10:13:00.jpg
inflating: monet2photo/trainB/2016-12-13 10:21:13.jpg
inflating: monet2photo/trainB/2016-06-13 08:49:40.jpg
inflating: monet2photo/trainB/2014-06-05 11:05:09.jpg
inflating: monet2photo/trainB/2016-08-16 02:28:27.jpg
inflating: monet2photo/trainB/2016-04-05 09:11:09.jpg
inflating: monet2photo/trainB/2015-06-21 18:50:50.jpg
inflating: monet2photo/trainB/2016-01-14 14:20:46.jpg
inflating: monet2photo/trainB/2016-04-23 00:59:47.jpg
inflating: monet2photo/trainB/2015-08-22 07:47:43.jpg
inflating: monet2photo/trainB/2015-12-08 22:17:48.jpg
inflating: monet2photo/trainB/2016-08-20 13:37:27.jpg
inflating: monet2photo/trainB/2015-12-12 19:56:11.jpg
inflating: monet2photo/trainB/2015-09-21 00:36:42.jpg
inflating: monet2photo/trainB/2015-10-09 10:50:38.jpg
inflating: monet2photo/trainB/2015-07-18 08:18:39.jpg
inflating: monet2photo/trainB/2015-08-01 19:39:03.jpg
inflating: monet2photo/trainB/2015-05-06 18:59:44.jpg
inflating: monet2photo/trainB/2016-05-10 15:23:12.jpg
inflating: monet2photo/trainB/2016-05-31 20:56:41.jpg
inflating: monet2photo/trainB/2014-04-20 18:09:29.jpg
inflating: monet2photo/trainB/2014-03-16 11:05:49.jpg
inflating: monet2photo/trainB/2016-06-07 04:09:50.jpg
inflating: monet2photo/trainB/2015-06-24 12:40:09.jpg
inflating: monet2photo/trainB/2014-11-03 11:16:23.jpg
inflating: monet2photo/trainB/2014-01-16 22:14:06.jpg
inflating: monet2photo/trainB/2016-01-22 03:13:58.jpg
inflating: monet2photo/trainB/2015-05-09 06:45:15.jpg
inflating: monet2photo/trainB/2016-07-30 21:34:02.jpg
inflating: monet2photo/trainB/2016-04-12 17:32:01.jpg
inflating: monet2photo/trainB/2016-11-19 19:38:28.jpg
inflating: monet2photo/trainB/2016-02-25 14:46:08.jpg
inflating: monet2photo/trainB/2016-04-04 21:08:41.jpg
inflating: monet2photo/trainB/2014-01-21 04:05:49.jpg
inflating: monet2photo/trainB/2016-12-22 02:32:17.jpg
inflating: monet2photo/trainB/2016-03-18 21:22:41.jpg
inflating: monet2photo/trainB/2016-04-21 01:20:42.jpg
inflating: monet2photo/trainB/2016-11-25 05:33:27.jpg
inflating: monet2photo/trainB/2016-06-21 21:18:05.jpg
inflating: monet2photo/trainB/2016-02-26 06:54:28.jpg
inflating: monet2photo/trainB/2015-09-19 09:16:25.jpg
inflating: monet2photo/trainB/2015-02-01 12:10:20.jpg
inflating: monet2photo/trainB/2015-05-20 11:35:39.jpg
inflating: monet2photo/trainB/2016-04-08 04:04:17.jpg
inflating: monet2photo/trainB/2014-11-25 09:59:45.jpg
inflating: monet2photo/trainB/2015-08-18 23:58:16.jpg
inflating: monet2photo/trainB/2016-12-12 19:40:31.jpg
inflating: monet2photo/trainB/2015-12-31 16:04:18.jpg
inflating: monet2photo/trainB/2016-02-19 00:24:20.jpg
inflating: monet2photo/trainB/2016-12-05 12:15:18.jpg
inflating: monet2photo/trainB/2016-12-26 07:36:25.jpg
inflating: monet2photo/trainB/2016-01-23 10:25:42.jpg
inflating: monet2photo/trainB/2016-08-24 11:30:32.jpg
inflating: monet2photo/trainB/2015-07-01 07:59:40.jpg
inflating: monet2photo/trainB/2015-02-07 01:06:08.jpg
inflating: monet2photo/trainB/2014-03-03 14:25:12.jpg
inflating: monet2photo/trainB/2016-02-07 09:29:25.jpg
inflating: monet2photo/trainB/2014-11-27 17:03:46.jpg
inflating: monet2photo/trainB/2014-11-20 12:56:27.jpg
inflating: monet2photo/trainB/2015-12-14 08:44:11.jpg
inflating: monet2photo/trainB/2017-01-02 15:45:09.jpg
inflating: monet2photo/trainB/2015-02-02 14:00:29.jpg
inflating: monet2photo/trainB/2016-03-17 13:38:19.jpg
inflating: monet2photo/trainB/2015-02-26 02:37:37.jpg
inflating: monet2photo/trainB/2015-11-02 19:12:39.jpg
inflating: monet2photo/trainB/2015-06-25 22:19:27.jpg
inflating: monet2photo/trainB/2015-01-17 14:00:59.jpg
inflating: monet2photo/trainB/2016-04-17 09:33:30.jpg
inflating: monet2photo/trainB/2014-06-30 12:21:01.jpg
inflating: monet2photo/trainB/2014-03-02 21:02:53.jpg
inflating: monet2photo/trainB/2014-11-01 17:12:07.jpg
inflating: monet2photo/trainB/2015-12-11 02:57:42.jpg
inflating: monet2photo/trainB/2014-11-10 02:13:04.jpg
inflating: monet2photo/trainB/2015-09-11 02:43:18.jpg
inflating: monet2photo/trainB/2015-09-24 10:31:46.jpg
inflating: monet2photo/trainB/2016-01-01 05:52:24.jpg
inflating: monet2photo/trainB/2015-08-09 22:08:45.jpg
inflating: monet2photo/trainB/2016-01-02 01:14:14.jpg
inflating: monet2photo/trainB/2016-02-15 09:43:14.jpg
inflating: monet2photo/trainB/2015-06-03 07:47:37.jpg
inflating: monet2photo/trainB/2014-03-09 22:23:25.jpg
inflating: monet2photo/trainB/2015-11-19 08:13:16.jpg
inflating: monet2photo/trainB/2015-10-04 03:48:01.jpg
inflating: monet2photo/trainB/2015-05-07 14:11:42.jpg
inflating: monet2photo/trainB/2015-11-19 03:46:43.jpg
inflating: monet2photo/trainB/2013-12-07 01:18:10.jpg
inflating: monet2photo/trainB/2016-01-24 11:03:53.jpg
inflating: monet2photo/trainB/2015-01-25 12:56:55.jpg
inflating: monet2photo/trainB/2015-06-14 21:41:04.jpg
inflating: monet2photo/trainB/2016-07-22 15:39:36.jpg
inflating: monet2photo/trainB/2016-03-01 08:16:04.jpg
inflating: monet2photo/trainB/2016-11-20 08:30:32.jpg
inflating: monet2photo/trainB/2014-02-11 07:03:07.jpg
inflating: monet2photo/trainB/2015-06-28 13:53:15.jpg
inflating: monet2photo/trainB/2014-07-24 05:41:02.jpg
inflating: monet2photo/trainB/2016-12-13 09:38:19.jpg
inflating: monet2photo/trainB/2015-07-27 06:30:54.jpg
inflating: monet2photo/trainB/2016-06-01 21:14:07.jpg
inflating: monet2photo/trainB/2015-11-26 08:01:01.jpg
inflating: monet2photo/trainB/2016-03-18 03:53:54.jpg
inflating: monet2photo/trainB/2016-06-08 10:31:15.jpg
inflating: monet2photo/trainB/2015-08-13 01:07:25.jpg
inflating: monet2photo/trainB/2016-05-25 14:10:06.jpg
inflating: monet2photo/trainB/2015-06-04 22:50:19.jpg
inflating: monet2photo/trainB/2016-04-18 12:15:20.jpg
inflating: monet2photo/trainB/2015-12-27 06:15:05.jpg
inflating: monet2photo/trainB/2016-11-25 13:58:14.jpg
inflating: monet2photo/trainB/2016-06-14 09:47:13.jpg
inflating: monet2photo/trainB/2015-06-25 17:40:42.jpg
inflating: monet2photo/trainB/2016-11-21 08:28:15.jpg
inflating: monet2photo/trainB/2015-09-09 00:10:21.jpg
inflating: monet2photo/trainB/2014-02-24 10:48:18.jpg
inflating: monet2photo/trainB/2016-05-21 07:12:28.jpg
inflating: monet2photo/trainB/2014-07-09 05:13:24.jpg
inflating: monet2photo/trainB/2015-11-30 12:43:48.jpg
inflating: monet2photo/trainB/2015-08-01 12:48:14.jpg
inflating: monet2photo/trainB/2015-06-07 04:56:57.jpg
inflating: monet2photo/trainB/2016-08-03 02:58:18.jpg
inflating: monet2photo/trainB/2015-01-23 11:49:05.jpg
inflating: monet2photo/trainB/2015-07-30 23:56:14.jpg
inflating: monet2photo/trainB/2015-03-18 00:22:31.jpg
inflating: monet2photo/trainB/2015-07-06 06:01:18.jpg
inflating: monet2photo/trainB/2015-10-10 05:49:37.jpg
inflating: monet2photo/trainB/2016-12-10 08:13:01.jpg
inflating: monet2photo/trainB/2015-12-01 04:21:10.jpg
inflating: monet2photo/trainB/2015-09-21 09:31:54.jpg
inflating: monet2photo/trainB/2016-02-29 18:00:07.jpg
inflating: monet2photo/trainB/2016-07-18 02:24:20.jpg
inflating: monet2photo/trainB/2016-02-22 10:45:09.jpg
inflating: monet2photo/trainB/2015-07-10 09:40:06.jpg
inflating: monet2photo/trainB/2015-11-30 10:56:25.jpg
inflating: monet2photo/trainB/2016-02-16 18:10:09.jpg
inflating: monet2photo/trainB/2016-06-13 23:41:47.jpg
inflating: monet2photo/trainB/2013-11-21 01:47:41.jpg
inflating: monet2photo/trainB/2016-08-05 13:11:46.jpg
inflating: monet2photo/trainB/2015-08-23 13:14:23.jpg
inflating: monet2photo/trainB/2016-12-12 07:19:11.jpg
inflating: monet2photo/trainB/2016-05-16 02:51:53.jpg
inflating: monet2photo/trainB/2016-05-31 04:30:53.jpg
inflating: monet2photo/trainB/2015-05-05 09:40:20.jpg
inflating: monet2photo/trainB/2016-04-02 19:56:28.jpg
inflating: monet2photo/trainB/2016-12-16 08:38:26.jpg
inflating: monet2photo/trainB/2015-10-16 06:35:01.jpg
inflating: monet2photo/trainB/2016-12-02 17:13:33.jpg
inflating: monet2photo/trainB/2016-07-09 03:56:10.jpg
inflating: monet2photo/trainB/2015-11-28 02:20:49.jpg
inflating: monet2photo/trainB/2016-08-23 02:53:38.jpg
inflating: monet2photo/trainB/2016-07-17 17:24:04.jpg
inflating: monet2photo/trainB/2014-11-04 06:02:41.jpg
inflating: monet2photo/trainB/2015-02-19 09:52:37.jpg
inflating: monet2photo/trainB/2015-10-05 10:03:54.jpg
inflating: monet2photo/trainB/2015-02-02 03:18:27.jpg
inflating: monet2photo/trainB/2013-11-17 17:36:09.jpg
inflating: monet2photo/trainB/2015-08-07 00:32:45.jpg
inflating: monet2photo/trainB/2015-08-04 09:30:40.jpg
inflating: monet2photo/trainB/2015-10-01 12:44:15.jpg
inflating: monet2photo/trainB/2016-11-17 07:57:30.jpg
inflating: monet2photo/trainB/2016-04-13 17:23:54.jpg
inflating: monet2photo/trainB/2014-03-20 09:04:35.jpg
inflating: monet2photo/trainB/2015-05-26 20:40:55.jpg
inflating: monet2photo/trainB/2015-10-30 18:44:10.jpg
inflating: monet2photo/trainB/2016-07-15 01:20:22.jpg
inflating: monet2photo/trainB/2015-03-07 18:21:50.jpg
inflating: monet2photo/trainB/2014-05-16 20:15:56.jpg
inflating: monet2photo/trainB/2015-09-26 10:55:05.jpg
inflating: monet2photo/trainB/2014-05-29 14:05:42.jpg
inflating: monet2photo/trainB/2016-07-19 06:32:35.jpg
inflating: monet2photo/trainB/2014-05-16 10:21:49.jpg
inflating: monet2photo/trainB/2016-08-19 14:05:43.jpg
inflating: monet2photo/trainB/2015-09-06 18:19:04.jpg
inflating: monet2photo/trainB/2014-01-04 10:42:25.jpg
inflating: monet2photo/trainB/2015-01-06 15:11:15.jpg
inflating: monet2photo/trainB/2014-03-24 11:41:11.jpg
inflating: monet2photo/trainB/2015-08-17 13:57:45.jpg
inflating: monet2photo/trainB/2015-10-29 15:27:25.jpg
inflating: monet2photo/trainB/2013-12-10 19:40:14.jpg
inflating: monet2photo/trainB/2016-02-23 09:23:22.jpg
inflating: monet2photo/trainB/2015-05-16 06:19:48.jpg
inflating: monet2photo/trainB/2016-05-10 12:01:50.jpg
inflating: monet2photo/trainB/2015-03-13 10:07:58.jpg
inflating: monet2photo/trainB/2016-12-13 13:48:13.jpg
inflating: monet2photo/trainB/2015-06-02 05:41:27.jpg
inflating: monet2photo/trainB/2016-05-22 08:26:06.jpg
inflating: monet2photo/trainB/2015-11-23 00:22:27.jpg
inflating: monet2photo/trainB/2015-03-24 05:58:13.jpg
inflating: monet2photo/trainB/2016-05-08 08:14:20.jpg
inflating: monet2photo/trainB/2015-02-28 07:27:49.jpg
inflating: monet2photo/trainB/2014-02-01 13:27:08.jpg
inflating: monet2photo/trainB/2015-01-25 08:07:39.jpg
inflating: monet2photo/trainB/2016-02-16 06:24:46.jpg
inflating: monet2photo/trainB/2015-05-28 20:18:55.jpg
inflating: monet2photo/trainB/2016-05-28 12:45:23.jpg
inflating: monet2photo/trainB/2015-07-28 17:27:37.jpg
inflating: monet2photo/trainB/2016-07-17 21:48:14.jpg
inflating: monet2photo/trainB/2014-11-21 21:00:37.jpg
inflating: monet2photo/trainB/2015-03-06 22:31:20.jpg
inflating: monet2photo/trainB/2016-02-22 20:48:22.jpg
inflating: monet2photo/trainB/2015-02-01 10:41:05.jpg
inflating: monet2photo/trainB/2014-01-07 03:16:00.jpg
inflating: monet2photo/trainB/2015-09-19 20:45:57.jpg
inflating: monet2photo/trainB/2016-05-31 01:47:00.jpg
inflating: monet2photo/trainB/2015-08-12 23:11:38.jpg
inflating: monet2photo/trainB/2015-05-24 05:33:35.jpg
inflating: monet2photo/trainB/2016-04-21 09:08:33.jpg
inflating: monet2photo/trainB/2015-02-22 04:12:02.jpg
inflating: monet2photo/trainB/2015-08-11 07:45:45.jpg
inflating: monet2photo/trainB/2016-12-13 23:58:31.jpg
inflating: monet2photo/trainB/2016-05-13 06:21:13.jpg
inflating: monet2photo/trainB/2016-12-15 06:29:15.jpg
inflating: monet2photo/trainB/2015-02-18 01:42:20.jpg
inflating: monet2photo/trainB/2016-05-29 02:42:39.jpg
inflating: monet2photo/trainB/2016-08-19 03:30:46.jpg
inflating: monet2photo/trainB/2015-07-11 07:22:10.jpg
inflating: monet2photo/trainB/2016-08-19 06:44:24.jpg
inflating: monet2photo/trainB/2015-12-10 03:27:08.jpg
inflating: monet2photo/trainB/2016-07-25 23:36:47.jpg
inflating: monet2photo/trainB/2016-11-18 11:33:30.jpg
inflating: monet2photo/trainB/2015-10-07 19:28:52.jpg
inflating: monet2photo/trainB/2016-01-10 09:40:23.jpg
inflating: monet2photo/trainB/2016-04-12 06:27:56.jpg
inflating: monet2photo/trainB/2015-09-28 04:49:42.jpg
inflating: monet2photo/trainB/2016-01-12 17:43:01.jpg
inflating: monet2photo/trainB/2016-03-25 08:09:01.jpg
inflating: monet2photo/trainB/2016-02-04 09:36:42.jpg
inflating: monet2photo/trainB/2014-11-29 13:37:05.jpg
inflating: monet2photo/trainB/2016-01-29 15:05:02.jpg
inflating: monet2photo/trainB/2015-07-02 04:10:45.jpg
inflating: monet2photo/trainB/2016-03-29 11:31:18.jpg
inflating: monet2photo/trainB/2016-06-02 17:46:10.jpg
inflating: monet2photo/trainB/2016-08-17 18:59:15.jpg
inflating: monet2photo/trainB/2016-01-11 18:54:45.jpg
inflating: monet2photo/trainB/2016-07-19 03:25:12.jpg
inflating: monet2photo/trainB/2015-03-05 21:49:23.jpg
inflating: monet2photo/trainB/2016-06-28 10:25:32.jpg
inflating: monet2photo/trainB/2016-08-28 08:46:29.jpg
inflating: monet2photo/trainB/2014-07-07 10:55:30.jpg
inflating: monet2photo/trainB/2016-12-02 15:14:11.jpg
inflating: monet2photo/trainB/2013-11-19 02:11:17.jpg
inflating: monet2photo/trainB/2016-12-19 17:59:20.jpg
inflating: monet2photo/trainB/2015-08-24 13:26:11.jpg
inflating: monet2photo/trainB/2015-07-08 12:27:52.jpg
inflating: monet2photo/trainB/2016-01-18 16:14:00.jpg
inflating: monet2photo/trainB/2016-02-25 13:46:04.jpg
inflating: monet2photo/trainB/2014-06-20 04:39:24.jpg
inflating: monet2photo/trainB/2016-02-24 18:19:01.jpg
inflating: monet2photo/trainB/2016-04-02 07:36:50.jpg
inflating: monet2photo/trainB/2015-12-28 07:56:17.jpg
inflating: monet2photo/trainB/2015-10-13 16:35:19.jpg
inflating: monet2photo/trainB/2016-02-11 03:43:05.jpg
inflating: monet2photo/trainB/2014-07-24 18:35:20.jpg
inflating: monet2photo/trainB/2015-02-25 07:59:43.jpg
inflating: monet2photo/trainB/2015-05-14 08:17:06.jpg
inflating: monet2photo/trainB/2014-03-01 13:52:35.jpg
inflating: monet2photo/trainB/2016-12-24 03:13:30.jpg
inflating: monet2photo/trainB/2015-03-24 07:59:46.jpg
inflating: monet2photo/trainB/2014-06-23 07:58:45.jpg
inflating: monet2photo/trainB/2015-11-15 19:42:52.jpg
inflating: monet2photo/trainB/2015-09-08 07:11:26.jpg
inflating: monet2photo/trainB/2016-08-07 00:37:49.jpg
inflating: monet2photo/trainB/2015-03-01 09:20:26.jpg
inflating: monet2photo/trainB/2014-11-15 05:50:48.jpg
inflating: monet2photo/trainB/2016-05-05 01:49:45.jpg
inflating: monet2photo/trainB/2015-01-04 08:55:42.jpg
inflating: monet2photo/trainB/2015-06-10 04:45:46.jpg
inflating: monet2photo/trainB/2016-02-01 15:08:24.jpg
inflating: monet2photo/trainB/2016-07-07 03:08:37.jpg
inflating: monet2photo/trainB/2015-09-23 03:28:12.jpg
inflating: monet2photo/trainB/2015-08-21 01:21:59.jpg
inflating: monet2photo/trainB/2016-03-09 22:47:42.jpg
inflating: monet2photo/trainB/2014-07-19 14:21:04.jpg
inflating: monet2photo/trainB/2014-01-05 18:14:43.jpg
inflating: monet2photo/trainB/2016-06-09 07:29:07.jpg
inflating: monet2photo/trainB/2016-05-12 07:23:26.jpg
inflating: monet2photo/trainB/2016-07-09 12:43:03.jpg
inflating: monet2photo/trainB/2016-04-06 03:43:39.jpg
inflating: monet2photo/trainB/2015-10-18 09:55:04.jpg
inflating: monet2photo/trainB/2015-08-26 12:52:59.jpg
inflating: monet2photo/trainB/2016-02-13 05:21:58.jpg
inflating: monet2photo/trainB/2015-12-25 23:18:18.jpg
inflating: monet2photo/trainB/2016-05-22 13:35:14.jpg
inflating: monet2photo/trainB/2016-03-12 12:46:40.jpg
inflating: monet2photo/trainB/2016-08-27 12:04:55.jpg
inflating: monet2photo/trainB/2016-12-01 12:23:33.jpg
inflating: monet2photo/trainB/2016-03-28 06:03:26.jpg
inflating: monet2photo/trainB/2015-02-21 21:49:12.jpg
inflating: monet2photo/trainB/2015-11-22 02:26:16.jpg
inflating: monet2photo/trainB/2014-06-11 02:40:46.jpg
inflating: monet2photo/trainB/2015-11-09 07:10:18.jpg
inflating: monet2photo/trainB/2014-05-31 19:23:10.jpg
inflating: monet2photo/trainB/2015-06-04 07:34:42.jpg
inflating: monet2photo/trainB/2016-08-23 10:01:32.jpg
inflating: monet2photo/trainB/2014-01-02 20:23:08.jpg
inflating: monet2photo/trainB/2015-02-10 12:50:44.jpg
inflating: monet2photo/trainB/2015-10-08 06:57:46.jpg
inflating: monet2photo/trainB/2016-06-21 13:08:07.jpg
inflating: monet2photo/trainB/2015-11-30 09:17:42.jpg
inflating: monet2photo/trainB/2015-07-04 04:16:40.jpg
inflating: monet2photo/trainB/2016-04-23 10:28:08.jpg
inflating: monet2photo/trainB/2015-03-02 00:17:34.jpg
inflating: monet2photo/trainB/2014-02-17 22:45:24.jpg
inflating: monet2photo/trainB/2015-06-13 01:42:59.jpg
inflating: monet2photo/trainB/2015-08-29 09:11:14.jpg
inflating: monet2photo/trainB/2015-08-17 23:00:23.jpg
inflating: monet2photo/trainB/2016-12-27 09:56:32.jpg
inflating: monet2photo/trainB/2015-12-21 03:45:42.jpg
inflating: monet2photo/trainB/2016-02-12 00:30:46.jpg
inflating: monet2photo/trainB/2014-04-27 10:17:01.jpg
inflating: monet2photo/trainB/2015-06-26 03:00:39.jpg
inflating: monet2photo/trainB/2015-08-09 04:26:29.jpg
inflating: monet2photo/trainB/2015-05-21 20:53:41.jpg
inflating: monet2photo/trainB/2015-10-13 20:16:01.jpg
inflating: monet2photo/trainB/2015-08-03 10:22:28.jpg
inflating: monet2photo/trainB/2015-06-27 21:00:14.jpg
inflating: monet2photo/trainB/2016-06-29 12:00:47.jpg
inflating: monet2photo/trainB/2016-06-13 07:09:57.jpg
inflating: monet2photo/trainB/2015-07-30 18:12:08.jpg
inflating: monet2photo/trainB/2015-03-24 02:28:20.jpg
inflating: monet2photo/trainB/2015-10-11 00:52:35.jpg
inflating: monet2photo/trainB/2015-12-31 13:10:23.jpg
inflating: monet2photo/trainB/2015-07-25 21:40:46.jpg
inflating: monet2photo/trainB/2016-12-11 20:57:09.jpg
inflating: monet2photo/trainB/2016-12-04 18:00:28.jpg
inflating: monet2photo/trainB/2015-11-14 13:54:19.jpg
inflating: monet2photo/trainB/2016-03-28 09:09:47.jpg
inflating: monet2photo/trainB/2016-07-22 20:52:37.jpg
inflating: monet2photo/trainB/2015-08-26 12:01:33.jpg
inflating: monet2photo/trainB/2014-06-21 05:01:37.jpg
inflating: monet2photo/trainB/2016-05-16 01:29:29.jpg
inflating: monet2photo/trainB/2016-07-24 00:48:09.jpg
inflating: monet2photo/trainB/2015-07-29 06:59:47.jpg
inflating: monet2photo/trainB/2014-05-08 05:13:27.jpg
inflating: monet2photo/trainB/2015-12-15 00:25:53.jpg
inflating: monet2photo/trainB/2016-06-17 05:55:23.jpg
inflating: monet2photo/trainB/2014-07-11 15:16:58.jpg
inflating: monet2photo/trainB/2015-08-24 04:01:21.jpg
inflating: monet2photo/trainB/2015-01-18 15:46:21.jpg
inflating: monet2photo/trainB/2016-06-15 01:04:51.jpg
inflating: monet2photo/trainB/2015-08-24 14:54:30.jpg
inflating: monet2photo/trainB/2016-11-28 02:55:10.jpg
inflating: monet2photo/trainB/2015-07-30 20:52:31.jpg
inflating: monet2photo/trainB/2015-01-02 17:50:24.jpg
inflating: monet2photo/trainB/2016-07-26 22:40:24.jpg
inflating: monet2photo/trainB/2014-05-20 22:06:21.jpg
inflating: monet2photo/trainB/2016-05-05 13:03:54.jpg
inflating: monet2photo/trainB/2014-05-06 13:12:57.jpg
inflating: monet2photo/trainB/2016-07-08 17:38:43.jpg
inflating: monet2photo/trainB/2016-06-13 21:12:51.jpg
inflating: monet2photo/trainB/2016-05-20 22:31:47.jpg
inflating: monet2photo/trainB/2014-04-29 05:24:21.jpg
inflating: monet2photo/trainB/2015-08-15 17:04:24.jpg
inflating: monet2photo/trainB/2016-04-11 05:20:11.jpg
inflating: monet2photo/trainB/2015-09-29 02:10:02.jpg
inflating: monet2photo/trainB/2015-01-18 13:59:46.jpg
inflating: monet2photo/trainB/2015-10-21 13:19:51.jpg
inflating: monet2photo/trainB/2014-11-07 08:42:57.jpg
inflating: monet2photo/trainB/2015-03-05 18:46:45.jpg
inflating: monet2photo/trainB/2016-08-28 21:06:50.jpg
inflating: monet2photo/trainB/2016-12-18 02:41:30.jpg
inflating: monet2photo/trainB/2015-03-14 09:52:19.jpg
inflating: monet2photo/trainB/2015-01-29 22:09:55.jpg
inflating: monet2photo/trainB/2015-12-12 16:03:17.jpg
inflating: monet2photo/trainB/2015-10-21 12:25:29.jpg
inflating: monet2photo/trainB/2014-05-05 11:54:09.jpg
inflating: monet2photo/trainB/2015-01-25 14:41:38.jpg
inflating: monet2photo/trainB/2015-07-07 21:24:16.jpg
inflating: monet2photo/trainB/2016-03-06 14:23:28.jpg
inflating: monet2photo/trainB/2016-04-18 04:25:17.jpg
inflating: monet2photo/trainB/2016-05-29 11:40:17.jpg
inflating: monet2photo/trainB/2016-12-01 07:59:13.jpg
inflating: monet2photo/trainB/2015-08-30 16:08:28.jpg
inflating: monet2photo/trainB/2016-05-13 05:06:42.jpg
inflating: monet2photo/trainB/2015-10-05 14:06:53.jpg
inflating: monet2photo/trainB/2016-08-25 07:45:27.jpg
inflating: monet2photo/trainB/2015-02-24 11:16:02.jpg
inflating: monet2photo/trainB/2016-05-30 13:27:43.jpg
inflating: monet2photo/trainB/2014-02-14 14:18:53.jpg
inflating: monet2photo/trainB/2016-02-28 20:32:01.jpg
inflating: monet2photo/trainB/2016-01-02 09:58:35.jpg
inflating: monet2photo/trainB/2015-11-26 06:53:58.jpg
inflating: monet2photo/trainB/2015-05-30 09:31:51.jpg
inflating: monet2photo/trainB/2014-01-31 14:16:25.jpg
inflating: monet2photo/trainB/2014-04-08 18:17:36.jpg
inflating: monet2photo/trainB/2016-08-28 08:46:00.jpg
inflating: monet2photo/trainB/2016-03-06 14:46:17.jpg
inflating: monet2photo/trainB/2016-08-12 22:44:34.jpg
inflating: monet2photo/trainB/2015-03-11 05:02:18.jpg
inflating: monet2photo/trainB/2015-01-02 03:01:53.jpg
inflating: monet2photo/trainB/2015-02-21 06:58:19.jpg
inflating: monet2photo/trainB/2015-11-16 15:40:00.jpg
inflating: monet2photo/trainB/2016-03-13 09:21:48.jpg
inflating: monet2photo/trainB/2015-03-11 00:01:33.jpg
inflating: monet2photo/trainB/2015-09-16 13:14:55.jpg
inflating: monet2photo/trainB/2013-12-26 19:44:22.jpg
inflating: monet2photo/trainB/2015-07-28 03:59:54.jpg
inflating: monet2photo/trainB/2016-02-22 10:31:26.jpg
inflating: monet2photo/trainB/2016-08-29 08:00:12.jpg
inflating: monet2photo/trainB/2015-01-02 03:19:16.jpg
inflating: monet2photo/trainB/2016-04-19 07:45:14.jpg
inflating: monet2photo/trainB/2013-11-10 00:51:18.jpg
inflating: monet2photo/trainB/2016-05-19 02:23:28.jpg
inflating: monet2photo/trainB/2015-02-06 17:24:03.jpg
inflating: monet2photo/trainB/2016-11-28 02:01:43.jpg
inflating: monet2photo/trainB/2015-03-28 13:10:19.jpg
inflating: monet2photo/trainB/2016-04-17 13:13:39.jpg
inflating: monet2photo/trainB/2015-10-10 13:13:25.jpg
inflating: monet2photo/trainB/2016-06-05 07:02:44.jpg
inflating: monet2photo/trainB/2015-11-01 02:09:14.jpg
inflating: monet2photo/trainB/2015-03-01 22:39:42.jpg
inflating: monet2photo/trainB/2016-07-20 03:09:31.jpg
inflating: monet2photo/trainB/2016-07-17 15:17:19.jpg
inflating: monet2photo/trainB/2016-04-05 11:19:17.jpg
inflating: monet2photo/trainB/2014-03-11 13:21:35.jpg
inflating: monet2photo/trainB/2016-05-17 23:53:44.jpg
inflating: monet2photo/trainB/2016-04-21 09:40:17.jpg
inflating: monet2photo/trainB/2016-06-28 12:55:55.jpg
inflating: monet2photo/trainB/2014-11-03 08:52:58.jpg
inflating: monet2photo/trainB/2014-03-01 11:49:23.jpg
inflating: monet2photo/trainB/2016-06-22 05:26:12.jpg
inflating: monet2photo/trainB/2016-04-20 15:49:35.jpg
inflating: monet2photo/trainB/2017-01-03 03:37:04.jpg
inflating: monet2photo/trainB/2016-12-22 15:39:28.jpg
inflating: monet2photo/trainB/2015-05-08 10:04:21.jpg
inflating: monet2photo/trainB/2015-07-28 11:25:48.jpg
inflating: monet2photo/trainB/2015-08-19 21:25:53.jpg
inflating: monet2photo/trainB/2015-12-13 23:46:02.jpg
inflating: monet2photo/trainB/2015-08-06 21:18:47.jpg
inflating: monet2photo/trainB/2016-11-28 14:34:17.jpg
inflating: monet2photo/trainB/2016-03-15 07:53:37.jpg
inflating: monet2photo/trainB/2016-02-05 12:36:56.jpg
inflating: monet2photo/trainB/2015-08-11 19:08:35.jpg
inflating: monet2photo/trainB/2016-05-23 10:17:19.jpg
inflating: monet2photo/trainB/2016-08-06 13:53:20.jpg
inflating: monet2photo/trainB/2016-02-27 21:02:39.jpg
inflating: monet2photo/trainB/2015-12-27 15:15:13.jpg
inflating: monet2photo/trainB/2015-11-18 10:47:10.jpg
inflating: monet2photo/trainB/2016-06-24 10:29:47.jpg
inflating: monet2photo/trainB/2015-10-12 14:38:12.jpg
inflating: monet2photo/trainB/2016-03-27 15:25:08.jpg
inflating: monet2photo/trainB/2015-09-06 00:51:13.jpg
inflating: monet2photo/trainB/2015-08-29 01:00:09.jpg
inflating: monet2photo/trainB/2015-08-23 12:29:49.jpg
inflating: monet2photo/trainB/2016-01-22 15:04:53.jpg
inflating: monet2photo/trainB/2014-05-30 03:22:40.jpg
inflating: monet2photo/trainB/2015-11-25 13:43:52.jpg
inflating: monet2photo/trainB/2016-06-04 14:01:41.jpg
inflating: monet2photo/trainB/2016-03-15 09:02:34.jpg
inflating: monet2photo/trainB/2015-05-10 17:14:33.jpg
inflating: monet2photo/trainB/2014-03-17 20:21:35.jpg
inflating: monet2photo/trainB/2015-10-01 19:02:25.jpg
inflating: monet2photo/trainB/2016-01-02 00:36:21.jpg
inflating: monet2photo/trainB/2015-01-13 03:09:48.jpg
inflating: monet2photo/trainB/2016-08-03 11:17:52.jpg
inflating: monet2photo/trainB/2016-05-23 12:31:02.jpg
inflating: monet2photo/trainB/2015-12-05 00:04:39.jpg
inflating: monet2photo/trainB/2016-07-16 20:24:33.jpg
inflating: monet2photo/trainB/2015-09-14 09:13:51.jpg
inflating: monet2photo/trainB/2014-05-24 06:39:16.jpg
inflating: monet2photo/trainB/2014-01-18 22:10:54.jpg
inflating: monet2photo/trainB/2015-12-26 14:43:52.jpg
inflating: monet2photo/trainB/2016-03-17 10:23:42.jpg
inflating: monet2photo/trainB/2015-11-28 07:22:53.jpg
inflating: monet2photo/trainB/2014-07-26 00:14:48.jpg
inflating: monet2photo/trainB/2014-06-21 00:56:12.jpg
inflating: monet2photo/trainB/2015-12-15 02:52:11.jpg
inflating: monet2photo/trainB/2016-08-17 03:16:04.jpg
inflating: monet2photo/trainB/2015-06-04 20:24:15.jpg
inflating: monet2photo/trainB/2015-06-21 14:36:37.jpg
inflating: monet2photo/trainB/2016-04-06 12:51:21.jpg
inflating: monet2photo/trainB/2015-09-06 23:35:54.jpg
inflating: monet2photo/trainB/2015-09-13 23:20:15.jpg
inflating: monet2photo/trainB/2016-11-25 06:51:52.jpg
inflating: monet2photo/trainB/2016-05-14 18:43:12.jpg
inflating: monet2photo/trainB/2016-06-21 12:53:27.jpg
inflating: monet2photo/trainB/2015-08-17 20:12:34.jpg
inflating: monet2photo/trainB/2016-08-16 12:59:37.jpg
inflating: monet2photo/trainB/2016-04-18 18:58:09.jpg
inflating: monet2photo/trainB/2016-03-23 15:09:44.jpg
inflating: monet2photo/trainB/2015-09-10 12:56:49.jpg
inflating: monet2photo/trainB/2015-09-09 04:45:13.jpg
inflating: monet2photo/trainB/2016-12-03 10:55:29.jpg
inflating: monet2photo/trainB/2016-06-29 14:01:49.jpg
inflating: monet2photo/trainB/2015-06-15 03:28:24.jpg
inflating: monet2photo/trainB/2015-12-08 06:12:06.jpg
inflating: monet2photo/trainB/2015-03-27 11:07:13.jpg
inflating: monet2photo/trainB/2015-06-23 10:38:46.jpg
inflating: monet2photo/trainB/2016-11-24 09:16:44.jpg
inflating: monet2photo/trainB/2016-05-22 01:57:52.jpg
inflating: monet2photo/trainB/2015-08-24 10:27:40.jpg
inflating: monet2photo/trainB/2015-06-27 15:31:58.jpg
inflating: monet2photo/trainB/2015-01-09 07:54:36.jpg
inflating: monet2photo/trainB/2015-12-01 21:20:49.jpg
inflating: monet2photo/trainB/2015-02-26 17:04:29.jpg
inflating: monet2photo/trainB/2015-12-05 21:12:41.jpg
inflating: monet2photo/trainB/2016-06-06 01:26:31.jpg
inflating: monet2photo/trainB/2016-06-13 17:26:55.jpg
inflating: monet2photo/trainB/2015-10-27 13:09:00.jpg
inflating: monet2photo/trainB/2015-05-01 22:28:12.jpg
inflating: monet2photo/trainB/2016-01-08 00:25:09.jpg
inflating: monet2photo/trainB/2016-01-14 13:11:16.jpg
inflating: monet2photo/trainB/2015-08-12 19:28:45.jpg
inflating: monet2photo/trainB/2015-12-15 02:16:40.jpg
inflating: monet2photo/trainB/2015-05-15 16:00:08.jpg
inflating: monet2photo/trainB/2016-12-05 10:09:42.jpg
inflating: monet2photo/trainB/2015-07-09 22:06:17.jpg
inflating: monet2photo/trainB/2016-07-31 17:57:36.jpg
inflating: monet2photo/trainB/2015-05-21 19:47:19.jpg
inflating: monet2photo/trainB/2013-12-10 01:57:03.jpg
inflating: monet2photo/trainB/2016-03-22 01:15:28.jpg
inflating: monet2photo/trainB/2015-05-15 14:56:57.jpg
inflating: monet2photo/trainB/2016-04-29 11:54:35.jpg
inflating: monet2photo/trainB/2016-08-05 05:41:50.jpg
inflating: monet2photo/trainB/2015-08-12 10:15:23.jpg
inflating: monet2photo/trainB/2015-12-11 10:48:03.jpg
inflating: monet2photo/trainB/2016-04-15 03:07:55.jpg
inflating: monet2photo/trainB/2016-07-30 06:43:47.jpg
inflating: monet2photo/trainB/2016-02-27 18:15:48.jpg
inflating: monet2photo/trainB/2016-02-24 23:01:51.jpg
inflating: monet2photo/trainB/2015-12-12 07:18:11.jpg
inflating: monet2photo/trainB/2015-05-16 12:33:27.jpg
inflating: monet2photo/trainB/2014-02-12 00:21:21.jpg
inflating: monet2photo/trainB/2016-08-19 09:07:58.jpg
inflating: monet2photo/trainB/2015-12-31 05:20:21.jpg
inflating: monet2photo/trainB/2015-08-03 08:21:25.jpg
inflating: monet2photo/trainB/2016-12-30 15:06:05.jpg
inflating: monet2photo/trainB/2016-06-10 01:13:37.jpg
inflating: monet2photo/trainB/2016-05-12 11:12:35.jpg
inflating: monet2photo/trainB/2014-06-09 09:18:20.jpg
inflating: monet2photo/trainB/2016-08-24 22:45:12.jpg
inflating: monet2photo/trainB/2015-12-27 05:57:28.jpg
inflating: monet2photo/trainB/2015-12-02 20:22:50.jpg
inflating: monet2photo/trainB/2015-02-02 08:16:09.jpg
inflating: monet2photo/trainB/2016-12-10 19:25:39.jpg
inflating: monet2photo/trainB/2014-11-08 03:16:14.jpg
inflating: monet2photo/trainB/2014-07-18 03:51:28.jpg
inflating: monet2photo/trainB/2015-08-11 17:32:49.jpg
inflating: monet2photo/trainB/2015-05-17 15:19:08.jpg
inflating: monet2photo/trainB/2015-06-10 18:11:32.jpg
inflating: monet2photo/trainB/2016-05-20 12:56:30.jpg
inflating: monet2photo/trainB/2016-08-04 23:02:13.jpg
inflating: monet2photo/trainB/2015-10-30 09:08:02.jpg
inflating: monet2photo/trainB/2014-05-04 10:54:35.jpg
inflating: monet2photo/trainB/2016-08-31 13:34:22.jpg
inflating: monet2photo/trainB/2016-08-05 14:16:40.jpg
inflating: monet2photo/trainB/2016-12-27 22:47:13.jpg
inflating: monet2photo/trainB/2015-12-01 16:16:56.jpg
inflating: monet2photo/trainB/2016-06-05 21:12:07.jpg
inflating: monet2photo/trainB/2016-12-31 07:01:04.jpg
inflating: monet2photo/trainB/2014-07-28 17:58:29.jpg
inflating: monet2photo/trainB/2016-04-04 21:53:37.jpg
inflating: monet2photo/trainB/2016-12-18 19:29:36.jpg
inflating: monet2photo/trainB/2016-11-16 11:54:05.jpg
inflating: monet2photo/trainB/2016-06-19 04:54:10.jpg
inflating: monet2photo/trainB/2016-01-25 08:44:11.jpg
inflating: monet2photo/trainB/2015-12-19 06:47:52.jpg
inflating: monet2photo/trainB/2016-04-07 09:28:54.jpg
inflating: monet2photo/trainB/2016-01-27 23:09:47.jpg
inflating: monet2photo/trainB/2015-10-19 01:30:00.jpg
inflating: monet2photo/trainB/2016-03-06 17:56:29.jpg
inflating: monet2photo/trainB/2016-06-27 14:15:37.jpg
inflating: monet2photo/trainB/2015-07-08 14:04:26.jpg
inflating: monet2photo/trainB/2015-11-14 02:12:04.jpg
inflating: monet2photo/trainB/2015-06-01 14:54:21.jpg
inflating: monet2photo/trainB/2016-08-12 23:07:48.jpg
inflating: monet2photo/trainB/2015-09-20 20:15:20.jpg
inflating: monet2photo/trainB/2016-04-22 16:45:02.jpg
inflating: monet2photo/trainB/2016-07-03 00:25:40.jpg
inflating: monet2photo/trainB/2016-12-18 00:32:56.jpg
inflating: monet2photo/trainB/2015-07-11 05:07:32.jpg
inflating: monet2photo/trainB/2015-09-13 02:58:10.jpg
inflating: monet2photo/trainB/2016-05-16 12:42:36.jpg
inflating: monet2photo/trainB/2013-12-02 11:26:22.jpg
inflating: monet2photo/trainB/2016-01-24 12:13:18.jpg
inflating: monet2photo/trainB/2015-08-08 05:57:17.jpg
inflating: monet2photo/trainB/2015-01-26 03:16:10.jpg
inflating: monet2photo/trainB/2014-03-18 20:15:25.jpg
inflating: monet2photo/trainB/2016-07-01 21:43:05.jpg
inflating: monet2photo/trainB/2016-01-18 10:26:57.jpg
inflating: monet2photo/trainB/2016-12-13 08:44:52.jpg
inflating: monet2photo/trainB/2015-08-01 05:06:21.jpg
inflating: monet2photo/trainB/2016-04-17 08:42:28.jpg
inflating: monet2photo/trainB/2016-05-15 09:55:52.jpg
inflating: monet2photo/trainB/2015-02-11 00:28:14.jpg
inflating: monet2photo/trainB/2015-09-06 03:55:37.jpg
inflating: monet2photo/trainB/2015-07-31 22:51:35.jpg
inflating: monet2photo/trainB/2015-10-26 08:15:00.jpg
inflating: monet2photo/trainB/2015-03-31 05:02:30.jpg
inflating: monet2photo/trainB/2015-09-08 19:08:03.jpg
inflating: monet2photo/trainB/2016-05-29 21:04:40.jpg
inflating: monet2photo/trainB/2014-11-06 09:40:32.jpg
inflating: monet2photo/trainB/2015-11-15 06:16:47.jpg
inflating: monet2photo/trainB/2014-05-19 14:44:45.jpg
inflating: monet2photo/trainB/2015-10-15 21:23:19.jpg
inflating: monet2photo/trainB/2016-02-27 07:26:16.jpg
inflating: monet2photo/trainB/2015-07-18 17:24:17.jpg
inflating: monet2photo/trainB/2015-08-13 05:00:54.jpg
inflating: monet2photo/trainB/2014-05-10 08:51:56.jpg
inflating: monet2photo/trainB/2015-05-21 19:41:48.jpg
inflating: monet2photo/trainB/2016-07-25 03:38:04.jpg
inflating: monet2photo/trainB/2016-05-03 22:59:44.jpg
inflating: monet2photo/trainB/2015-03-20 08:39:16.jpg
inflating: monet2photo/trainB/2015-08-31 11:20:44.jpg
inflating: monet2photo/trainB/2013-12-30 07:23:37.jpg
inflating: monet2photo/trainB/2016-08-15 23:48:20.jpg
inflating: monet2photo/trainB/2015-07-17 08:34:21.jpg
inflating: monet2photo/trainB/2015-09-28 20:04:00.jpg
inflating: monet2photo/trainB/2016-02-02 20:32:19.jpg
inflating: monet2photo/trainB/2015-06-02 22:52:27.jpg
inflating: monet2photo/trainB/2016-01-26 06:18:15.jpg
inflating: monet2photo/trainB/2014-05-01 03:56:22.jpg
inflating: monet2photo/trainB/2015-06-11 03:45:31.jpg
inflating: monet2photo/trainB/2014-05-22 13:44:17.jpg
inflating: monet2photo/trainB/2015-07-16 12:43:23.jpg
inflating: monet2photo/trainB/2015-07-26 05:15:26.jpg
inflating: monet2photo/trainB/2014-05-21 04:12:57.jpg
inflating: monet2photo/trainB/2016-01-10 08:43:51.jpg
inflating: monet2photo/trainB/2016-08-14 08:08:18.jpg
inflating: monet2photo/trainB/2015-02-28 09:38:57.jpg
inflating: monet2photo/trainB/2016-01-02 20:25:57.jpg
inflating: monet2photo/trainB/2015-09-09 11:00:49.jpg
inflating: monet2photo/trainB/2015-02-22 08:22:30.jpg
inflating: monet2photo/trainB/2013-11-21 16:49:08.jpg
inflating: monet2photo/trainB/2016-05-25 14:33:46.jpg
inflating: monet2photo/trainB/2015-09-30 19:33:58.jpg
inflating: monet2photo/trainB/2015-05-03 17:09:25.jpg
inflating: monet2photo/trainB/2015-03-08 01:09:12.jpg
inflating: monet2photo/trainB/2015-02-14 10:38:14.jpg
inflating: monet2photo/trainB/2016-08-12 04:55:34.jpg
inflating: monet2photo/trainB/2015-10-30 10:52:38.jpg
inflating: monet2photo/trainB/2015-05-08 08:10:06.jpg
inflating: monet2photo/trainB/2015-06-10 18:43:05.jpg
inflating: monet2photo/trainB/2016-01-29 18:04:46.jpg
inflating: monet2photo/trainB/2015-12-27 15:44:20.jpg
inflating: monet2photo/trainB/2015-07-27 02:13:52.jpg
inflating: monet2photo/trainB/2015-11-04 01:55:58.jpg
inflating: monet2photo/trainB/2014-02-26 05:40:20.jpg
inflating: monet2photo/trainB/2016-05-26 10:44:28.jpg
inflating: monet2photo/trainB/2016-08-29 03:12:19.jpg
inflating: monet2photo/trainB/2014-06-15 01:05:17.jpg
inflating: monet2photo/trainB/2014-05-05 05:42:30.jpg
inflating: monet2photo/trainB/2013-12-20 01:25:20.jpg
inflating: monet2photo/trainB/2014-05-04 05:56:16.jpg
inflating: monet2photo/trainB/2015-08-08 08:09:16.jpg
inflating: monet2photo/trainB/2015-03-05 16:06:40.jpg
inflating: monet2photo/trainB/2014-03-24 10:24:08.jpg
inflating: monet2photo/trainB/2016-12-08 02:41:17.jpg
inflating: monet2photo/trainB/2016-01-02 17:22:42.jpg
inflating: monet2photo/trainB/2015-11-26 17:35:11.jpg
inflating: monet2photo/trainB/2016-03-10 02:08:39.jpg
inflating: monet2photo/trainB/2016-03-18 11:59:26.jpg
inflating: monet2photo/trainB/2015-02-06 10:07:33.jpg
inflating: monet2photo/trainB/2015-07-14 18:46:26.jpg
inflating: monet2photo/trainB/2016-07-10 21:14:15.jpg
inflating: monet2photo/trainB/2016-12-21 08:30:29.jpg
inflating: monet2photo/trainB/2016-07-31 22:43:13.jpg
inflating: monet2photo/trainB/2015-03-15 22:09:39.jpg
inflating: monet2photo/trainB/2015-02-02 12:33:28.jpg
inflating: monet2photo/trainB/2016-07-05 11:53:57.jpg
inflating: monet2photo/trainB/2015-11-23 01:37:15.jpg
inflating: monet2photo/trainB/2015-10-09 19:18:53.jpg
inflating: monet2photo/trainB/2015-08-07 09:04:05.jpg
inflating: monet2photo/trainB/2014-06-08 23:40:20.jpg
inflating: monet2photo/trainB/2016-01-05 07:06:21.jpg
inflating: monet2photo/trainB/2015-06-24 12:08:53.jpg
inflating: monet2photo/trainB/2016-04-18 18:51:33.jpg
inflating: monet2photo/trainB/2013-12-13 02:05:01.jpg
inflating: monet2photo/trainB/2015-07-06 05:03:48.jpg
inflating: monet2photo/trainB/2014-07-21 14:35:44.jpg
inflating: monet2photo/trainB/2016-08-03 00:23:34.jpg
inflating: monet2photo/trainB/2016-01-29 18:27:47.jpg
inflating: monet2photo/trainB/2014-11-12 14:27:33.jpg
inflating: monet2photo/trainB/2014-07-24 22:07:37.jpg
inflating: monet2photo/trainB/2015-11-06 14:39:52.jpg
inflating: monet2photo/trainB/2016-07-02 07:36:09.jpg
inflating: monet2photo/trainB/2014-05-23 02:13:43.jpg
inflating: monet2photo/trainB/2016-04-18 11:08:01.jpg
inflating: monet2photo/trainB/2016-07-13 11:24:55.jpg
inflating: monet2photo/trainB/2016-11-29 06:49:31.jpg
inflating: monet2photo/trainB/2016-07-27 20:03:06.jpg
inflating: monet2photo/trainB/2016-08-06 03:53:00.jpg
inflating: monet2photo/trainB/2015-02-18 08:37:31.jpg
inflating: monet2photo/trainB/2015-03-26 20:45:27.jpg
inflating: monet2photo/trainB/2016-07-13 12:24:23.jpg
inflating: monet2photo/trainB/2016-03-04 09:43:06.jpg
inflating: monet2photo/trainB/2016-03-25 12:33:37.jpg
inflating: monet2photo/trainB/2015-09-27 08:09:16.jpg
inflating: monet2photo/trainB/2016-06-02 13:44:07.jpg
inflating: monet2photo/trainB/2014-03-11 18:11:57.jpg
inflating: monet2photo/trainB/2016-08-18 08:59:02.jpg
inflating: monet2photo/trainB/2015-10-25 14:47:59.jpg
inflating: monet2photo/trainB/2014-05-08 08:30:03.jpg
inflating: monet2photo/trainB/2015-08-18 18:56:17.jpg
inflating: monet2photo/trainB/2016-08-03 12:54:18.jpg
inflating: monet2photo/trainB/2016-05-14 14:13:30.jpg
inflating: monet2photo/trainB/2016-07-12 16:32:32.jpg
inflating: monet2photo/trainB/2016-03-01 07:11:55.jpg
inflating: monet2photo/trainB/2015-10-15 12:31:56.jpg
inflating: monet2photo/trainB/2016-02-06 09:50:59.jpg
inflating: monet2photo/trainB/2016-12-28 23:49:30.jpg
inflating: monet2photo/trainB/2016-06-21 23:22:02.jpg
inflating: monet2photo/trainB/2016-08-20 08:01:33.jpg
inflating: monet2photo/trainB/2014-07-26 10:44:52.jpg
inflating: monet2photo/trainB/2014-07-05 00:39:17.jpg
inflating: monet2photo/trainB/2014-06-19 14:51:11.jpg
inflating: monet2photo/trainB/2015-12-15 10:19:17.jpg
inflating: monet2photo/trainB/2016-01-20 09:55:47.jpg
inflating: monet2photo/trainB/2016-08-02 01:05:05.jpg
inflating: monet2photo/trainB/2015-03-19 14:11:01.jpg
inflating: monet2photo/trainB/2015-09-08 14:58:50.jpg
inflating: monet2photo/trainB/2016-07-26 18:30:59.jpg
inflating: monet2photo/trainB/2016-02-12 18:15:16.jpg
inflating: monet2photo/trainB/2016-01-30 00:29:58.jpg
inflating: monet2photo/trainB/2016-05-15 20:53:13.jpg
inflating: monet2photo/trainB/2016-02-15 06:37:03.jpg
inflating: monet2photo/trainB/2015-06-10 03:26:46.jpg
inflating: monet2photo/trainB/2016-05-03 04:04:24.jpg
inflating: monet2photo/trainB/2014-04-02 07:57:52.jpg
inflating: monet2photo/trainB/2016-05-30 13:27:52.jpg
inflating: monet2photo/trainB/2014-01-23 02:02:45.jpg
inflating: monet2photo/trainB/2016-05-08 12:06:58.jpg
inflating: monet2photo/trainB/2015-10-22 21:11:53.jpg
inflating: monet2photo/trainB/2016-03-11 03:16:26.jpg
inflating: monet2photo/trainB/2016-07-13 09:53:59.jpg
inflating: monet2photo/trainB/2015-03-07 18:24:15.jpg
inflating: monet2photo/trainB/2015-11-15 03:55:09.jpg
inflating: monet2photo/trainB/2015-02-21 18:34:28.jpg
inflating: monet2photo/trainB/2015-05-13 19:50:27.jpg
inflating: monet2photo/trainB/2015-06-24 08:25:40.jpg
inflating: monet2photo/trainB/2016-12-28 05:29:17.jpg
inflating: monet2photo/trainB/2016-11-18 21:22:26.jpg
inflating: monet2photo/trainB/2016-01-04 10:13:22.jpg
inflating: monet2photo/trainB/2015-01-25 10:27:49.jpg
inflating: monet2photo/trainB/2014-01-05 02:53:34.jpg
inflating: monet2photo/trainB/2013-12-22 09:32:23.jpg
inflating: monet2photo/trainB/2015-09-22 12:48:00.jpg
inflating: monet2photo/trainB/2015-12-06 10:37:24.jpg
inflating: monet2photo/trainB/2016-01-25 19:33:52.jpg
inflating: monet2photo/trainB/2016-08-05 22:05:14.jpg
inflating: monet2photo/trainB/2015-07-03 16:12:10.jpg
inflating: monet2photo/trainB/2014-07-26 22:45:00.jpg
inflating: monet2photo/trainB/2016-05-31 04:16:20.jpg
inflating: monet2photo/trainB/2016-07-30 06:15:50.jpg
inflating: monet2photo/trainB/2014-07-28 22:44:30.jpg
inflating: monet2photo/trainB/2015-03-13 09:00:09.jpg
inflating: monet2photo/trainB/2016-05-18 06:46:36.jpg
inflating: monet2photo/trainB/2016-08-20 05:21:55.jpg
inflating: monet2photo/trainB/2014-02-23 09:44:13.jpg
inflating: monet2photo/trainB/2015-07-06 12:01:44.jpg
inflating: monet2photo/trainB/2016-08-11 14:12:10.jpg
inflating: monet2photo/trainB/2015-03-26 19:48:59.jpg
inflating: monet2photo/trainB/2016-06-05 01:54:07.jpg
inflating: monet2photo/trainB/2016-12-07 08:04:10.jpg
inflating: monet2photo/trainB/2016-07-06 12:34:41.jpg
inflating: monet2photo/trainB/2016-07-26 10:16:31.jpg
inflating: monet2photo/trainB/2015-11-18 11:48:16.jpg
inflating: monet2photo/trainB/2015-02-09 01:37:36.jpg
inflating: monet2photo/trainB/2016-02-03 11:47:54.jpg
inflating: monet2photo/trainB/2016-02-20 22:46:19.jpg
inflating: monet2photo/trainB/2015-03-16 17:47:48.jpg
inflating: monet2photo/trainB/2015-12-01 05:37:21.jpg
inflating: monet2photo/trainB/2016-05-23 14:53:13.jpg
inflating: monet2photo/trainB/2016-06-10 09:53:11.jpg
inflating: monet2photo/trainB/2016-06-19 15:45:38.jpg
inflating: monet2photo/trainB/2015-11-17 15:29:52.jpg
inflating: monet2photo/trainB/2016-03-21 14:23:40.jpg
inflating: monet2photo/trainB/2015-03-16 09:34:39.jpg
inflating: monet2photo/trainB/2016-07-30 11:01:24.jpg
inflating: monet2photo/trainB/2014-01-05 07:29:31.jpg
inflating: monet2photo/trainB/2016-03-19 22:20:32.jpg
inflating: monet2photo/trainB/2016-02-21 15:03:24.jpg
inflating: monet2photo/trainB/2015-01-19 15:57:41.jpg
inflating: monet2photo/trainB/2014-06-16 12:45:29.jpg
inflating: monet2photo/trainB/2016-12-29 10:23:22.jpg
inflating: monet2photo/trainB/2015-03-19 23:36:36.jpg
inflating: monet2photo/trainB/2016-02-11 07:45:40.jpg
inflating: monet2photo/trainB/2013-11-14 01:44:20.jpg
inflating: monet2photo/trainB/2016-05-05 07:40:38.jpg
inflating: monet2photo/trainB/2016-03-29 19:00:22.jpg
inflating: monet2photo/trainB/2016-11-27 07:55:08.jpg
inflating: monet2photo/trainB/2015-10-07 02:20:26.jpg
inflating: monet2photo/trainB/2015-11-22 11:19:57.jpg
inflating: monet2photo/trainB/2014-02-27 10:08:59.jpg
inflating: monet2photo/trainB/2016-05-04 06:52:04.jpg
inflating: monet2photo/trainB/2015-05-03 22:06:40.jpg
inflating: monet2photo/trainB/2015-05-20 01:25:46.jpg
inflating: monet2photo/trainB/2015-12-01 07:21:57.jpg
inflating: monet2photo/trainB/2015-03-10 13:18:26.jpg
inflating: monet2photo/trainB/2015-03-03 05:22:24.jpg
inflating: monet2photo/trainB/2014-06-30 23:37:44.jpg
inflating: monet2photo/trainB/2016-12-28 13:05:19.jpg
inflating: monet2photo/trainB/2016-02-17 08:51:35.jpg
inflating: monet2photo/trainB/2015-08-03 03:07:48.jpg
inflating: monet2photo/trainB/2016-06-26 23:54:05.jpg
inflating: monet2photo/trainB/2016-03-09 12:49:58.jpg
inflating: monet2photo/trainB/2013-12-08 20:08:52.jpg
inflating: monet2photo/trainB/2015-08-22 12:36:16.jpg
inflating: monet2photo/trainB/2015-10-09 03:32:30.jpg
inflating: monet2photo/trainB/2016-12-28 18:49:00.jpg
inflating: monet2photo/trainB/2015-10-06 09:26:17.jpg
inflating: monet2photo/trainB/2016-02-11 11:15:08.jpg
inflating: monet2photo/trainB/2014-11-04 19:56:22.jpg
inflating: monet2photo/trainB/2016-08-18 12:13:14.jpg
inflating: monet2photo/trainB/2016-07-21 07:27:13.jpg
inflating: monet2photo/trainB/2016-04-25 06:43:45.jpg
inflating: monet2photo/trainB/2015-01-03 02:20:06.jpg
inflating: monet2photo/trainB/2016-05-16 02:05:37.jpg
inflating: monet2photo/trainB/2015-01-03 03:30:43.jpg
inflating: monet2photo/trainB/2016-12-08 16:18:11.jpg
inflating: monet2photo/trainB/2016-07-31 12:47:52.jpg
inflating: monet2photo/trainB/2016-04-28 15:57:19.jpg
inflating: monet2photo/trainB/2016-12-30 02:44:33.jpg
inflating: monet2photo/trainB/2016-03-14 21:03:51.jpg
inflating: monet2photo/trainB/2016-05-17 03:03:20.jpg
inflating: monet2photo/trainB/2016-02-06 19:14:37.jpg
inflating: monet2photo/trainB/2016-07-29 09:54:51.jpg
inflating: monet2photo/trainB/2016-06-04 11:28:31.jpg
inflating: monet2photo/trainB/2016-12-18 10:45:29.jpg
inflating: monet2photo/trainB/2015-11-28 13:55:29.jpg
inflating: monet2photo/trainB/2015-10-04 18:20:09.jpg
inflating: monet2photo/trainB/2015-02-12 20:53:44.jpg
inflating: monet2photo/trainB/2016-02-08 11:51:23.jpg
inflating: monet2photo/trainB/2015-10-10 11:39:25.jpg
inflating: monet2photo/trainB/2016-08-27 22:19:22.jpg
inflating: monet2photo/trainB/2015-09-04 12:10:21.jpg
inflating: monet2photo/trainB/2014-01-07 00:54:20.jpg
inflating: monet2photo/trainB/2016-01-10 03:56:46.jpg
inflating: monet2photo/trainB/2015-10-25 10:06:25.jpg
inflating: monet2photo/trainB/2016-03-26 10:31:27.jpg
inflating: monet2photo/trainB/2015-11-24 06:44:03.jpg
inflating: monet2photo/trainB/2015-07-01 06:13:02.jpg
inflating: monet2photo/trainB/2015-07-07 03:25:17.jpg
inflating: monet2photo/trainB/2016-02-17 22:20:44.jpg
inflating: monet2photo/trainB/2013-11-18 08:52:05.jpg
inflating: monet2photo/trainB/2016-06-25 10:30:26.jpg
inflating: monet2photo/trainB/2015-11-08 07:40:26.jpg
inflating: monet2photo/trainB/2013-12-08 16:10:49.jpg
inflating: monet2photo/trainB/2014-03-04 17:55:12.jpg
inflating: monet2photo/trainB/2015-05-18 13:59:16.jpg
inflating: monet2photo/trainB/2015-09-16 00:00:20.jpg
inflating: monet2photo/trainB/2016-01-11 10:44:35.jpg
inflating: monet2photo/trainB/2014-04-04 19:54:10.jpg
inflating: monet2photo/trainB/2014-04-29 13:21:10.jpg
inflating: monet2photo/trainB/2015-07-10 08:39:34.jpg
inflating: monet2photo/trainB/2015-12-11 11:16:56.jpg
inflating: monet2photo/trainB/2015-02-23 23:35:58.jpg
inflating: monet2photo/trainB/2016-08-14 13:58:34.jpg
inflating: monet2photo/trainB/2016-05-02 04:01:47.jpg
inflating: monet2photo/trainB/2015-07-28 19:50:55.jpg
inflating: monet2photo/trainB/2014-04-02 07:22:40.jpg
inflating: monet2photo/trainB/2016-11-20 04:00:25.jpg
inflating: monet2photo/trainB/2014-03-12 10:07:22.jpg
inflating: monet2photo/trainB/2014-02-25 13:28:05.jpg
inflating: monet2photo/trainB/2015-03-21 07:01:57.jpg
inflating: monet2photo/trainB/2016-08-30 10:38:04.jpg
inflating: monet2photo/trainB/2016-06-29 12:34:00.jpg
inflating: monet2photo/trainB/2015-08-17 15:17:15.jpg
inflating: monet2photo/trainB/2015-08-06 01:45:16.jpg
inflating: monet2photo/trainB/2014-04-20 12:52:57.jpg
inflating: monet2photo/trainB/2016-12-06 13:33:44.jpg
inflating: monet2photo/trainB/2015-09-09 14:38:03.jpg
inflating: monet2photo/trainB/2015-07-16 08:17:44.jpg
inflating: monet2photo/trainB/2015-12-15 06:50:05.jpg
inflating: monet2photo/trainB/2015-01-08 16:22:50.jpg
inflating: monet2photo/trainB/2014-02-24 17:27:22.jpg
inflating: monet2photo/trainB/2016-06-08 00:58:36.jpg
inflating: monet2photo/trainB/2016-08-31 12:22:28.jpg
inflating: monet2photo/trainB/2013-11-26 11:00:05.jpg
inflating: monet2photo/trainB/2016-07-09 05:46:36.jpg
inflating: monet2photo/trainB/2016-01-12 12:53:20.jpg
inflating: monet2photo/trainB/2014-11-23 10:30:20.jpg
inflating: monet2photo/trainB/2015-09-29 05:01:50.jpg
inflating: monet2photo/trainB/2016-06-12 05:45:12.jpg
inflating: monet2photo/trainB/2016-01-13 10:18:15.jpg
inflating: monet2photo/trainB/2014-11-05 20:32:28.jpg
inflating: monet2photo/trainB/2015-10-27 08:27:34.jpg
inflating: monet2photo/trainB/2016-08-21 08:15:36.jpg
inflating: monet2photo/trainB/2015-12-21 05:43:04.jpg
inflating: monet2photo/trainB/2016-02-28 14:15:05.jpg
inflating: monet2photo/trainB/2015-11-09 21:02:48.jpg
inflating: monet2photo/trainB/2015-02-21 02:04:07.jpg
inflating: monet2photo/trainB/2016-04-22 06:45:41.jpg
inflating: monet2photo/trainB/2015-06-13 03:56:21.jpg
inflating: monet2photo/trainB/2016-06-06 23:03:30.jpg
inflating: monet2photo/trainB/2015-08-23 03:12:42.jpg
inflating: monet2photo/trainB/2015-07-19 11:16:41.jpg
inflating: monet2photo/trainB/2015-01-15 14:49:26.jpg
inflating: monet2photo/trainB/2016-08-26 03:53:41.jpg
inflating: monet2photo/trainB/2015-06-22 10:13:03.jpg
inflating: monet2photo/trainB/2014-11-09 17:04:25.jpg
inflating: monet2photo/trainB/2016-11-24 18:51:01.jpg
inflating: monet2photo/trainB/2016-12-30 16:46:40.jpg
inflating: monet2photo/trainB/2015-03-30 03:27:40.jpg
inflating: monet2photo/trainB/2015-08-15 15:28:32.jpg
inflating: monet2photo/trainB/2015-10-17 02:58:09.jpg
inflating: monet2photo/trainB/2016-12-26 11:43:18.jpg
inflating: monet2photo/trainB/2014-05-23 21:46:51.jpg
inflating: monet2photo/trainB/2014-06-25 11:51:48.jpg
inflating: monet2photo/trainB/2016-03-11 08:07:35.jpg
inflating: monet2photo/trainB/2016-01-23 08:12:27.jpg
inflating: monet2photo/trainB/2014-03-18 20:18:23.jpg
inflating: monet2photo/trainB/2015-05-26 02:55:35.jpg
inflating: monet2photo/trainB/2014-01-16 22:52:30.jpg
inflating: monet2photo/trainB/2015-12-05 22:01:33.jpg
inflating: monet2photo/trainB/2016-01-15 04:57:04.jpg
inflating: monet2photo/trainB/2015-12-20 21:24:12.jpg
inflating: monet2photo/trainB/2016-07-21 00:38:04.jpg
inflating: monet2photo/trainB/2016-06-12 08:29:24.jpg
inflating: monet2photo/trainB/2016-06-09 22:56:45.jpg
inflating: monet2photo/trainB/2015-08-30 01:58:10.jpg
inflating: monet2photo/trainB/2015-12-19 04:44:59.jpg
inflating: monet2photo/trainB/2016-12-24 10:41:51.jpg
inflating: monet2photo/trainB/2013-11-10 12:45:41.jpg
inflating: monet2photo/trainB/2016-12-06 03:31:46.jpg
inflating: monet2photo/trainB/2015-09-13 18:54:52.jpg
inflating: monet2photo/trainB/2013-11-30 11:17:52.jpg
inflating: monet2photo/trainB/2015-10-01 14:21:42.jpg
inflating: monet2photo/trainB/2016-01-03 05:52:31.jpg
inflating: monet2photo/trainB/2015-05-27 10:43:08.jpg
inflating: monet2photo/trainB/2016-12-12 07:59:04.jpg
inflating: monet2photo/trainB/2015-12-11 09:24:35.jpg
inflating: monet2photo/trainB/2015-12-11 22:06:39.jpg
inflating: monet2photo/trainB/2016-03-05 11:44:40.jpg
inflating: monet2photo/trainB/2014-01-11 15:18:14.jpg
inflating: monet2photo/trainB/2015-12-06 16:24:00.jpg
inflating: monet2photo/trainB/2015-06-30 03:52:28.jpg
inflating: monet2photo/trainB/2013-12-03 03:49:49.jpg
inflating: monet2photo/trainB/2015-02-03 10:37:22.jpg
inflating: monet2photo/trainB/2014-05-10 21:33:33.jpg
inflating: monet2photo/trainB/2015-10-01 23:03:40.jpg
inflating: monet2photo/trainB/2016-05-23 08:10:33.jpg
inflating: monet2photo/trainB/2015-12-06 10:00:36.jpg
inflating: monet2photo/trainB/2014-06-06 22:59:27.jpg
inflating: monet2photo/trainB/2016-05-09 11:55:03.jpg
inflating: monet2photo/trainB/2016-04-03 03:17:42.jpg
inflating: monet2photo/trainB/2013-12-15 07:03:30.jpg
inflating: monet2photo/trainB/2016-03-01 06:18:09.jpg
inflating: monet2photo/trainB/2016-05-20 23:01:08.jpg
inflating: monet2photo/trainB/2015-01-08 07:43:28.jpg
inflating: monet2photo/trainB/2015-07-08 10:16:09.jpg
inflating: monet2photo/trainB/2016-12-30 03:05:35.jpg
inflating: monet2photo/trainB/2016-08-22 07:52:13.jpg
inflating: monet2photo/trainB/2016-01-13 09:25:00.jpg
inflating: monet2photo/trainB/2015-12-13 03:24:59.jpg
inflating: monet2photo/trainB/2015-12-31 17:20:21.jpg
inflating: monet2photo/trainB/2015-08-26 13:01:54.jpg
inflating: monet2photo/trainB/2014-07-15 09:41:31.jpg
inflating: monet2photo/trainB/2014-01-01 05:16:14.jpg
inflating: monet2photo/trainB/2013-12-11 10:02:20.jpg
inflating: monet2photo/trainB/2014-05-05 10:04:58.jpg
inflating: monet2photo/trainB/2016-06-29 13:07:29.jpg
inflating: monet2photo/trainB/2016-11-29 17:45:11.jpg
inflating: monet2photo/trainB/2014-01-16 10:12:54.jpg
inflating: monet2photo/trainB/2016-04-08 04:33:08.jpg
inflating: monet2photo/trainB/2015-12-21 04:03:36.jpg
inflating: monet2photo/trainB/2015-12-01 12:18:46.jpg
inflating: monet2photo/trainB/2014-11-13 04:04:33.jpg
inflating: monet2photo/trainB/2015-07-08 14:07:36.jpg
inflating: monet2photo/trainB/2015-09-13 08:01:11.jpg
inflating: monet2photo/trainB/2016-03-28 09:41:20.jpg
inflating: monet2photo/trainB/2015-10-21 16:03:24.jpg
inflating: monet2photo/trainB/2015-02-10 22:02:02.jpg
inflating: monet2photo/trainB/2016-08-04 14:52:02.jpg
inflating: monet2photo/trainB/2015-10-07 05:34:50.jpg
inflating: monet2photo/trainB/2016-05-08 18:15:54.jpg
inflating: monet2photo/trainB/2016-02-24 19:28:16.jpg
inflating: monet2photo/trainB/2016-02-15 11:11:56.jpg
inflating: monet2photo/trainB/2015-03-09 16:53:19.jpg
inflating: monet2photo/trainB/2015-05-27 09:30:00.jpg
inflating: monet2photo/trainB/2015-11-23 08:02:30.jpg
inflating: monet2photo/trainB/2014-01-17 16:10:25.jpg
inflating: monet2photo/trainB/2016-03-11 05:57:04.jpg
inflating: monet2photo/trainB/2014-02-20 17:22:37.jpg
inflating: monet2photo/trainB/2016-02-06 17:54:59.jpg
inflating: monet2photo/trainB/2015-11-05 06:39:03.jpg
inflating: monet2photo/trainB/2016-12-18 22:52:43.jpg
inflating: monet2photo/trainB/2016-05-07 02:20:05.jpg
inflating: monet2photo/trainB/2015-12-06 02:18:43.jpg
inflating: monet2photo/trainB/2016-08-28 18:58:18.jpg
inflating: monet2photo/trainB/2016-05-15 22:34:25.jpg
inflating: monet2photo/trainB/2015-05-31 15:39:40.jpg
inflating: monet2photo/trainB/2016-04-10 01:00:31.jpg
inflating: monet2photo/trainB/2015-11-04 03:19:25.jpg
inflating: monet2photo/trainB/2016-02-14 14:09:07.jpg
inflating: monet2photo/trainB/2014-11-15 04:40:48.jpg
inflating: monet2photo/trainB/2015-09-02 11:15:37.jpg
inflating: monet2photo/trainB/2015-10-18 17:18:30.jpg
inflating: monet2photo/trainB/2016-03-14 03:36:00.jpg
inflating: monet2photo/trainB/2015-09-17 17:45:58.jpg
inflating: monet2photo/trainB/2014-06-16 08:59:11.jpg
inflating: monet2photo/trainB/2016-05-02 01:00:49.jpg
inflating: monet2photo/trainB/2014-04-23 19:36:32.jpg
inflating: monet2photo/trainB/2016-04-03 08:30:46.jpg
inflating: monet2photo/trainB/2015-05-21 22:02:46.jpg
inflating: monet2photo/trainB/2015-05-17 12:01:32.jpg
inflating: monet2photo/trainB/2016-04-18 13:22:08.jpg
inflating: monet2photo/trainB/2015-09-12 15:07:39.jpg
inflating: monet2photo/trainB/2015-06-02 13:23:38.jpg
inflating: monet2photo/trainB/2015-01-23 12:54:15.jpg
inflating: monet2photo/trainB/2016-11-19 08:33:45.jpg
inflating: monet2photo/trainB/2016-12-03 05:56:39.jpg
inflating: monet2photo/trainB/2016-07-06 21:21:10.jpg
inflating: monet2photo/trainB/2015-01-26 09:39:23.jpg
inflating: monet2photo/trainB/2015-09-15 20:39:24.jpg
inflating: monet2photo/trainB/2015-07-02 17:48:36.jpg
inflating: monet2photo/trainB/2015-01-23 20:06:46.jpg
inflating: monet2photo/trainB/2015-05-29 00:15:13.jpg
inflating: monet2photo/trainB/2016-08-06 15:57:55.jpg
inflating: monet2photo/trainB/2016-02-12 16:31:56.jpg
inflating: monet2photo/trainB/2016-05-12 20:47:02.jpg
inflating: monet2photo/trainB/2014-01-04 00:00:50.jpg
inflating: monet2photo/trainB/2016-02-18 08:17:51.jpg
inflating: monet2photo/trainB/2013-11-10 19:30:53.jpg
inflating: monet2photo/trainB/2015-07-19 07:25:35.jpg
inflating: monet2photo/trainB/2016-11-19 11:24:22.jpg
inflating: monet2photo/trainB/2015-12-29 20:48:59.jpg
inflating: monet2photo/trainB/2015-12-22 09:10:18.jpg
inflating: monet2photo/trainB/2016-03-03 03:34:20.jpg
inflating: monet2photo/trainB/2016-04-04 08:23:14.jpg
inflating: monet2photo/trainB/2015-05-27 09:29:44.jpg
inflating: monet2photo/trainB/2015-09-05 21:37:35.jpg
inflating: monet2photo/trainB/2016-03-21 08:21:05.jpg
inflating: monet2photo/trainB/2015-08-16 19:08:15.jpg
inflating: monet2photo/trainB/2015-10-09 14:58:59.jpg
inflating: monet2photo/trainB/2014-06-27 15:03:42.jpg
inflating: monet2photo/trainB/2015-10-07 09:12:39.jpg
inflating: monet2photo/trainB/2016-11-28 15:03:10.jpg
inflating: monet2photo/trainB/2015-11-22 13:46:38.jpg
inflating: monet2photo/trainB/2016-11-16 00:18:48.jpg
inflating: monet2photo/trainB/2016-01-24 20:56:14.jpg
inflating: monet2photo/trainB/2015-09-21 06:53:01.jpg
inflating: monet2photo/trainB/2015-02-18 21:20:51.jpg
inflating: monet2photo/trainB/2015-08-27 14:59:51.jpg
inflating: monet2photo/trainB/2015-01-11 02:43:57.jpg
inflating: monet2photo/trainB/2014-07-29 03:56:05.jpg
inflating: monet2photo/trainB/2015-11-22 05:35:34.jpg
inflating: monet2photo/trainB/2016-05-12 19:38:30.jpg
inflating: monet2photo/trainB/2016-02-16 04:22:06.jpg
inflating: monet2photo/trainB/2015-08-01 01:34:04.jpg
inflating: monet2photo/trainB/2015-11-29 02:43:06.jpg
inflating: monet2photo/trainB/2015-07-31 02:30:37.jpg
inflating: monet2photo/trainB/2016-01-15 08:06:03.jpg
inflating: monet2photo/trainB/2015-07-21 14:39:31.jpg
inflating: monet2photo/trainB/2015-09-12 06:11:58.jpg
inflating: monet2photo/trainB/2015-05-30 20:17:34.jpg
inflating: monet2photo/trainB/2016-06-01 08:33:15.jpg
inflating: monet2photo/trainB/2015-10-11 23:27:39.jpg
inflating: monet2photo/trainB/2014-03-20 16:01:45.jpg
inflating: monet2photo/trainB/2016-05-10 21:08:16.jpg
inflating: monet2photo/trainB/2016-02-17 22:24:05.jpg
inflating: monet2photo/trainB/2015-12-10 18:10:51.jpg
inflating: monet2photo/trainB/2015-06-24 21:52:41.jpg
inflating: monet2photo/trainB/2016-05-02 04:28:14.jpg
inflating: monet2photo/trainB/2015-06-10 00:21:35.jpg
inflating: monet2photo/trainB/2014-01-18 11:51:58.jpg
inflating: monet2photo/trainB/2015-11-27 07:05:16.jpg
inflating: monet2photo/trainB/2014-04-11 05:01:57.jpg
inflating: monet2photo/trainB/2015-11-07 07:33:06.jpg
inflating: monet2photo/trainB/2015-12-23 06:36:25.jpg
inflating: monet2photo/trainB/2014-11-18 17:05:58.jpg
inflating: monet2photo/trainB/2016-08-25 15:03:06.jpg
inflating: monet2photo/trainB/2015-09-07 18:26:12.jpg
inflating: monet2photo/trainB/2015-08-10 04:37:12.jpg
inflating: monet2photo/trainB/2013-12-17 10:01:42.jpg
inflating: monet2photo/trainB/2016-03-09 20:44:45.jpg
inflating: monet2photo/trainB/2016-12-17 04:21:22.jpg
inflating: monet2photo/trainB/2015-06-24 21:52:25.jpg
inflating: monet2photo/trainB/2014-03-02 19:29:24.jpg
inflating: monet2photo/trainB/2015-03-26 17:38:54.jpg
inflating: monet2photo/trainB/2016-12-31 09:39:00.jpg
inflating: monet2photo/trainB/2014-11-23 20:25:17.jpg
inflating: monet2photo/trainB/2016-04-24 21:22:22.jpg
inflating: monet2photo/trainB/2016-06-20 07:48:29.jpg
inflating: monet2photo/trainB/2015-09-07 10:22:17.jpg
inflating: monet2photo/trainB/2016-04-11 20:47:08.jpg
inflating: monet2photo/trainB/2015-07-31 08:34:38.jpg
inflating: monet2photo/trainB/2015-11-20 15:13:53.jpg
inflating: monet2photo/trainB/2016-05-07 21:54:12.jpg
inflating: monet2photo/trainB/2015-10-10 16:49:38.jpg
inflating: monet2photo/trainB/2015-01-06 03:24:07.jpg
inflating: monet2photo/trainB/2015-08-19 00:41:54.jpg
inflating: monet2photo/trainB/2015-09-19 16:32:00.jpg
inflating: monet2photo/trainB/2014-05-17 20:53:46.jpg
inflating: monet2photo/trainB/2016-12-31 14:44:51.jpg
inflating: monet2photo/trainB/2015-11-19 22:52:04.jpg
inflating: monet2photo/trainB/2016-05-15 10:32:39.jpg
inflating: monet2photo/trainB/2014-05-17 08:28:16.jpg
inflating: monet2photo/trainB/2015-12-25 12:26:17.jpg
inflating: monet2photo/trainB/2015-03-13 23:34:02.jpg
inflating: monet2photo/trainB/2015-07-29 18:36:07.jpg
inflating: monet2photo/trainB/2016-03-19 10:10:08.jpg
inflating: monet2photo/trainB/2015-05-07 17:08:43.jpg
inflating: monet2photo/trainB/2015-06-17 07:57:09.jpg
inflating: monet2photo/trainB/2015-07-10 07:45:16.jpg
inflating: monet2photo/trainB/2015-06-30 21:42:29.jpg
inflating: monet2photo/trainB/2014-01-04 18:34:00.jpg
inflating: monet2photo/trainB/2015-02-06 10:58:44.jpg
inflating: monet2photo/trainB/2015-08-09 20:32:07.jpg
inflating: monet2photo/trainB/2016-08-09 15:30:01.jpg
inflating: monet2photo/trainB/2015-06-21 20:15:42.jpg
inflating: monet2photo/trainB/2016-06-19 02:49:07.jpg
inflating: monet2photo/trainB/2016-11-21 20:41:33.jpg
inflating: monet2photo/trainB/2016-06-11 09:18:41.jpg
inflating: monet2photo/trainB/2016-11-28 08:01:52.jpg
inflating: monet2photo/trainB/2015-10-28 14:10:34.jpg
inflating: monet2photo/trainB/2016-12-04 20:05:41.jpg
inflating: monet2photo/trainB/2016-02-03 07:42:42.jpg
inflating: monet2photo/trainB/2014-07-06 05:11:50.jpg
inflating: monet2photo/trainB/2016-07-23 03:52:07.jpg
inflating: monet2photo/trainB/2015-09-16 14:10:34.jpg
inflating: monet2photo/trainB/2015-12-07 07:31:01.jpg
inflating: monet2photo/trainB/2016-01-18 04:23:03.jpg
inflating: monet2photo/trainB/2015-01-05 19:56:01.jpg
inflating: monet2photo/trainB/2016-08-11 15:13:26.jpg
inflating: monet2photo/trainB/2016-12-25 03:19:16.jpg
inflating: monet2photo/trainB/2016-11-28 13:25:08.jpg
inflating: monet2photo/trainB/2015-08-24 04:10:41.jpg
inflating: monet2photo/trainB/2016-07-20 14:57:37.jpg
inflating: monet2photo/trainB/2014-11-08 14:01:27.jpg
inflating: monet2photo/trainB/2015-01-14 17:38:33.jpg
inflating: monet2photo/trainB/2016-01-30 23:12:38.jpg
inflating: monet2photo/trainB/2015-08-26 20:01:56.jpg
inflating: monet2photo/trainB/2016-06-29 01:37:10.jpg
inflating: monet2photo/trainB/2015-09-27 02:11:28.jpg
inflating: monet2photo/trainB/2016-07-22 06:09:41.jpg
inflating: monet2photo/trainB/2014-07-22 13:44:33.jpg
inflating: monet2photo/trainB/2014-11-16 09:56:22.jpg
inflating: monet2photo/trainB/2016-12-09 10:08:34.jpg
inflating: monet2photo/trainB/2015-11-16 13:35:27.jpg
inflating: monet2photo/trainB/2014-05-18 20:05:05.jpg
inflating: monet2photo/trainB/2014-06-05 13:31:31.jpg
inflating: monet2photo/trainB/2015-09-30 13:08:15.jpg
inflating: monet2photo/trainB/2016-01-23 11:04:06.jpg
inflating: monet2photo/trainB/2015-11-04 11:51:12.jpg
inflating: monet2photo/trainB/2015-09-01 13:32:57.jpg
inflating: monet2photo/trainB/2015-01-13 23:20:11.jpg
inflating: monet2photo/trainB/2016-05-22 21:38:24.jpg
inflating: monet2photo/trainB/2016-05-16 10:59:11.jpg
inflating: monet2photo/trainB/2016-12-17 12:32:53.jpg
inflating: monet2photo/trainB/2014-11-07 04:53:55.jpg
inflating: monet2photo/trainB/2016-02-29 07:15:53.jpg
inflating: monet2photo/trainB/2016-08-12 13:44:02.jpg
inflating: monet2photo/trainB/2015-09-27 09:30:00.jpg
inflating: monet2photo/trainB/2014-04-29 06:29:28.jpg
inflating: monet2photo/trainB/2016-02-29 18:51:54.jpg
inflating: monet2photo/trainB/2015-08-25 10:30:46.jpg
inflating: monet2photo/trainB/2015-03-23 11:18:53.jpg
inflating: monet2photo/trainB/2015-06-17 08:36:39.jpg
inflating: monet2photo/trainB/2016-01-03 02:17:08.jpg
inflating: monet2photo/trainB/2016-12-02 15:00:00.jpg
inflating: monet2photo/trainB/2014-04-27 03:52:21.jpg
inflating: monet2photo/trainB/2016-02-14 22:59:26.jpg
inflating: monet2photo/trainB/2016-12-18 10:47:36.jpg
inflating: monet2photo/trainB/2014-04-19 23:50:41.jpg
inflating: monet2photo/trainB/2016-07-27 18:54:32.jpg
inflating: monet2photo/trainB/2016-12-11 02:19:47.jpg
inflating: monet2photo/trainB/2016-11-30 10:29:56.jpg
inflating: monet2photo/trainB/2016-08-10 19:34:58.jpg
inflating: monet2photo/trainB/2016-12-10 01:01:36.jpg
inflating: monet2photo/trainB/2015-10-19 14:08:32.jpg
inflating: monet2photo/trainB/2015-07-17 05:10:56.jpg
inflating: monet2photo/trainB/2016-03-29 09:42:53.jpg
inflating: monet2photo/trainB/2016-08-08 13:32:01.jpg
inflating: monet2photo/trainB/2015-02-13 16:45:49.jpg
inflating: monet2photo/trainB/2016-03-03 11:19:39.jpg
inflating: monet2photo/trainB/2015-05-19 22:21:50.jpg
inflating: monet2photo/trainB/2016-06-29 10:31:15.jpg
inflating: monet2photo/trainB/2015-05-08 20:50:35.jpg
inflating: monet2photo/trainB/2016-07-11 09:49:48.jpg
inflating: monet2photo/trainB/2014-01-08 10:51:41.jpg
inflating: monet2photo/trainB/2015-09-21 20:59:25.jpg
inflating: monet2photo/trainB/2015-01-09 05:22:16.jpg
inflating: monet2photo/trainB/2014-04-05 14:18:37.jpg
inflating: monet2photo/trainB/2016-07-11 14:07:32.jpg
inflating: monet2photo/trainB/2016-12-12 10:18:18.jpg
inflating: monet2photo/trainB/2015-03-21 02:58:30.jpg
inflating: monet2photo/trainB/2016-08-03 14:00:53.jpg
inflating: monet2photo/trainB/2016-08-27 07:02:55.jpg
inflating: monet2photo/trainB/2016-02-27 15:50:50.jpg
inflating: monet2photo/trainB/2016-06-04 18:58:55.jpg
inflating: monet2photo/trainB/2015-03-09 11:44:51.jpg
inflating: monet2photo/trainB/2015-10-06 01:22:26.jpg
inflating: monet2photo/trainB/2013-11-11 08:50:18.jpg
inflating: monet2photo/trainB/2015-08-08 15:44:38.jpg
inflating: monet2photo/trainB/2015-11-14 03:15:57.jpg
inflating: monet2photo/trainB/2015-11-24 10:38:17.jpg
inflating: monet2photo/trainB/2015-10-21 08:39:55.jpg
inflating: monet2photo/trainB/2015-12-31 21:12:16.jpg
inflating: monet2photo/trainB/2015-10-18 20:40:06.jpg
inflating: monet2photo/trainB/2014-01-06 00:16:41.jpg
inflating: monet2photo/trainB/2016-07-17 18:44:56.jpg
inflating: monet2photo/trainB/2014-05-11 07:29:20.jpg
inflating: monet2photo/trainB/2015-02-12 12:30:32.jpg
inflating: monet2photo/trainB/2015-11-25 17:25:45.jpg
inflating: monet2photo/trainB/2015-06-04 19:48:20.jpg
inflating: monet2photo/trainB/2016-12-29 05:05:44.jpg
inflating: monet2photo/trainB/2016-04-09 18:13:31.jpg
inflating: monet2photo/trainB/2015-09-23 01:42:26.jpg
inflating: monet2photo/trainB/2015-02-10 22:48:15.jpg
inflating: monet2photo/trainB/2014-11-25 12:40:19.jpg
inflating: monet2photo/trainB/2015-06-19 15:58:20.jpg
inflating: monet2photo/trainB/2015-11-16 11:26:24.jpg
inflating: monet2photo/trainB/2016-03-03 11:32:52.jpg
inflating: monet2photo/trainB/2016-01-22 14:37:40.jpg
inflating: monet2photo/trainB/2015-07-31 12:12:35.jpg
inflating: monet2photo/trainB/2015-02-24 20:32:04.jpg
inflating: monet2photo/trainB/2015-05-06 06:12:31.jpg
inflating: monet2photo/trainB/2016-11-29 08:31:04.jpg
inflating: monet2photo/trainB/2016-12-31 19:26:09.jpg
inflating: monet2photo/trainB/2015-02-23 15:04:44.jpg
inflating: monet2photo/trainB/2015-09-02 08:32:13.jpg
inflating: monet2photo/trainB/2016-12-03 09:14:37.jpg
inflating: monet2photo/trainB/2015-09-08 06:57:41.jpg
inflating: monet2photo/trainB/2015-11-13 03:13:29.jpg
inflating: monet2photo/trainB/2014-07-27 00:01:05.jpg
inflating: monet2photo/trainB/2014-01-09 09:34:58.jpg
inflating: monet2photo/trainB/2015-03-31 08:39:40.jpg
inflating: monet2photo/trainB/2013-11-10 20:27:52.jpg
inflating: monet2photo/trainB/2015-11-18 08:31:25.jpg
inflating: monet2photo/trainB/2015-07-01 22:24:55.jpg
inflating: monet2photo/trainB/2015-11-24 11:13:19.jpg
inflating: monet2photo/trainB/2016-04-03 23:50:46.jpg
inflating: monet2photo/trainB/2015-07-01 05:06:17.jpg
inflating: monet2photo/trainB/2015-07-26 06:12:13.jpg
inflating: monet2photo/trainB/2016-11-19 19:18:56.jpg
inflating: monet2photo/trainB/2016-11-18 20:36:26.jpg
inflating: monet2photo/trainB/2016-04-26 07:52:14.jpg
inflating: monet2photo/trainB/2015-07-18 12:31:30.jpg
inflating: monet2photo/trainB/2015-03-03 00:47:14.jpg
inflating: monet2photo/trainB/2014-11-28 07:47:20.jpg
inflating: monet2photo/trainB/2016-12-23 09:33:51.jpg
inflating: monet2photo/trainB/2016-12-28 23:40:21.jpg
inflating: monet2photo/trainB/2016-07-17 08:11:26.jpg
inflating: monet2photo/trainB/2016-08-30 22:00:52.jpg
inflating: monet2photo/trainB/2014-05-29 19:07:10.jpg
inflating: monet2photo/trainB/2016-08-06 01:10:55.jpg
inflating: monet2photo/trainB/2014-03-08 06:12:38.jpg
inflating: monet2photo/trainB/2015-08-07 13:05:02.jpg
inflating: monet2photo/trainB/2015-07-26 11:36:21.jpg
inflating: monet2photo/trainB/2015-08-03 00:21:23.jpg
inflating: monet2photo/trainB/2014-01-17 01:24:03.jpg
inflating: monet2photo/trainB/2015-11-19 06:27:07.jpg
inflating: monet2photo/trainB/2015-07-29 22:14:31.jpg
inflating: monet2photo/trainB/2015-11-01 00:39:42.jpg
inflating: monet2photo/trainB/2015-02-25 15:20:43.jpg
inflating: monet2photo/trainB/2015-05-17 07:27:38.jpg
inflating: monet2photo/trainB/2016-08-25 12:25:12.jpg
inflating: monet2photo/trainB/2015-05-28 05:11:49.jpg
inflating: monet2photo/trainB/2015-02-22 16:03:53.jpg
inflating: monet2photo/trainB/2015-05-18 17:46:44.jpg
inflating: monet2photo/trainB/2015-10-05 09:25:23.jpg
inflating: monet2photo/trainB/2015-02-09 12:58:43.jpg
inflating: monet2photo/trainB/2013-12-31 14:08:57.jpg
inflating: monet2photo/trainB/2015-08-04 17:28:59.jpg
inflating: monet2photo/trainB/2015-02-04 03:56:49.jpg
inflating: monet2photo/trainB/2015-06-02 03:27:02.jpg
inflating: monet2photo/trainB/2015-03-22 23:47:31.jpg
inflating: monet2photo/trainB/2016-12-12 05:59:05.jpg
inflating: monet2photo/trainB/2014-07-13 02:36:44.jpg
inflating: monet2photo/trainB/2015-10-30 10:45:01.jpg
inflating: monet2photo/trainB/2015-03-02 21:57:29.jpg
inflating: monet2photo/trainB/2016-05-01 12:38:06.jpg
inflating: monet2photo/trainB/2015-07-13 11:40:03.jpg
inflating: monet2photo/trainB/2014-01-08 07:09:35.jpg
inflating: monet2photo/trainB/2015-11-26 12:47:28.jpg
inflating: monet2photo/trainB/2015-10-14 03:32:40.jpg
inflating: monet2photo/trainB/2015-08-30 16:49:52.jpg
inflating: monet2photo/trainB/2016-11-23 17:03:49.jpg
inflating: monet2photo/trainB/2016-11-20 11:38:49.jpg
inflating: monet2photo/trainB/2015-07-29 12:15:28.jpg
inflating: monet2photo/trainB/2015-02-20 15:58:53.jpg
inflating: monet2photo/trainB/2015-12-29 20:38:46.jpg
inflating: monet2photo/trainB/2016-12-20 09:15:59.jpg
inflating: monet2photo/trainB/2016-06-20 04:28:59.jpg
inflating: monet2photo/trainB/2016-08-03 06:47:28.jpg
inflating: monet2photo/trainB/2013-11-19 05:01:31.jpg
inflating: monet2photo/trainB/2016-06-20 08:01:52.jpg
inflating: monet2photo/trainB/2015-08-23 16:15:36.jpg
inflating: monet2photo/trainB/2014-02-05 09:58:18.jpg
inflating: monet2photo/trainB/2016-03-18 12:41:10.jpg
inflating: monet2photo/trainB/2016-01-26 01:16:39.jpg
inflating: monet2photo/trainB/2013-11-25 09:06:36.jpg
inflating: monet2photo/trainB/2015-08-11 14:45:54.jpg
inflating: monet2photo/trainB/2015-08-05 11:59:24.jpg
inflating: monet2photo/trainB/2015-01-18 07:02:32.jpg
inflating: monet2photo/trainB/2016-02-14 09:53:37.jpg
inflating: monet2photo/trainB/2015-12-17 08:07:31.jpg
inflating: monet2photo/trainB/2015-07-05 12:34:07.jpg
inflating: monet2photo/trainB/2015-06-10 04:41:50.jpg
inflating: monet2photo/trainB/2016-01-06 06:03:19.jpg
inflating: monet2photo/trainB/2015-05-19 01:24:30.jpg
inflating: monet2photo/trainB/2014-02-24 01:11:15.jpg
inflating: monet2photo/trainB/2015-09-28 08:13:59.jpg
inflating: monet2photo/trainB/2015-02-15 20:43:30.jpg
inflating: monet2photo/trainB/2015-08-03 17:11:05.jpg
inflating: monet2photo/trainB/2015-07-07 02:20:12.jpg
inflating: monet2photo/trainB/2015-07-14 07:20:30.jpg
inflating: monet2photo/trainB/2015-08-02 13:24:20.jpg
inflating: monet2photo/trainB/2015-01-11 11:18:09.jpg
inflating: monet2photo/trainB/2015-08-31 22:10:26.jpg
inflating: monet2photo/trainB/2016-07-18 16:22:30.jpg
inflating: monet2photo/trainB/2015-06-18 13:19:33.jpg
inflating: monet2photo/trainB/2016-11-21 11:23:23.jpg
inflating: monet2photo/trainB/2016-05-02 08:53:26.jpg
inflating: monet2photo/trainB/2016-07-20 06:10:18.jpg
inflating: monet2photo/trainB/2016-03-29 13:14:25.jpg
inflating: monet2photo/trainB/2016-08-11 01:13:23.jpg
inflating: monet2photo/trainB/2016-05-28 02:42:01.jpg
inflating: monet2photo/trainB/2016-04-30 22:34:34.jpg
inflating: monet2photo/trainB/2015-12-02 10:30:23.jpg
inflating: monet2photo/trainB/2014-07-13 19:25:30.jpg
inflating: monet2photo/trainB/2014-07-18 10:00:32.jpg
inflating: monet2photo/trainB/2015-08-17 04:48:42.jpg
inflating: monet2photo/trainB/2015-05-09 19:08:30.jpg
inflating: monet2photo/trainB/2015-08-25 11:14:51.jpg
inflating: monet2photo/trainB/2016-07-28 09:43:58.jpg
inflating: monet2photo/trainB/2016-11-28 19:53:47.jpg
inflating: monet2photo/trainB/2016-08-16 01:53:32.jpg
inflating: monet2photo/trainB/2016-12-17 23:43:36.jpg
inflating: monet2photo/trainB/2015-11-28 12:28:01.jpg
inflating: monet2photo/trainB/2015-08-23 06:46:08.jpg
inflating: monet2photo/trainB/2015-12-18 13:11:21.jpg
inflating: monet2photo/trainB/2015-12-02 18:41:34.jpg
inflating: monet2photo/trainB/2016-05-25 02:30:51.jpg
inflating: monet2photo/trainB/2016-12-17 21:57:09.jpg
inflating: monet2photo/trainB/2015-02-09 20:59:44.jpg
inflating: monet2photo/trainB/2015-06-16 20:15:17.jpg
inflating: monet2photo/trainB/2015-10-20 09:05:07.jpg
inflating: monet2photo/trainB/2016-03-31 11:37:22.jpg
inflating: monet2photo/trainB/2014-04-27 00:41:46.jpg
inflating: monet2photo/trainB/2015-03-28 07:46:04.jpg
inflating: monet2photo/trainB/2016-11-16 06:53:51.jpg
inflating: monet2photo/trainB/2015-07-27 18:39:23.jpg
inflating: monet2photo/trainB/2016-04-10 21:46:15.jpg
inflating: monet2photo/trainB/2016-12-15 00:00:55.jpg
inflating: monet2photo/trainB/2015-05-23 12:51:25.jpg
inflating: monet2photo/trainB/2015-11-04 17:25:20.jpg
inflating: monet2photo/trainB/2016-06-06 18:20:50.jpg
inflating: monet2photo/trainB/2015-08-02 12:08:49.jpg
inflating: monet2photo/trainB/2015-12-29 18:24:23.jpg
inflating: monet2photo/trainB/2016-01-11 21:34:09.jpg
inflating: monet2photo/trainB/2013-12-10 10:42:47.jpg
inflating: monet2photo/trainB/2013-11-14 14:11:02.jpg
inflating: monet2photo/trainB/2014-03-10 10:54:44.jpg
inflating: monet2photo/trainB/2016-06-06 10:33:43.jpg
inflating: monet2photo/trainB/2014-03-10 07:04:27.jpg
inflating: monet2photo/trainB/2016-05-27 06:05:19.jpg
inflating: monet2photo/trainB/2016-04-28 12:23:23.jpg
inflating: monet2photo/trainB/2016-07-13 10:25:05.jpg
inflating: monet2photo/trainB/2016-06-28 22:00:48.jpg
inflating: monet2photo/trainB/2014-07-17 13:37:13.jpg
inflating: monet2photo/trainB/2015-07-01 09:04:07.jpg
inflating: monet2photo/trainB/2016-06-06 17:23:22.jpg
inflating: monet2photo/trainB/2016-01-06 05:28:58.jpg
inflating: monet2photo/trainB/2013-12-16 22:52:26.jpg
inflating: monet2photo/trainB/2016-05-08 13:48:29.jpg
inflating: monet2photo/trainB/2014-01-06 17:08:37.jpg
inflating: monet2photo/trainB/2016-07-23 12:43:38.jpg
inflating: monet2photo/trainB/2014-01-16 09:15:07.jpg
inflating: monet2photo/trainB/2016-06-05 10:13:44.jpg
inflating: monet2photo/trainB/2015-12-07 02:22:07.jpg
inflating: monet2photo/trainB/2015-09-24 23:12:03.jpg
inflating: monet2photo/trainB/2016-05-05 07:05:10.jpg
inflating: monet2photo/trainB/2015-08-14 06:55:33.jpg
inflating: monet2photo/trainB/2015-11-23 12:10:40.jpg
inflating: monet2photo/trainB/2016-03-18 19:07:48.jpg
inflating: monet2photo/trainB/2013-11-17 09:05:09.jpg
inflating: monet2photo/trainB/2016-04-12 21:44:37.jpg
inflating: monet2photo/trainB/2014-03-07 06:19:28.jpg
inflating: monet2photo/trainB/2016-04-17 20:53:13.jpg
inflating: monet2photo/trainB/2016-03-15 15:02:43.jpg
inflating: monet2photo/trainB/2016-12-21 08:20:34.jpg
inflating: monet2photo/trainB/2014-05-06 00:42:35.jpg
inflating: monet2photo/trainB/2016-12-17 19:31:22.jpg
inflating: monet2photo/trainB/2014-06-20 05:42:26.jpg
inflating: monet2photo/trainB/2015-03-27 11:22:06.jpg
inflating: monet2photo/trainB/2015-08-30 07:36:17.jpg
inflating: monet2photo/trainB/2015-09-02 09:26:59.jpg
inflating: monet2photo/trainB/2016-08-18 13:46:25.jpg
inflating: monet2photo/trainB/2015-12-06 00:12:21.jpg
inflating: monet2photo/trainB/2016-01-11 13:03:45.jpg
inflating: monet2photo/trainB/2016-07-02 08:42:25.jpg
inflating: monet2photo/trainB/2014-11-29 07:37:51.jpg
inflating: monet2photo/trainB/2016-08-12 06:21:51.jpg
inflating: monet2photo/trainB/2015-07-22 09:40:02.jpg
inflating: monet2photo/trainB/2016-12-26 06:41:14.jpg
inflating: monet2photo/trainB/2016-01-25 22:16:54.jpg
inflating: monet2photo/trainB/2014-11-19 01:52:17.jpg
inflating: monet2photo/trainB/2015-06-26 22:30:12.jpg
inflating: monet2photo/trainB/2016-07-24 09:23:22.jpg
inflating: monet2photo/trainB/2016-12-07 20:30:00.jpg
inflating: monet2photo/trainB/2016-08-18 09:20:31.jpg
inflating: monet2photo/trainB/2016-07-11 04:48:00.jpg
inflating: monet2photo/trainB/2016-01-24 05:18:12.jpg
inflating: monet2photo/trainB/2016-07-27 20:06:45.jpg
inflating: monet2photo/trainB/2016-07-08 13:21:59.jpg
inflating: monet2photo/trainB/2015-03-18 08:21:53.jpg
inflating: monet2photo/trainB/2014-11-09 12:35:41.jpg
inflating: monet2photo/trainB/2014-01-20 10:21:34.jpg
inflating: monet2photo/trainB/2015-02-11 21:21:42.jpg
inflating: monet2photo/trainB/2014-05-12 13:24:41.jpg
inflating: monet2photo/trainB/2015-02-15 18:03:38.jpg
inflating: monet2photo/trainB/2014-07-01 22:31:44.jpg
inflating: monet2photo/trainB/2014-04-22 02:04:35.jpg
inflating: monet2photo/trainB/2015-12-06 03:39:36.jpg
inflating: monet2photo/trainB/2016-03-21 12:17:22.jpg
inflating: monet2photo/trainB/2015-01-28 09:56:10.jpg
inflating: monet2photo/trainB/2015-12-23 13:03:15.jpg
inflating: monet2photo/trainB/2015-12-13 09:35:08.jpg
inflating: monet2photo/trainB/2016-08-02 18:40:15.jpg
inflating: monet2photo/trainB/2016-07-05 16:55:41.jpg
inflating: monet2photo/trainB/2015-01-20 17:46:46.jpg
inflating: monet2photo/trainB/2016-01-20 04:04:53.jpg
inflating: monet2photo/trainB/2016-02-02 01:09:08.jpg
inflating: monet2photo/trainB/2015-07-09 19:09:06.jpg
inflating: monet2photo/trainB/2016-05-30 14:37:39.jpg
inflating: monet2photo/trainB/2014-03-20 00:38:09.jpg
inflating: monet2photo/trainB/2015-12-23 09:48:39.jpg
inflating: monet2photo/trainB/2015-08-12 15:37:28.jpg
inflating: monet2photo/trainB/2015-08-05 10:11:26.jpg
inflating: monet2photo/trainB/2015-12-22 06:42:54.jpg
inflating: monet2photo/trainB/2015-05-26 11:33:38.jpg
inflating: monet2photo/trainB/2016-06-13 20:48:43.jpg
inflating: monet2photo/trainB/2016-06-07 11:27:19.jpg
inflating: monet2photo/trainB/2014-07-28 16:09:56.jpg
inflating: monet2photo/trainB/2015-12-11 12:32:59.jpg
inflating: monet2photo/trainB/2014-06-01 18:59:56.jpg
inflating: monet2photo/trainB/2016-12-03 00:09:20.jpg
inflating: monet2photo/trainB/2015-05-18 17:27:48.jpg
inflating: monet2photo/trainB/2016-01-06 00:07:06.jpg
inflating: monet2photo/trainB/2015-03-06 09:23:50.jpg
inflating: monet2photo/trainB/2015-10-15 03:52:35.jpg
inflating: monet2photo/trainB/2016-01-09 12:01:49.jpg
inflating: monet2photo/trainB/2015-06-30 08:00:25.jpg
inflating: monet2photo/trainB/2015-08-22 23:05:49.jpg
inflating: monet2photo/trainB/2016-03-03 18:44:49.jpg
inflating: monet2photo/trainB/2014-11-17 05:39:16.jpg
inflating: monet2photo/trainB/2015-05-23 04:21:05.jpg
inflating: monet2photo/trainB/2016-11-30 10:40:40.jpg
inflating: monet2photo/trainB/2015-05-02 17:27:36.jpg
inflating: monet2photo/trainB/2015-03-16 23:56:08.jpg
inflating: monet2photo/trainB/2015-03-01 07:26:03.jpg
inflating: monet2photo/trainB/2014-05-30 15:31:27.jpg
inflating: monet2photo/trainB/2014-07-10 10:43:59.jpg
inflating: monet2photo/trainB/2016-05-15 19:10:37.jpg
inflating: monet2photo/trainB/2015-05-20 13:57:13.jpg
inflating: monet2photo/trainB/2015-08-31 11:51:39.jpg
inflating: monet2photo/trainB/2015-08-07 02:09:36.jpg
inflating: monet2photo/trainB/2015-11-25 04:39:53.jpg
inflating: monet2photo/trainB/2016-07-25 12:37:05.jpg
inflating: monet2photo/trainB/2014-06-23 14:25:20.jpg
inflating: monet2photo/trainB/2016-12-15 14:57:39.jpg
inflating: monet2photo/trainB/2016-04-12 15:02:55.jpg
inflating: monet2photo/trainB/2016-07-05 12:47:57.jpg
inflating: monet2photo/trainB/2016-07-22 11:21:35.jpg
inflating: monet2photo/trainB/2015-07-12 05:00:57.jpg
inflating: monet2photo/trainB/2016-06-05 11:54:47.jpg
inflating: monet2photo/trainB/2016-05-27 08:54:24.jpg
inflating: monet2photo/trainB/2015-08-30 06:59:29.jpg
inflating: monet2photo/trainB/2015-11-03 14:56:35.jpg
inflating: monet2photo/trainB/2013-12-11 13:56:28.jpg
inflating: monet2photo/trainB/2016-01-05 13:18:20.jpg
inflating: monet2photo/trainB/2015-11-10 09:50:22.jpg
inflating: monet2photo/trainB/2016-06-30 10:09:08.jpg
inflating: monet2photo/trainB/2016-12-05 12:24:44.jpg
inflating: monet2photo/trainB/2014-03-22 01:09:43.jpg
inflating: monet2photo/trainB/2014-06-09 02:47:32.jpg
inflating: monet2photo/trainB/2015-11-18 12:03:30.jpg
inflating: monet2photo/trainB/2016-08-05 18:57:20.jpg
inflating: monet2photo/trainB/2016-04-03 10:08:57.jpg
inflating: monet2photo/trainB/2015-09-07 12:38:48.jpg
inflating: monet2photo/trainB/2016-03-14 02:26:07.jpg
inflating: monet2photo/trainB/2013-12-20 22:42:28.jpg
inflating: monet2photo/trainB/2016-01-23 08:02:06.jpg
inflating: monet2photo/trainB/2016-01-23 04:57:06.jpg
inflating: monet2photo/trainB/2016-03-26 20:36:45.jpg
inflating: monet2photo/trainB/2015-02-22 07:34:41.jpg
inflating: monet2photo/trainB/2016-02-25 08:57:21.jpg
inflating: monet2photo/trainB/2014-11-14 00:17:20.jpg
inflating: monet2photo/trainB/2015-11-05 07:22:44.jpg
inflating: monet2photo/trainB/2015-11-10 09:45:50.jpg
inflating: monet2photo/trainB/2016-06-07 03:33:02.jpg
inflating: monet2photo/trainB/2016-01-12 14:08:08.jpg
inflating: monet2photo/trainB/2015-01-10 13:52:38.jpg
inflating: monet2photo/trainB/2013-11-23 13:03:15.jpg
inflating: monet2photo/trainB/2015-09-28 10:57:35.jpg
inflating: monet2photo/trainB/2016-03-04 04:46:07.jpg
inflating: monet2photo/trainB/2015-08-15 08:19:55.jpg
inflating: monet2photo/trainB/2016-07-04 03:44:47.jpg
inflating: monet2photo/trainB/2015-02-16 15:36:56.jpg
inflating: monet2photo/trainB/2015-01-01 13:51:34.jpg
inflating: monet2photo/trainB/2014-04-01 07:37:39.jpg
inflating: monet2photo/trainB/2015-02-10 18:56:15.jpg
inflating: monet2photo/trainB/2016-08-31 18:27:21.jpg
inflating: monet2photo/trainB/2016-01-05 10:24:52.jpg
inflating: monet2photo/trainB/2016-11-16 14:17:40.jpg
inflating: monet2photo/trainB/2015-06-13 10:08:17.jpg
inflating: monet2photo/trainB/2016-11-17 20:54:14.jpg
inflating: monet2photo/trainB/2016-04-12 21:46:26.jpg
inflating: monet2photo/trainB/2016-01-26 06:20:00.jpg
inflating: monet2photo/trainB/2016-12-13 21:17:17.jpg
inflating: monet2photo/trainB/2016-08-30 15:25:33.jpg
inflating: monet2photo/trainB/2016-06-09 10:42:41.jpg
inflating: monet2photo/trainB/2016-04-19 18:31:51.jpg
inflating: monet2photo/trainB/2016-08-15 00:22:45.jpg
inflating: monet2photo/trainB/2014-11-05 20:43:44.jpg
inflating: monet2photo/trainB/2016-12-31 18:51:10.jpg
inflating: monet2photo/trainB/2016-11-20 07:05:07.jpg
inflating: monet2photo/trainB/2015-06-09 11:46:50.jpg
inflating: monet2photo/trainB/2015-03-30 03:09:02.jpg
inflating: monet2photo/trainB/2014-03-26 23:08:33.jpg
inflating: monet2photo/trainB/2016-05-09 09:16:00.jpg
inflating: monet2photo/trainB/2016-12-27 09:24:54.jpg
inflating: monet2photo/trainB/2015-12-17 12:20:36.jpg
inflating: monet2photo/trainB/2015-08-14 07:40:25.jpg
inflating: monet2photo/trainB/2014-05-04 07:11:47.jpg
inflating: monet2photo/trainB/2016-12-11 06:02:43.jpg
inflating: monet2photo/trainB/2015-08-04 16:32:17.jpg
inflating: monet2photo/trainB/2015-09-03 09:35:21.jpg
inflating: monet2photo/trainB/2017-01-02 09:18:07.jpg
inflating: monet2photo/trainB/2015-12-06 10:49:48.jpg
inflating: monet2photo/trainB/2016-01-18 10:44:49.jpg
inflating: monet2photo/trainB/2015-10-26 17:26:44.jpg
inflating: monet2photo/trainB/2015-09-28 08:15:52.jpg
inflating: monet2photo/trainB/2015-12-16 16:56:37.jpg
inflating: monet2photo/trainB/2015-09-25 08:54:10.jpg
inflating: monet2photo/trainB/2016-02-20 02:15:52.jpg
inflating: monet2photo/trainB/2016-03-24 07:51:11.jpg
inflating: monet2photo/trainB/2016-11-23 12:40:48.jpg
inflating: monet2photo/trainB/2014-02-23 15:50:23.jpg
inflating: monet2photo/trainB/2015-11-26 11:05:18.jpg
inflating: monet2photo/trainB/2015-09-06 01:09:54.jpg
inflating: monet2photo/trainB/2016-06-05 06:49:30.jpg
inflating: monet2photo/trainB/2015-08-08 09:11:50.jpg
inflating: monet2photo/trainB/2015-10-31 01:07:28.jpg
inflating: monet2photo/trainB/2016-08-29 09:59:48.jpg
inflating: monet2photo/trainB/2015-08-24 17:11:57.jpg
inflating: monet2photo/trainB/2015-03-28 17:12:24.jpg
inflating: monet2photo/trainB/2016-07-17 07:32:53.jpg
inflating: monet2photo/trainB/2014-07-01 16:08:03.jpg
inflating: monet2photo/trainB/2015-08-09 02:28:09.jpg
inflating: monet2photo/trainB/2015-07-09 06:10:22.jpg
inflating: monet2photo/trainB/2016-02-29 05:51:19.jpg
inflating: monet2photo/trainB/2016-05-23 10:53:29.jpg
inflating: monet2photo/trainB/2016-01-10 12:01:26.jpg
inflating: monet2photo/trainB/2015-09-19 16:19:17.jpg
inflating: monet2photo/trainB/2016-04-19 08:01:08.jpg
inflating: monet2photo/trainB/2016-05-26 19:06:26.jpg
inflating: monet2photo/trainB/2015-12-10 09:09:26.jpg
inflating: monet2photo/trainB/2016-02-28 13:44:19.jpg
inflating: monet2photo/trainB/2014-07-18 00:32:32.jpg
inflating: monet2photo/trainB/2015-12-01 21:20:50.jpg
inflating: monet2photo/trainB/2015-02-25 10:16:23.jpg
inflating: monet2photo/trainB/2015-07-15 06:24:54.jpg
inflating: monet2photo/trainB/2015-08-26 23:11:42.jpg
inflating: monet2photo/trainB/2016-06-18 04:54:44.jpg
inflating: monet2photo/trainB/2013-12-26 15:43:11.jpg
inflating: monet2photo/trainB/2015-01-09 13:32:30.jpg
inflating: monet2photo/trainB/2015-12-08 11:36:09.jpg
inflating: monet2photo/trainB/2015-12-19 06:47:51.jpg
inflating: monet2photo/trainB/2016-12-12 09:28:00.jpg
inflating: monet2photo/trainB/2014-11-19 10:44:34.jpg
inflating: monet2photo/trainB/2015-11-14 16:33:54.jpg
inflating: monet2photo/trainB/2016-03-24 15:35:23.jpg
inflating: monet2photo/trainB/2016-08-14 14:59:44.jpg
inflating: monet2photo/trainB/2015-05-25 13:06:50.jpg
inflating: monet2photo/trainB/2016-06-04 12:05:30.jpg
inflating: monet2photo/trainB/2015-06-26 22:09:13.jpg
inflating: monet2photo/trainB/2016-12-26 05:42:33.jpg
inflating: monet2photo/trainB/2016-01-28 16:32:17.jpg
inflating: monet2photo/trainB/2016-01-10 12:39:36.jpg
inflating: monet2photo/trainB/2016-01-10 05:36:29.jpg
inflating: monet2photo/trainB/2014-11-08 12:42:29.jpg
inflating: monet2photo/trainB/2017-01-02 20:36:38.jpg
inflating: monet2photo/trainB/2014-02-09 13:58:49.jpg
inflating: monet2photo/trainB/2016-02-21 15:51:28.jpg
inflating: monet2photo/trainB/2014-06-30 16:49:07.jpg
inflating: monet2photo/trainB/2015-08-17 11:12:19.jpg
inflating: monet2photo/trainB/2016-12-01 05:27:33.jpg
inflating: monet2photo/trainB/2015-12-31 10:47:00.jpg
inflating: monet2photo/trainB/2015-10-06 22:15:08.jpg
inflating: monet2photo/trainB/2015-01-27 23:02:09.jpg
inflating: monet2photo/trainB/2014-04-16 10:18:40.jpg
inflating: monet2photo/trainB/2015-10-18 08:45:40.jpg
inflating: monet2photo/trainB/2016-03-06 06:29:34.jpg
inflating: monet2photo/trainB/2014-01-04 17:35:01.jpg
inflating: monet2photo/trainB/2016-06-27 03:31:56.jpg
inflating: monet2photo/trainB/2015-12-01 15:03:54.jpg
inflating: monet2photo/trainB/2016-05-04 23:58:07.jpg
inflating: monet2photo/trainB/2015-08-27 13:28:32.jpg
inflating: monet2photo/trainB/2015-02-10 11:01:08.jpg
inflating: monet2photo/trainB/2015-12-06 19:11:02.jpg
inflating: monet2photo/trainB/2016-08-27 22:26:02.jpg
inflating: monet2photo/trainB/2015-12-21 04:10:48.jpg
inflating: monet2photo/trainB/2016-05-16 03:15:33.jpg
inflating: monet2photo/trainB/2015-05-10 13:18:15.jpg
inflating: monet2photo/trainB/2016-01-02 08:38:37.jpg
inflating: monet2photo/trainB/2014-06-30 02:04:38.jpg
inflating: monet2photo/trainB/2015-07-27 15:30:50.jpg
inflating: monet2photo/trainB/2016-04-30 03:12:35.jpg
inflating: monet2photo/trainB/2016-02-10 11:27:47.jpg
inflating: monet2photo/trainB/2015-01-02 18:00:55.jpg
inflating: monet2photo/trainB/2016-04-06 00:59:07.jpg
inflating: monet2photo/trainB/2015-08-21 06:03:29.jpg
inflating: monet2photo/trainB/2015-03-10 06:02:01.jpg
inflating: monet2photo/trainB/2014-05-19 01:29:58.jpg
inflating: monet2photo/trainB/2014-11-12 09:51:34.jpg
inflating: monet2photo/trainB/2014-03-09 20:57:27.jpg
inflating: monet2photo/trainB/2015-05-15 23:36:13.jpg
inflating: monet2photo/trainB/2016-04-22 11:21:18.jpg
inflating: monet2photo/trainB/2015-01-02 08:49:01.jpg
inflating: monet2photo/trainB/2015-06-02 18:06:59.jpg
inflating: monet2photo/trainB/2014-07-27 07:56:03.jpg
inflating: monet2photo/trainB/2016-04-12 09:49:06.jpg
inflating: monet2photo/trainB/2016-03-17 01:48:15.jpg
inflating: monet2photo/trainB/2015-08-30 11:35:30.jpg
inflating: monet2photo/trainB/2014-07-11 09:59:24.jpg
inflating: monet2photo/trainB/2015-01-25 07:01:44.jpg
inflating: monet2photo/trainB/2015-06-29 06:12:16.jpg
inflating: monet2photo/trainB/2015-12-03 07:44:34.jpg
inflating: monet2photo/trainB/2016-06-28 19:12:41.jpg
inflating: monet2photo/trainB/2015-09-09 09:42:11.jpg
inflating: monet2photo/trainB/2016-01-10 01:21:57.jpg
inflating: monet2photo/trainB/2016-04-11 08:58:18.jpg
inflating: monet2photo/trainB/2016-07-24 20:42:43.jpg
inflating: monet2photo/trainB/2016-07-03 17:25:10.jpg
inflating: monet2photo/trainB/2015-05-18 23:22:48.jpg
inflating: monet2photo/trainB/2015-08-25 20:03:18.jpg
inflating: monet2photo/trainB/2016-04-01 19:33:11.jpg
inflating: monet2photo/trainB/2015-06-10 08:13:30.jpg
inflating: monet2photo/trainB/2015-07-29 19:29:00.jpg
inflating: monet2photo/trainB/2015-07-01 10:45:21.jpg
inflating: monet2photo/trainB/2016-11-27 20:50:37.jpg
inflating: monet2photo/trainB/2015-05-03 14:18:13.jpg
inflating: monet2photo/trainB/2017-01-03 05:15:53.jpg
inflating: monet2photo/trainB/2016-05-01 08:34:20.jpg
inflating: monet2photo/trainB/2014-06-06 09:43:39.jpg
inflating: monet2photo/trainB/2014-07-14 03:55:16.jpg
inflating: monet2photo/trainB/2014-03-02 13:11:10.jpg
inflating: monet2photo/trainB/2015-07-18 18:06:06.jpg
inflating: monet2photo/trainB/2016-07-04 09:20:09.jpg
inflating: monet2photo/trainB/2015-06-19 20:04:34.jpg
inflating: monet2photo/trainB/2016-03-16 12:51:22.jpg
inflating: monet2photo/trainB/2015-06-29 03:05:08.jpg
inflating: monet2photo/trainB/2016-11-30 03:37:32.jpg
inflating: monet2photo/trainB/2016-08-05 06:18:20.jpg
inflating: monet2photo/trainB/2013-12-23 15:45:15.jpg
inflating: monet2photo/trainB/2016-02-11 20:48:47.jpg
inflating: monet2photo/trainB/2015-08-26 07:22:58.jpg
inflating: monet2photo/trainB/2014-01-18 11:48:47.jpg
inflating: monet2photo/trainB/2015-08-24 12:13:58.jpg
inflating: monet2photo/trainB/2016-03-25 17:26:02.jpg
inflating: monet2photo/trainB/2015-10-18 10:54:41.jpg
inflating: monet2photo/trainB/2015-08-03 17:34:56.jpg
inflating: monet2photo/trainB/2015-12-01 11:04:50.jpg
inflating: monet2photo/trainB/2016-11-29 15:07:17.jpg
inflating: monet2photo/trainB/2016-01-16 17:32:15.jpg
inflating: monet2photo/trainB/2016-05-15 23:17:02.jpg
inflating: monet2photo/trainB/2017-01-03 02:54:42.jpg
inflating: monet2photo/trainB/2015-06-09 05:13:09.jpg
inflating: monet2photo/trainB/2016-01-21 07:29:25.jpg
inflating: monet2photo/trainB/2015-06-13 16:04:29.jpg
inflating: monet2photo/trainB/2015-10-26 14:46:42.jpg
inflating: monet2photo/trainB/2016-06-24 07:31:23.jpg
inflating: monet2photo/trainB/2014-11-10 14:39:42.jpg
inflating: monet2photo/trainB/2015-12-07 06:06:03.jpg
inflating: monet2photo/trainB/2014-01-24 13:39:12.jpg
inflating: monet2photo/trainB/2016-11-19 08:46:01.jpg
inflating: monet2photo/trainB/2015-09-11 03:23:04.jpg
inflating: monet2photo/trainB/2015-11-28 06:57:02.jpg
inflating: monet2photo/trainB/2014-04-04 16:54:01.jpg
inflating: monet2photo/trainB/2015-10-12 09:39:58.jpg
inflating: monet2photo/trainB/2015-09-28 19:23:35.jpg
inflating: monet2photo/trainB/2016-07-27 13:52:22.jpg
inflating: monet2photo/trainB/2013-11-25 01:42:17.jpg
inflating: monet2photo/trainB/2016-01-10 05:10:08.jpg
inflating: monet2photo/trainB/2016-12-04 12:03:00.jpg
inflating: monet2photo/trainB/2015-10-10 14:21:45.jpg
inflating: monet2photo/trainB/2015-08-16 13:31:14.jpg
inflating: monet2photo/trainB/2015-08-23 01:46:36.jpg
inflating: monet2photo/trainB/2016-08-08 10:02:18.jpg
inflating: monet2photo/trainB/2016-03-04 10:37:12.jpg
inflating: monet2photo/trainB/2015-02-21 06:51:43.jpg
inflating: monet2photo/trainB/2014-11-27 01:01:01.jpg
inflating: monet2photo/trainB/2015-09-04 04:23:06.jpg
inflating: monet2photo/trainB/2015-01-31 20:12:53.jpg
inflating: monet2photo/trainB/2015-09-16 12:53:40.jpg
inflating: monet2photo/trainB/2016-08-03 14:14:33.jpg
inflating: monet2photo/trainB/2014-07-09 07:05:13.jpg
inflating: monet2photo/trainB/2015-08-15 03:49:06.jpg
inflating: monet2photo/trainB/2015-05-13 12:45:07.jpg
inflating: monet2photo/trainB/2015-03-24 08:20:00.jpg
inflating: monet2photo/trainB/2016-11-27 16:21:59.jpg
inflating: monet2photo/trainB/2016-05-07 20:40:53.jpg
inflating: monet2photo/trainB/2014-06-22 15:23:17.jpg
inflating: monet2photo/trainB/2016-05-02 03:30:15.jpg
inflating: monet2photo/trainB/2016-08-17 18:28:10.jpg
inflating: monet2photo/trainB/2016-05-15 09:17:48.jpg
inflating: monet2photo/trainB/2015-09-03 18:31:19.jpg
inflating: monet2photo/trainB/2015-01-06 20:26:03.jpg
inflating: monet2photo/trainB/2016-07-04 01:21:14.jpg
inflating: monet2photo/trainB/2015-02-12 21:31:48.jpg
inflating: monet2photo/trainB/2014-06-01 10:04:14.jpg
inflating: monet2photo/trainB/2015-08-07 06:36:20.jpg
inflating: monet2photo/trainB/2015-07-17 13:15:59.jpg
inflating: monet2photo/trainB/2015-01-06 13:49:33.jpg
inflating: monet2photo/trainB/2015-05-14 06:44:31.jpg
inflating: monet2photo/trainB/2015-02-06 17:29:15.jpg
inflating: monet2photo/trainB/2015-05-22 13:29:05.jpg
inflating: monet2photo/trainB/2015-03-22 04:27:22.jpg
inflating: monet2photo/trainB/2015-10-19 07:49:12.jpg
inflating: monet2photo/trainB/2013-12-21 12:25:26.jpg
inflating: monet2photo/trainB/2015-09-12 07:50:18.jpg
inflating: monet2photo/trainB/2014-04-07 18:12:13.jpg
inflating: monet2photo/trainB/2016-12-08 16:48:57.jpg
inflating: monet2photo/trainB/2014-05-10 23:19:31.jpg
inflating: monet2photo/trainB/2016-06-18 03:57:29.jpg
inflating: monet2photo/trainB/2015-11-04 11:14:33.jpg
inflating: monet2photo/trainB/2016-02-16 19:23:32.jpg
inflating: monet2photo/trainB/2015-08-31 10:50:53.jpg
inflating: monet2photo/trainB/2016-08-04 09:58:47.jpg
inflating: monet2photo/trainB/2015-01-21 23:41:19.jpg
inflating: monet2photo/trainB/2016-04-24 12:32:46.jpg
inflating: monet2photo/trainB/2016-03-22 10:37:15.jpg
inflating: monet2photo/trainB/2016-05-09 03:15:55.jpg
inflating: monet2photo/trainB/2014-07-27 03:53:59.jpg
inflating: monet2photo/trainB/2015-11-08 12:12:06.jpg
inflating: monet2photo/trainB/2016-08-04 12:08:19.jpg
inflating: monet2photo/trainB/2016-08-23 11:02:13.jpg
inflating: monet2photo/trainB/2015-12-24 10:24:37.jpg
inflating: monet2photo/trainB/2015-09-23 15:11:15.jpg
inflating: monet2photo/trainB/2016-08-16 10:30:24.jpg
inflating: monet2photo/trainB/2015-05-03 09:55:49.jpg
inflating: monet2photo/trainB/2016-04-27 00:30:00.jpg
inflating: monet2photo/trainB/2016-01-17 07:31:07.jpg
inflating: monet2photo/trainB/2015-02-08 05:05:43.jpg
inflating: monet2photo/trainB/2015-05-25 17:10:31.jpg
inflating: monet2photo/trainB/2016-03-07 09:09:45.jpg
inflating: monet2photo/trainB/2016-06-12 17:09:31.jpg
inflating: monet2photo/trainB/2015-03-10 07:34:09.jpg
inflating: monet2photo/trainB/2015-08-24 05:45:01.jpg
inflating: monet2photo/trainB/2016-02-03 10:40:47.jpg
inflating: monet2photo/trainB/2014-05-06 09:15:21.jpg
inflating: monet2photo/trainB/2015-12-07 05:02:01.jpg
inflating: monet2photo/trainB/2014-06-03 13:11:30.jpg
inflating: monet2photo/trainB/2016-04-26 14:29:53.jpg
inflating: monet2photo/trainB/2016-11-29 09:27:39.jpg
inflating: monet2photo/trainB/2015-01-01 00:12:20.jpg
inflating: monet2photo/trainB/2015-08-04 09:25:21.jpg
inflating: monet2photo/trainB/2014-01-17 23:30:10.jpg
inflating: monet2photo/trainB/2015-03-03 10:06:20.jpg
inflating: monet2photo/trainB/2015-11-01 23:38:20.jpg
inflating: monet2photo/trainB/2016-02-25 00:59:58.jpg
inflating: monet2photo/trainB/2015-05-09 00:14:18.jpg
inflating: monet2photo/trainB/2015-09-08 12:22:03.jpg
inflating: monet2photo/trainB/2016-11-21 23:56:44.jpg
inflating: monet2photo/trainB/2015-08-11 13:14:52.jpg
inflating: monet2photo/trainB/2015-10-29 04:00:23.jpg
inflating: monet2photo/trainB/2015-02-21 14:49:53.jpg
inflating: monet2photo/trainB/2016-01-15 01:51:25.jpg
inflating: monet2photo/trainB/2016-08-03 20:04:55.jpg
inflating: monet2photo/trainB/2015-01-18 22:31:13.jpg
inflating: monet2photo/trainB/2016-07-22 14:37:40.jpg
inflating: monet2photo/trainB/2015-10-12 15:53:44.jpg
inflating: monet2photo/trainB/2016-01-24 20:20:38.jpg
inflating: monet2photo/trainB/2015-03-18 16:29:17.jpg
inflating: monet2photo/trainB/2014-07-21 00:07:49.jpg
inflating: monet2photo/trainB/2016-06-27 11:58:44.jpg
inflating: monet2photo/trainB/2015-10-15 11:06:26.jpg
inflating: monet2photo/trainB/2015-02-15 03:25:23.jpg
inflating: monet2photo/trainB/2015-08-09 04:00:00.jpg
inflating: monet2photo/trainB/2015-08-22 17:10:22.jpg
inflating: monet2photo/trainB/2014-05-10 08:31:49.jpg
inflating: monet2photo/trainB/2014-03-25 10:44:15.jpg
inflating: monet2photo/trainB/2015-10-14 10:31:16.jpg
inflating: monet2photo/trainB/2015-07-15 02:24:49.jpg
inflating: monet2photo/trainB/2015-03-24 14:00:21.jpg
inflating: monet2photo/trainB/2016-07-01 13:47:33.jpg
inflating: monet2photo/trainB/2016-08-18 04:35:45.jpg
inflating: monet2photo/trainB/2015-11-10 03:49:57.jpg
inflating: monet2photo/trainB/2015-10-30 22:04:18.jpg
inflating: monet2photo/trainB/2015-09-07 01:59:03.jpg
inflating: monet2photo/trainB/2016-11-20 07:52:46.jpg
inflating: monet2photo/trainB/2015-11-14 10:50:34.jpg
inflating: monet2photo/trainB/2016-06-13 18:48:11.jpg
inflating: monet2photo/trainB/2014-06-09 05:59:12.jpg
inflating: monet2photo/trainB/2015-03-17 19:07:29.jpg
inflating: monet2photo/trainB/2015-06-10 14:09:29.jpg
inflating: monet2photo/trainB/2015-01-03 20:06:20.jpg
inflating: monet2photo/trainB/2014-07-12 07:37:34.jpg
inflating: monet2photo/trainB/2016-08-08 09:11:01.jpg
inflating: monet2photo/trainB/2014-06-03 12:23:15.jpg
inflating: monet2photo/trainB/2016-05-23 05:44:17.jpg
inflating: monet2photo/trainB/2015-07-18 14:02:09.jpg
inflating: monet2photo/trainB/2015-11-24 16:35:19.jpg
inflating: monet2photo/trainB/2015-10-15 07:58:12.jpg
inflating: monet2photo/trainB/2015-09-12 09:11:25.jpg
inflating: monet2photo/trainB/2016-06-05 03:03:14.jpg
inflating: monet2photo/trainB/2015-01-29 19:20:30.jpg
inflating: monet2photo/trainB/2015-10-18 05:48:32.jpg
inflating: monet2photo/trainB/2016-01-02 10:59:53.jpg
inflating: monet2photo/trainB/2015-12-30 16:31:27.jpg
inflating: monet2photo/trainB/2015-03-05 19:33:03.jpg
inflating: monet2photo/trainB/2016-12-06 07:05:38.jpg
inflating: monet2photo/trainB/2014-07-29 04:20:01.jpg
inflating: monet2photo/trainB/2014-07-07 01:42:02.jpg
inflating: monet2photo/trainB/2015-02-23 14:05:56.jpg
inflating: monet2photo/trainB/2016-01-03 14:22:35.jpg
inflating: monet2photo/trainB/2016-03-11 16:41:34.jpg
inflating: monet2photo/trainB/2014-01-09 22:13:22.jpg
inflating: monet2photo/trainB/2016-08-04 06:00:46.jpg
inflating: monet2photo/trainB/2014-04-22 21:34:56.jpg
inflating: monet2photo/trainB/2015-07-05 20:16:49.jpg
inflating: monet2photo/trainB/2016-07-04 21:08:16.jpg
inflating: monet2photo/trainB/2016-01-01 04:43:06.jpg
inflating: monet2photo/trainB/2014-11-18 05:09:59.jpg
inflating: monet2photo/trainB/2014-04-21 09:39:02.jpg
inflating: monet2photo/trainB/2016-07-04 21:12:39.jpg
inflating: monet2photo/trainB/2015-03-22 17:08:54.jpg
inflating: monet2photo/trainB/2015-09-30 08:16:12.jpg
inflating: monet2photo/trainB/2015-06-17 15:03:41.jpg
inflating: monet2photo/trainB/2016-12-04 09:13:18.jpg
inflating: monet2photo/trainB/2016-11-29 19:47:41.jpg
inflating: monet2photo/trainB/2016-04-18 19:32:57.jpg
inflating: monet2photo/trainB/2016-03-09 05:34:11.jpg
inflating: monet2photo/trainB/2015-10-13 08:20:13.jpg
inflating: monet2photo/trainB/2016-05-04 05:29:28.jpg
inflating: monet2photo/trainB/2014-05-19 12:26:07.jpg
inflating: monet2photo/trainB/2014-06-08 12:08:42.jpg
inflating: monet2photo/trainB/2015-07-11 15:58:12.jpg
inflating: monet2photo/trainB/2014-01-30 15:34:49.jpg
inflating: monet2photo/trainB/2017-01-03 00:02:26.jpg
inflating: monet2photo/trainB/2015-08-01 19:52:36.jpg
inflating: monet2photo/trainB/2015-11-18 07:30:39.jpg
inflating: monet2photo/trainB/2015-09-09 19:09:28.jpg
inflating: monet2photo/trainB/2015-12-13 07:24:05.jpg
inflating: monet2photo/trainB/2016-11-19 07:28:09.jpg
inflating: monet2photo/trainB/2016-08-16 12:08:04.jpg
inflating: monet2photo/trainB/2016-03-16 14:44:34.jpg
inflating: monet2photo/trainB/2016-04-06 11:15:15.jpg
inflating: monet2photo/trainB/2015-11-14 16:27:58.jpg
inflating: monet2photo/trainB/2015-07-12 01:28:57.jpg
inflating: monet2photo/trainB/2014-01-04 08:22:15.jpg
inflating: monet2photo/trainB/2016-12-06 11:29:13.jpg
inflating: monet2photo/trainB/2016-07-03 08:57:43.jpg
inflating: monet2photo/trainB/2016-12-05 04:55:15.jpg
inflating: monet2photo/trainB/2016-08-07 02:33:26.jpg
inflating: monet2photo/trainB/2016-12-02 16:24:37.jpg
inflating: monet2photo/trainB/2015-12-15 12:20:09.jpg
inflating: monet2photo/trainB/2015-09-13 21:58:55.jpg
inflating: monet2photo/trainB/2016-07-24 09:20:25.jpg
inflating: monet2photo/trainB/2016-08-01 04:47:22.jpg
inflating: monet2photo/trainB/2015-10-11 15:15:50.jpg
inflating: monet2photo/trainB/2015-03-27 00:08:14.jpg
inflating: monet2photo/trainB/2015-07-17 21:46:42.jpg
inflating: monet2photo/trainB/2015-09-27 03:50:37.jpg
inflating: monet2photo/trainB/2015-11-24 18:58:57.jpg
inflating: monet2photo/trainB/2014-01-30 08:07:48.jpg
inflating: monet2photo/trainB/2016-02-07 22:18:04.jpg
inflating: monet2photo/trainB/2016-08-11 21:13:15.jpg
inflating: monet2photo/trainB/2015-03-24 11:18:25.jpg
inflating: monet2photo/trainB/2016-03-30 20:31:17.jpg
inflating: monet2photo/trainB/2016-08-29 07:56:39.jpg
inflating: monet2photo/trainB/2016-03-02 23:09:59.jpg
inflating: monet2photo/trainB/2016-03-01 09:42:29.jpg
inflating: monet2photo/trainB/2015-03-07 12:23:57.jpg
inflating: monet2photo/trainB/2015-03-25 19:09:29.jpg
inflating: monet2photo/trainB/2014-01-01 02:27:26.jpg
inflating: monet2photo/trainB/2014-01-05 23:43:14.jpg
inflating: monet2photo/trainB/2015-07-22 21:41:14.jpg
inflating: monet2photo/trainB/2015-05-02 03:29:29.jpg
inflating: monet2photo/trainB/2016-01-25 13:58:38.jpg
inflating: monet2photo/trainB/2015-06-14 08:22:41.jpg
inflating: monet2photo/trainB/2016-01-30 07:20:49.jpg
inflating: monet2photo/trainB/2015-05-28 22:03:58.jpg
inflating: monet2photo/trainB/2013-11-29 03:08:00.jpg
inflating: monet2photo/trainB/2015-12-17 07:59:28.jpg
inflating: monet2photo/trainB/2016-05-14 01:46:35.jpg
inflating: monet2photo/trainB/2015-09-24 14:20:57.jpg
inflating: monet2photo/trainB/2016-05-19 17:12:46.jpg
inflating: monet2photo/trainB/2014-04-04 22:54:00.jpg
inflating: monet2photo/trainB/2014-05-07 14:29:41.jpg
inflating: monet2photo/trainB/2013-12-16 20:09:22.jpg
inflating: monet2photo/trainB/2016-05-26 08:35:52.jpg
inflating: monet2photo/trainB/2015-08-09 14:45:09.jpg
inflating: monet2photo/trainB/2014-03-09 00:20:16.jpg
inflating: monet2photo/trainB/2014-01-11 05:11:24.jpg
inflating: monet2photo/trainB/2015-09-16 04:20:08.jpg
inflating: monet2photo/trainB/2015-12-08 14:14:33.jpg
inflating: monet2photo/trainB/2015-02-01 05:38:28.jpg
inflating: monet2photo/trainB/2015-09-30 12:11:31.jpg
inflating: monet2photo/trainB/2015-05-06 17:29:28.jpg
inflating: monet2photo/trainB/2015-12-05 10:08:37.jpg
inflating: monet2photo/trainB/2014-02-10 08:25:06.jpg
inflating: monet2photo/trainB/2015-05-30 23:27:29.jpg
inflating: monet2photo/trainB/2016-06-07 17:01:47.jpg
inflating: monet2photo/trainB/2015-01-22 10:24:53.jpg
inflating: monet2photo/trainB/2015-07-29 03:59:07.jpg
inflating: monet2photo/trainB/2016-03-27 06:35:55.jpg
inflating: monet2photo/trainB/2015-11-24 12:12:37.jpg
inflating: monet2photo/trainB/2016-06-07 05:43:11.jpg
inflating: monet2photo/trainB/2016-03-25 11:17:33.jpg
inflating: monet2photo/trainB/2015-10-17 08:54:04.jpg
inflating: monet2photo/trainB/2014-01-25 03:23:05.jpg
inflating: monet2photo/trainB/2016-04-17 22:49:51.jpg
inflating: monet2photo/trainB/2015-07-21 13:47:09.jpg
inflating: monet2photo/trainB/2015-08-27 11:11:45.jpg
inflating: monet2photo/trainB/2014-07-09 15:07:35.jpg
inflating: monet2photo/trainB/2015-10-29 06:18:37.jpg
inflating: monet2photo/trainB/2015-07-26 14:29:27.jpg
inflating: monet2photo/trainB/2015-07-13 15:01:26.jpg
inflating: monet2photo/trainB/2016-03-14 08:38:41.jpg
inflating: monet2photo/trainB/2016-04-18 01:18:33.jpg
inflating: monet2photo/trainB/2014-02-26 17:44:32.jpg
inflating: monet2photo/trainB/2016-06-29 03:53:18.jpg
inflating: monet2photo/trainB/2016-06-08 07:00:53.jpg
inflating: monet2photo/trainB/2015-10-27 17:06:56.jpg
inflating: monet2photo/trainB/2014-06-13 23:59:31.jpg
inflating: monet2photo/trainB/2015-07-05 10:40:15.jpg
inflating: monet2photo/trainB/2016-08-06 05:12:09.jpg
inflating: monet2photo/trainB/2016-01-12 00:13:04.jpg
inflating: monet2photo/trainB/2016-08-31 13:16:25.jpg
inflating: monet2photo/trainB/2015-06-21 13:11:25.jpg
inflating: monet2photo/trainB/2016-01-04 20:31:51.jpg
inflating: monet2photo/trainB/2015-02-28 20:18:08.jpg
inflating: monet2photo/trainB/2013-12-15 06:08:02.jpg
inflating: monet2photo/trainB/2016-05-02 01:01:50.jpg
inflating: monet2photo/trainB/2015-09-02 09:48:35.jpg
inflating: monet2photo/trainB/2015-07-18 22:13:20.jpg
inflating: monet2photo/trainB/2014-07-01 00:14:40.jpg
inflating: monet2photo/trainB/2014-06-05 15:59:58.jpg
inflating: monet2photo/trainB/2016-08-25 14:50:48.jpg
inflating: monet2photo/trainB/2015-08-07 06:53:15.jpg
inflating: monet2photo/trainB/2014-11-26 03:54:14.jpg
inflating: monet2photo/trainB/2014-05-05 04:15:15.jpg
inflating: monet2photo/trainB/2013-11-08 16:45:24.jpg
inflating: monet2photo/trainB/2016-07-03 06:04:34.jpg
inflating: monet2photo/trainB/2014-06-23 17:57:10.jpg
inflating: monet2photo/trainB/2016-04-12 10:45:28.jpg
inflating: monet2photo/trainB/2015-06-03 09:28:24.jpg
inflating: monet2photo/trainB/2016-06-06 15:58:16.jpg
inflating: monet2photo/trainB/2014-06-03 12:35:02.jpg
inflating: monet2photo/trainB/2016-07-13 12:06:48.jpg
inflating: monet2photo/trainB/2015-01-17 16:17:38.jpg
inflating: monet2photo/trainB/2016-01-26 08:41:15.jpg
inflating: monet2photo/trainB/2016-11-28 09:42:07.jpg
inflating: monet2photo/trainB/2016-04-17 12:06:23.jpg
inflating: monet2photo/trainB/2016-03-19 01:29:06.jpg
inflating: monet2photo/trainB/2016-05-21 06:00:05.jpg
inflating: monet2photo/trainB/2015-07-09 13:21:34.jpg
inflating: monet2photo/trainB/2015-10-17 05:22:21.jpg
inflating: monet2photo/trainB/2016-05-07 21:15:32.jpg
inflating: monet2photo/trainB/2016-08-17 18:41:50.jpg
inflating: monet2photo/trainB/2016-04-05 05:34:31.jpg
inflating: monet2photo/trainB/2016-11-25 00:01:50.jpg
inflating: monet2photo/trainB/2015-03-08 11:36:11.jpg
inflating: monet2photo/trainB/2015-12-28 09:52:30.jpg
inflating: monet2photo/trainB/2015-10-18 16:01:35.jpg
inflating: monet2photo/trainB/2015-11-24 14:23:25.jpg
inflating: monet2photo/trainB/2016-08-15 09:27:14.jpg
inflating: monet2photo/trainB/2015-12-02 00:26:57.jpg
inflating: monet2photo/trainB/2015-03-02 19:10:47.jpg
inflating: monet2photo/trainB/2014-02-01 23:54:02.jpg
inflating: monet2photo/trainB/2016-02-09 01:36:29.jpg
inflating: monet2photo/trainB/2016-01-01 11:24:26.jpg
inflating: monet2photo/trainB/2016-01-17 04:12:05.jpg
inflating: monet2photo/trainB/2015-06-04 21:11:04.jpg
inflating: monet2photo/trainB/2016-11-26 01:56:56.jpg
inflating: monet2photo/trainB/2015-08-15 04:09:41.jpg
inflating: monet2photo/trainB/2016-06-09 05:44:30.jpg
inflating: monet2photo/trainB/2014-02-27 22:35:01.jpg
inflating: monet2photo/trainB/2015-12-05 00:37:07.jpg
inflating: monet2photo/trainB/2015-06-20 17:24:46.jpg
inflating: monet2photo/trainB/2015-11-19 01:56:28.jpg
inflating: monet2photo/trainB/2016-04-19 15:14:48.jpg
inflating: monet2photo/trainB/2016-07-02 10:51:28.jpg
inflating: monet2photo/trainB/2015-12-14 11:26:36.jpg
inflating: monet2photo/trainB/2015-12-04 18:15:53.jpg
inflating: monet2photo/trainB/2015-05-18 13:55:02.jpg
inflating: monet2photo/trainB/2014-03-03 09:20:36.jpg
inflating: monet2photo/trainB/2014-11-01 03:04:22.jpg
inflating: monet2photo/trainB/2015-05-28 02:38:04.jpg
creating: monet2photo/testA/
inflating: monet2photo/testA/01190.jpg
inflating: monet2photo/testA/01120.jpg
inflating: monet2photo/testA/00360.jpg
inflating: monet2photo/testA/00940.jpg
inflating: monet2photo/testA/01230.jpg
inflating: monet2photo/testA/01240.jpg
inflating: monet2photo/testA/00300.jpg
inflating: monet2photo/testA/00700.jpg
inflating: monet2photo/testA/00810.jpg
inflating: monet2photo/testA/01260.jpg
inflating: monet2photo/testA/01020.jpg
inflating: monet2photo/testA/00020.jpg
inflating: monet2photo/testA/00840.jpg
inflating: monet2photo/testA/00980.jpg
inflating: monet2photo/testA/00930.jpg
inflating: monet2photo/testA/00420.jpg
inflating: monet2photo/testA/00620.jpg
inflating: monet2photo/testA/00030.jpg
inflating: monet2photo/testA/00880.jpg
inflating: monet2photo/testA/01030.jpg
inflating: monet2photo/testA/00110.jpg
inflating: monet2photo/testA/00490.jpg
inflating: monet2photo/testA/00120.jpg
inflating: monet2photo/testA/00130.jpg
inflating: monet2photo/testA/00890.jpg
inflating: monet2photo/testA/00900.jpg
inflating: monet2photo/testA/00770.jpg
inflating: monet2photo/testA/00390.jpg
inflating: monet2photo/testA/01000.jpg
inflating: monet2photo/testA/00350.jpg
inflating: monet2photo/testA/00100.jpg
inflating: monet2photo/testA/01050.jpg
inflating: monet2photo/testA/00180.jpg
inflating: monet2photo/testA/00480.jpg
inflating: monet2photo/testA/01040.jpg
inflating: monet2photo/testA/00410.jpg
inflating: monet2photo/testA/01330.jpg
inflating: monet2photo/testA/01110.jpg
inflating: monet2photo/testA/01160.jpg
inflating: monet2photo/testA/01310.jpg
inflating: monet2photo/testA/00780.jpg
inflating: monet2photo/testA/00400.jpg
inflating: monet2photo/testA/00440.jpg
inflating: monet2photo/testA/01070.jpg
inflating: monet2photo/testA/00450.jpg
inflating: monet2photo/testA/00740.jpg
inflating: monet2photo/testA/00170.jpg
inflating: monet2photo/testA/01010.jpg
inflating: monet2photo/testA/00280.jpg
inflating: monet2photo/testA/00690.jpg
inflating: monet2photo/testA/00750.jpg
inflating: monet2photo/testA/00790.jpg
inflating: monet2photo/testA/00250.jpg
inflating: monet2photo/testA/00080.jpg
inflating: monet2photo/testA/00760.jpg
inflating: monet2photo/testA/00470.jpg
inflating: monet2photo/testA/00540.jpg
inflating: monet2photo/testA/00310.jpg
inflating: monet2photo/testA/00800.jpg
inflating: monet2photo/testA/00680.jpg
inflating: monet2photo/testA/01180.jpg
inflating: monet2photo/testA/01090.jpg
inflating: monet2photo/testA/00600.jpg
inflating: monet2photo/testA/00850.jpg
inflating: monet2photo/testA/01060.jpg
inflating: monet2photo/testA/00010.jpg
inflating: monet2photo/testA/00870.jpg
inflating: monet2photo/testA/00160.jpg
inflating: monet2photo/testA/00990.jpg
inflating: monet2photo/testA/01290.jpg
inflating: monet2photo/testA/00380.jpg
inflating: monet2photo/testA/01150.jpg
inflating: monet2photo/testA/01080.jpg
inflating: monet2photo/testA/01210.jpg
inflating: monet2photo/testA/01220.jpg
inflating: monet2photo/testA/00500.jpg
inflating: monet2photo/testA/00920.jpg
inflating: monet2photo/testA/00820.jpg
inflating: monet2photo/testA/00090.jpg
inflating: monet2photo/testA/00710.jpg
inflating: monet2photo/testA/00240.jpg
inflating: monet2photo/testA/00650.jpg
inflating: monet2photo/testA/00330.jpg
inflating: monet2photo/testA/01130.jpg
inflating: monet2photo/testA/00860.jpg
inflating: monet2photo/testA/01200.jpg
inflating: monet2photo/testA/00220.jpg
inflating: monet2photo/testA/01100.jpg
inflating: monet2photo/testA/00260.jpg
inflating: monet2photo/testA/00070.jpg
inflating: monet2photo/testA/00730.jpg
inflating: monet2photo/testA/00640.jpg
inflating: monet2photo/testA/00520.jpg
inflating: monet2photo/testA/01300.jpg
inflating: monet2photo/testA/00950.jpg
inflating: monet2photo/testA/00140.jpg
inflating: monet2photo/testA/01250.jpg
inflating: monet2photo/testA/00855.jpg
inflating: monet2photo/testA/01270.jpg
inflating: monet2photo/testA/01280.jpg
inflating: monet2photo/testA/00590.jpg
inflating: monet2photo/testA/00550.jpg
inflating: monet2photo/testA/00970.jpg
inflating: monet2photo/testA/00290.jpg
inflating: monet2photo/testA/00040.jpg
inflating: monet2photo/testA/00910.jpg
inflating: monet2photo/testA/00610.jpg
inflating: monet2photo/testA/00150.jpg
inflating: monet2photo/testA/00320.jpg
inflating: monet2photo/testA/00270.jpg
inflating: monet2photo/testA/01140.jpg
inflating: monet2photo/testA/00670.jpg
inflating: monet2photo/testA/00830.jpg
inflating: monet2photo/testA/00050.jpg
inflating: monet2photo/testA/00960.jpg
inflating: monet2photo/testA/00430.jpg
inflating: monet2photo/testA/00060.jpg
inflating: monet2photo/testA/00210.jpg
inflating: monet2photo/testA/00190.jpg
inflating: monet2photo/testA/00200.jpg
inflating: monet2photo/testA/00460.jpg
In [0]:
import time
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import PIL
from glob import glob
from keras import Input, Model
from keras.callbacks import TensorBoard
from keras.layers import Conv2D, BatchNormalization, Activation
from keras.layers import Add, Conv2DTranspose, ZeroPadding2D, LeakyReLU
from keras.optimizers import Adam
from imageio import imread
from skimage.transform import resize
Using TensorFlow backend.
In [0]:
!pip install git+https://www.github.com/keras-team/keras-contrib.git
Collecting git+https://www.github.com/keras-team/keras-contrib.git
Cloning https://www.github.com/keras-team/keras-contrib.git to /tmp/pip-req-build-s_z8f_t6
Running command git clone -q https://www.github.com/keras-team/keras-contrib.git /tmp/pip-req-build-s_z8f_t6
Requirement already satisfied: keras in /usr/local/lib/python3.6/dist-packages (from keras-contrib==2.0.8) (2.2.4)
Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (1.12.0)
Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (1.3.1)
Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (1.0.8)
Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (2.8.0)
Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (1.16.4)
Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (1.1.0)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from keras->keras-contrib==2.0.8) (3.13)
Building wheels for collected packages: keras-contrib
Building wheel for keras-contrib (setup.py) ... done
Created wheel for keras-contrib: filename=keras_contrib-2.0.8-cp36-none-any.whl size=101066 sha256=cfc88de5fa2eac3e2695288ecdf4f8de4699b739e42455ffe03a614c72c4b121
Stored in directory: /tmp/pip-ephem-wheel-cache-pzwn1cn5/wheels/11/27/c8/4ed56de7b55f4f61244e2dc6ef3cdbaff2692527a2ce6502ba
Successfully built keras-contrib
Installing collected packages: keras-contrib
Successfully installed keras-contrib-2.0.8
In [0]:
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
In [0]:
def residual_block(x):
"""
Residual block
"""
res = Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same")(x)
res = BatchNormalization(axis = 3, momentum = 0.9, epsilon = 1e-5)(res)
res = Activation('relu')(res)
res = Conv2D(filters = 128, kernel_size = 3, strides = 1, padding = "same")(res)
res = BatchNormalization(axis = 3, momentum = 0.9, epsilon = 1e-5)(res)
return Add()([res, x])
In [0]:
def build_generator():
"""
Creating a generator network with the hyperparameters defined below
"""
input_shape = (128, 128, 3)
residual_blocks = 6
input_layer = Input(shape = input_shape)
## 1st Convolutional Block
x = Conv2D(filters = 32, kernel_size = 7, strides = 1, padding = "same")(input_layer)
x = InstanceNormalization(axis = 1)(x)
x = Activation("relu")(x)
## 2nd Convolutional Block
x = Conv2D(filters = 64, kernel_size = 3, strides = 2, padding = "same")(x)
x = InstanceNormalization(axis = 1)(x)
x = Activation("relu")(x)
## 3rd Convolutional Block
x = Conv2D(filters = 128, kernel_size = 3, strides = 2, padding = "same")(x)
x = InstanceNormalization(axis = 1)(x)
x = Activation("relu")(x)
## Residual blocks
for _ in range(residual_blocks):
x = residual_block(x)
## 1st Upsampling Block
x = Conv2DTranspose(filters = 64, kernel_size = 3, strides = 2, padding = "same", use_bias = False)(x)
x = InstanceNormalization(axis = 1)(x)
x = Activation("relu")(x)
## 2nd Upsampling Block
x = Conv2DTranspose(filters = 32, kernel_size = 3, strides = 2, padding = "same", use_bias = False)(x)
x = InstanceNormalization(axis = 1)(x)
x = Activation("relu")(x)
## Last Convolutional Layer
x = Conv2D(filters = 3, kernel_size = 7, strides = 1, padding = "same")(x)
output = Activation("tanh")(x)
model = Model(inputs = [input_layer], outputs = [output])
return model
In [0]:
def build_discriminator():
"""
Create a discriminator network using the hyperparameters defined below
"""
input_shape = (128, 128, 3)
hidden_layers = 3
input_layer = Input(shape = input_shape)
x = ZeroPadding2D(padding = (1, 1))(input_layer)
## 1st Convolutional Block
x = Conv2D(filters = 64, kernel_size = 4, strides = 2, padding = "valid")(x)
x = LeakyReLU(alpha = 0.2)(x)
x = ZeroPadding2D(padding = (1, 1))(x)
## 3 Hidden Convolutional Blocks
for i in range(1, hidden_layers + 1):
x = Conv2D(filters = 2 ** i * 64, kernel_size = 4, strides = 2, padding = "valid")(x)
x = InstanceNormalization(axis = 1)(x)
x = LeakyReLU(alpha = 0.2)(x)
x = ZeroPadding2D(padding = (1, 1))(x)
## Last Convolutional Layer
output = Conv2D(filters = 1, kernel_size = 4, strides = 1, activation = "sigmoid")(x)
model = Model(inputs = [input_layer], outputs = [output])
return model
In [0]:
def load_images(data_dir):
imagesA = glob(data_dir + '/testA/*.*')
imagesB = glob(data_dir + '/testB/*.*')
allImagesA = []
allImagesB = []
for index, filename in enumerate(imagesA):
imgA = imread(filename, pilmode = "RGB")
imgB = imread(imagesB[index], pilmode = "RGB")
imgA = resize(imgA, (128, 128))
imgB = resize(imgB, (128, 128))
if np.random.random() > 0.5:
imgA = np.fliplr(imgA)
imgB = np.fliplr(imgB)
allImagesA.append(imgA)
allImagesB.append(imgB)
## Normalize images
allImagesA = np.array(allImagesA) / 127.5 - 1.
allImagesB = np.array(allImagesB) / 127.5 - 1.
return allImagesA, allImagesB
In [0]:
def load_test_batch(data_dir, batch_size):
imagesA = glob(data_dir + '/testA/*.*')
imagesB = glob(data_dir + '/testB/*.*')
imagesA = np.random.choice(a = imagesA, size = batch_size)
imagesB = np.random.choice(a = imagesB, size = batch_size)
allA = []
allB = []
for i in range(len(imagesA)):
## Load and resize images
imgA = resize(imread(imagesA[i], pilmode = 'RGB').astype(np.float32), (128, 128))
imgB = resize(imread(imagesB[i], pilmode = 'RGB').astype(np.float32), (128, 128))
allA.append(imgA)
allB.append(imgB)
return np.array(allA) / 127.5 - 1.0, np.array(allB) / 127.5 - 1.0
In [0]:
!mkdir results
def save_images(originalA, generatedB, reconstructedA,
originalB, generatedA, reconstructedB, path):
"""
Save images
"""
fig = plt.figure()
ax = fig.add_subplot(2, 3, 1)
ax.imshow(originalA)
ax.axis("off")
ax.set_title("Original")
ax = fig.add_subplot(2, 3, 2)
ax.imshow(generatedB)
ax.axis("off")
ax.set_title("Generated")
ax = fig.add_subplot(2, 3, 3)
ax.imshow(reconstructedA)
ax.axis("off")
ax.set_title("Reconstructed")
ax = fig.add_subplot(2, 3, 4)
ax.imshow(originalB)
ax.axis("off")
ax.set_title("Original")
ax = fig.add_subplot(2, 3, 5)
ax.imshow(generatedA)
ax.axis("off")
ax.set_title("Generated")
ax = fig.add_subplot(2, 3, 6)
ax.imshow(reconstructedB)
ax.axis("off")
ax.set_title("Reconstructed")
plt.savefig(path)
In [0]:
def write_log(callback, name, loss, batch_no):
"""
Write training summary to TensorBoard
"""
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = loss
summary_value.tag = name
callback.writer.add_summary(summary, batch_no)
callback.writer.flush()
In [0]:
if __name__ == '__main__':
data_dir = "monet2photo"
batch_size = 1
epochs = 500
mode = 'train'
if mode == 'train':
"""
Load dataset
"""
imagesA, imagesB = load_images(data_dir = data_dir)
## Define the common optimizer
common_optimizer = Adam(0.002, 0.5)
## Build and compile discriminator networks
discriminatorA = build_discriminator()
discriminatorB = build_discriminator()
discriminatorA.compile(loss = 'mse',
optimizer = common_optimizer,
metrics = ['accuracy'])
discriminatorB.compile(loss = 'mse',
optimizer = common_optimizer,
metrics = ['accuracy'])
## Build generator networks
generatorA_to_B = build_generator()
generatorB_to_A = build_generator()
"""
Create an adversarial network
"""
inputA = Input(shape = (128, 128, 3))
inputB = Input(shape = (128, 128, 3))
## --> Generated images using both of the generator networks
generatedB = generatorA_to_B(inputA)
generatedA = generatorB_to_A(inputB)
## --> Reconstruct the images back to the original ones
reconstructedA = generatorB_to_A(generatedB)
reconstructedB = generatorA_to_B(generatedA)
generatedA_Id = generatorB_to_A(inputA)
generatedB_Id = generatorA_to_B(inputB)
## Make both of the discriminator networks non-trainable
discriminatorA.trainable = False
discriminatorB.trainable = False
probsA = discriminatorA(generatedA)
probsB = discriminatorB(generatedB)
adversarial_model = Model(inputs = [inputA, inputB],
outputs = [probsA, probsB,
reconstructedA, reconstructedB,
generatedA_Id, generatedB_Id])
adversarial_model.compile(loss = ['mse', 'mse', 'mae', 'mae', 'mae', 'mae'],
loss_weights = [1, 1, 10.0, 10.0, 1.0, 1.0],
optimizer = common_optimizer)
tensorboard = TensorBoard(log_dir = "logs/{}".format(time.time()),
write_images = True, write_grads = True,
write_graph = True)
tensorboard.set_model(generatorA_to_B)
tensorboard.set_model(generatorB_to_A)
tensorboard.set_model(discriminatorA)
tensorboard.set_model(discriminatorB)
real_labels = np.ones((batch_size, 7, 7, 1))
fake_labels = np.zeros((batch_size, 7, 7, 1))
for epoch in range(epochs):
print("Epoch: {}".format(epoch))
D_losses = []
G_losses = []
num_batches = int(min(imagesA.shape[0], imagesB.shape[0]) / batch_size)
print("Number of batches: {}".format(num_batches))
for index in range(num_batches):
print("Batch: {}".format(index))
## Sample images
batchA = imagesA[index * batch_size: (index + 1) * batch_size]
batchB = imagesB[index * batch_size: (index + 1) * batch_size]
## Translate images to opposite domain
generatedB = generatorA_to_B.predict(batchA)
generatedA = generatorB_to_A.predict(batchB)
## Train the discriminator A on real and fake images
D_A_Loss1 = discriminatorA.train_on_batch(batchA, real_labels)
D_A_Loss2 = discriminatorA.train_on_batch(generatedA, fake_labels)
## Train the discriminator B on real and fake images
D_B_Loss1 = discriminatorB.train_on_batch(batchB, real_labels)
D_B_Loss2 = discriminatorB.train_on_batch(generatedB, fake_labels)
## Calculate the total discriminator loss
D_loss = 0.5 * np.add(0.5 * np.add(D_A_Loss1, D_A_Loss2),
0.5 * np.add(D_B_Loss1, D_B_Loss2))
print("D_Loss: {}".format(D_loss))
"""
Train the generator networks
"""
G_loss = adversarial_model.train_on_batch([batchA, batchB],
[real_labels, real_labels,
batchA, batchB,
batchA, batchB])
print("G_Loss: {}".format(G_loss))
D_losses.append(D_loss)
G_losses.append(G_loss)
"""
Save losses to TensorBoard after every epoch
"""
write_log(tensorboard, 'discriminator_loss', np.mean(D_losses), epoch)
write_log(tensorboard, 'generator_loss', np.mean(G_losses), epoch)
## Sample and save images after every 10 epochs
if epoch % 10 == 0:
## Get a batch of test data
batchA, batchB = load_test_batch(data_dir = data_dir, batch_size = 2)
## Generate images
generatedB = generatorA_to_B.predict(batchA)
generatedA = generatorB_to_A.predict(batchB)
## Get reconstructed images
recons_A = generatorB_to_A.predict(generatedB)
recons_B = generatorA_to_B.predict(generatedA)
## Save original, generated and reconstructed images
for i in range(len(generatedA)):
save_images(originalA = batchA[i], generatedB = generatedB[i], reconstructedA = recons_A[i],
originalB = batchB[i], generatedA = generatedA[i], reconstructedB = recons_B[i],
path = "results/gen_{}_{}".format(epoch, i))
## Save models
generatorA_to_B.save_weights("generatorA_to_B.h5")
generatorB_to_A.save_weights("generatorB_to_A.h5")
discriminatorA.save_weights("discriminatorA.h5")
discriminatorB.save_weights("discriminatorB.h5")
elif mode == 'predict':
## Build generator networks
generatorA_to_B = build_generator()
generatorB_to_A = build_generator()
generatorA_to_B.load_weights("generatorA_to_B.h5")
generatorB_to_A.load_weights("generatorB_to_A.h5")
## Get a batch of test data
batchA, batchB = load_test_batch(data_dir = data_dir, batch_size = 2)
## Save images
generatedB = generatorA_to_B.predict(batchA)
generatedA = generatorB_to_A.predict(batchB)
reconsA = generatorB_to_A.predict(generatedB)
reconsB = generatorA_to_B.predict(generatedA)
for i in range(len(generatedA)):
save_images(originalA = batchA[i], generatedB = generatedB[i], reconstructedA = recons_A[i],
originalB = batchB[i], generatedA = generatedA[i], reconstructedB = recons_B[i],
path = "results/test_{}".format(i))
WARNING: Logging before flag parsing goes to stderr.
W0822 12:57:49.734445 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
W0822 12:57:49.736517 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
W0822 12:57:49.752670 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
W0822 12:57:50.060953 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
W0822 12:57:50.235987 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
W0822 12:57:50.237730 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
W0822 12:57:53.725808 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
W0822 12:58:08.037763 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/callbacks.py:850: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.
W0822 12:58:08.039646 139716881598336 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/keras/callbacks.py:853: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
Epoch: 0
Number of batches: 121
Batch: 0
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py:490: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py:490: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py:490: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
D_Loss: [0.5305587 0.49489796]
G_Loss: [25.205275, 5.0539395e-09, 6.623143e-08, 1.2187737, 1.0739226, 1.2182144, 1.0600963]
Batch: 1
D_Loss: [0.4999975 0.5 ]
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py:490: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
G_Loss: [3.9817982, 8.908386e-11, 2.0940565e-11, 0.20176497, 0.16031894, 0.19941089, 0.16154826]
Batch: 2
D_Loss: [0.4999979 0.5 ]
G_Loss: [0.14613247, 1.06901446e-10, 3.266916e-11, 0.008199459, 0.0050833183, 0.008200543, 0.0051041497]
Batch: 3
D_Loss: [0.49999782 0.5 ]
G_Loss: [0.07484748, 1.3021768e-10, 4.5673253e-11, 0.0035987599, 0.0032056177, 0.0035989643, 0.0032047378]
Batch: 4
D_Loss: [0.49999744 0.5 ]
G_Loss: [0.055565186, 1.7880945e-10, 7.669714e-11, 0.0039672605, 0.001084133, 0.003967266, 0.0010839804]
Batch: 5
D_Loss: [0.4999969 0.5 ]
G_Loss: [0.08253879, 2.7708774e-10, 1.625803e-10, 0.0032744212, 0.004229109, 0.0032744072, 0.0042290743]
Batch: 6
D_Loss: [0.4999958 0.5 ]
G_Loss: [0.10562783, 5.279189e-10, 5.5828697e-10, 0.0035202028, 0.00608233, 0.0035201842, 0.0060823206]
Batch: 7
D_Loss: [0.49999303 0.5 ]
G_Loss: [0.086792976, 1.5879688e-09, 1.0446463e-08, 0.00399099, 0.0038992828, 0.0039909696, 0.0038992679]
Batch: 8
D_Loss: [0.49997103 0.5 ]
G_Loss: [1.0719333, 3.3966444e-08, 0.9998367, 0.0031124214, 0.003441812, 0.00311242, 0.0034418332]
Batch: 9
D_Loss: [0.74946296 0.25 ]
G_Loss: [2.074207, 0.9999405, 0.9958127, 0.0041293586, 0.0030027935, 0.004129373, 0.003002779]
Batch: 10
D_Loss: [0.6524923 0.33163264]
G_Loss: [2.0854123, 0.9999276, 0.99994147, 0.0026702269, 0.0051064147, 0.0026702278, 0.0051064114]
Batch: 11
D_Loss: [0.49996725 0.5 ]
G_Loss: [2.0732508, 0.9998624, 0.99994475, 0.0046732277, 0.0020034672, 0.0046732393, 0.0020034793]
Batch: 12
D_Loss: [0.4999519 0.5 ]
G_Loss: [2.076531, 0.99949414, 0.9999042, 0.0031265437, 0.0038855155, 0.0031265533, 0.0038854443]
Batch: 13
D_Loss: [0.4999232 0.5 ]
G_Loss: [2.0755465, 0.9983372, 0.999865, 0.005020872, 0.0020104526, 0.005020882, 0.0020104344]
Batch: 14
D_Loss: [0.52557886 0.46428573]
G_Loss: [2.0670457, 1.0, 0.9998054, 0.003332845, 0.0027798975, 0.003332844, 0.0027799131]
Batch: 15
D_Loss: [0.49995142 0.5 ]
G_Loss: [2.0627306, 1.0, 0.99967253, 0.0035078381, 0.0022247022, 0.0035078109, 0.0022247187]
Batch: 16
D_Loss: [0.49991855 0.5 ]
G_Loss: [2.0548084, 1.0, 0.9991885, 0.0022493354, 0.002807031, 0.0022493303, 0.0028070305]
Batch: 17
D_Loss: [0.4998095 0.5 ]
G_Loss: [2.070156, 1.0, 0.99236864, 0.0031272955, 0.0039442857, 0.003127303, 0.0039442796]
Batch: 18
D_Loss: [0.74809253 0.25 ]
G_Loss: [1.0848153, 1.0, 0.0, 0.0033807512, 0.00432973, 0.0033807652, 0.0043297005]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0574374, 1.0, 0.0, 0.0034567295, 0.0017648425, 0.0034567132, 0.0017648609]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0851662, 1.0, 0.0, 0.0030887434, 0.0046536615, 0.0030885967, 0.004653617]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0874918, 1.0, 0.0, 0.0042378055, 0.003715997, 0.004237742, 0.0037159426]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0767947, 1.0, 0.0, 0.003374986, 0.0036064032, 0.003374503, 0.0036063932]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0570321, 1.0, 0.0, 0.0031483816, 0.0020362842, 0.0031492207, 0.0020362176]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.051461, 1.0, 0.0, 0.0022763265, 0.0024026777, 0.0022682818, 0.0024027082]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0806954, 1.0, 0.0, 0.0036099807, 0.0037259345, 0.0036102007, 0.003725971]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0783005, 1.0, 0.0, 0.004731375, 0.0023868494, 0.00473141, 0.0023868706]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0667522, 1.0, 0.0, 0.0033675889, 0.002700807, 0.0033674338, 0.0027008553]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.052085, 1.0, 0.0, 0.0022735798, 0.002461434, 0.0022734143, 0.0024614318]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.1021444, 1.0, 0.0, 0.0048889676, 0.0043968046, 0.004889828, 0.004396752]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0780519, 1.0, 0.0, 0.003395278, 0.0037004033, 0.0033947781, 0.0037003746]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0768307, 1.0, 0.0, 0.0032819586, 0.0037026913, 0.0032816841, 0.0037025642]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0663079, 1.0, 0.0, 0.0033780397, 0.0026499787, 0.0033778278, 0.0026499734]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0675365, 1.0, 0.0, 0.0030047006, 0.0031349768, 0.003004685, 0.0031349908]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0556906, 1.0, 0.0, 0.0034778118, 0.0015851352, 0.0034762435, 0.0015849032]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0632472, 1.0, 0.0, 0.003059525, 0.0026906393, 0.0030549334, 0.0026905788]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0780853, 1.0, 0.0, 0.0059963553, 0.0011018349, 0.0060012974, 0.0011019123]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0686725, 1.0, 0.0, 0.004952337, 0.001290628, 0.0049523315, 0.0012905572]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.059172, 1.0, 0.0, 0.004489617, 0.00088965584, 0.0044896095, 0.0008896413]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0479424, 1.0, 0.0, 0.0031680036, 0.0011903526, 0.0031684681, 0.0011903867]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0867711, 1.0, 0.0, 0.0036952486, 0.004193059, 0.0036950114, 0.004193094]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.090488, 1.0, 0.0, 0.0052892114, 0.002936988, 0.005289113, 0.002936964]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0798702, 1.0, 0.0, 0.0031518026, 0.0041091316, 0.0031518235, 0.0041091973]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.084857, 1.0, 0.0, 0.003741756, 0.003972517, 0.0037417463, 0.0039725807]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0679239, 1.0, 0.0, 0.0036366396, 0.0025382612, 0.0036366002, 0.0025382675]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0486474, 1.0, 0.0, 0.0030035162, 0.001419005, 0.0030033097, 0.001418854]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0841243, 1.0, 0.0, 0.004741164, 0.0029064927, 0.0047411527, 0.002906536]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0815023, 1.0, 0.0, 0.0037443202, 0.0036649501, 0.0037445861, 0.0036651045]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0864365, 1.0, 0.0, 0.0035981806, 0.0042596306, 0.0035984716, 0.0042598965]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0906178, 1.0, 0.0, 0.004105132, 0.004132814, 0.0041052364, 0.0041330634]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0778519, 1.0, 0.0, 0.0035791048, 0.0034983526, 0.0035793327, 0.0034979074]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0800817, 1.0, 0.0, 0.0042693685, 0.0030108076, 0.004269264, 0.003010592]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0871855, 1.0, 0.0, 0.0038375768, 0.0040883394, 0.0038375626, 0.0040887096]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0628582, 1.0, 0.0, 0.0029133393, 0.002801029, 0.0029132674, 0.0028012986]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.077869, 1.0, 0.0, 0.0043209996, 0.0027580336, 0.0043206667, 0.0027580424]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0779094, 1.0, 0.0, 0.003730467, 0.0033522083, 0.003730199, 0.0033524567]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0749876, 1.0, 0.0, 0.004295883, 0.00252108, 0.004296179, 0.0025218101]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0770252, 1.0, 0.0, 0.004742824, 0.0022594454, 0.004742638, 0.0022598822]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0795077, 1.0, 0.0, 0.0046040365, 0.0026238794, 0.004604093, 0.0026244419]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.064366, 1.0, 0.0, 0.0032435777, 0.0026074562, 0.0032441802, 0.0026115323]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.1274866, 1.0, 0.0, 0.0040348433, 0.0075588943, 0.00403386, 0.0075154817]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0737286, 1.0, 0.0, 0.0034005335, 0.0033020773, 0.0034006143, 0.0033019525]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0905625, 1.0, 0.0, 0.004027214, 0.004205725, 0.0040273867, 0.0042056846]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0964904, 1.0, 0.0, 0.0042829257, 0.0044889115, 0.0042831446, 0.0044887755]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0696694, 1.0, 0.0, 0.0035361843, 0.0027973326, 0.0035371496, 0.0027970588]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0733979, 1.0, 0.0, 0.0027131853, 0.0039593363, 0.0027134323, 0.0039593377]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0742708, 1.0, 0.0, 0.0034474717, 0.0033044256, 0.0034474852, 0.0033043916]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0489588, 1.0, 0.0, 0.0025036074, 0.0019471708, 0.0025037182, 0.0019471394]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.09276, 1.0, 0.0, 0.0052122213, 0.0032205018, 0.005212277, 0.0032204827]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0650876, 1.0, 0.0, 0.0028143679, 0.0031026572, 0.0028146973, 0.003102632]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.076307, 1.0, 0.0, 0.005073653, 0.0018633741, 0.0050733928, 0.0018633879]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0785102, 1.0, 0.0, 0.0031344837, 0.0040026596, 0.0031359803, 0.0040026912]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0717121, 1.0, 0.0, 0.003545532, 0.0029737581, 0.003545533, 0.002973699]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0820658, 1.0, 0.0, 0.0033342442, 0.004126278, 0.0033342445, 0.0041262778]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0856704, 1.0, 0.0, 0.0035295077, 0.004258689, 0.0035295356, 0.0042587053]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0973699, 1.0, 0.0, 0.004074935, 0.004776881, 0.0040749134, 0.004776835]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0872959, 1.0, 0.0, 0.0050162543, 0.0029197321, 0.0050163274, 0.0029197254]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0685794, 1.0, 0.0, 0.003675417, 0.0025590837, 0.0036753644, 0.0025591091]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0550449, 1.0, 0.0, 0.0041380986, 0.0008659789, 0.004138087, 0.0008659939]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0651807, 1.0, 0.0, 0.0034196381, 0.0025058696, 0.0034195997, 0.0025058584]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0762947, 1.0, 0.0, 0.0045200223, 0.0024158582, 0.0045200656, 0.0024157786]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.061006, 1.0, 0.0, 0.0021862653, 0.0033597136, 0.002186448, 0.0033597415]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0631664, 1.0, 0.0, 0.0030834829, 0.0026589192, 0.003083443, 0.002658933]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.071692, 1.0, 0.0, 0.0037598638, 0.00275759, 0.0037598151, 0.002757649]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0868279, 1.0, 0.0, 0.0035172347, 0.0043762056, 0.003517234, 0.00437618]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0737256, 1.0, 0.0, 0.0039054756, 0.002796845, 0.003905605, 0.0027968176]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0768528, 1.0, 0.0, 0.0038795, 0.003107092, 0.0038796565, 0.0031071838]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.058604, 1.0, 0.0, 0.0031390134, 0.0021886071, 0.003139085, 0.0021885857]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0670298, 1.0, 0.0, 0.0031270678, 0.002966572, 0.00312701, 0.0029665818]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0691516, 1.0, 0.0, 0.003329737, 0.0029567499, 0.0033298177, 0.0029568754]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0603658, 1.0, 0.0, 0.0028722296, 0.0026155564, 0.002872322, 0.002615537]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0871449, 1.0, 0.0, 0.004564752, 0.0033575501, 0.0045642396, 0.0033574726]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0613427, 1.0, 0.0, 0.0039046337, 0.0016719277, 0.0039053552, 0.0016719126]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0717534, 1.0, 0.0, 0.004279409, 0.002243618, 0.004279781, 0.0022434099]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0699325, 1.0, 0.0, 0.004034694, 0.0023227795, 0.004034913, 0.0023227953]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.078219, 1.0, 0.0, 0.0036165146, 0.0034943172, 0.0036162194, 0.0034944594]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0747249, 1.0, 0.0, 0.0038836333, 0.0029095171, 0.003883834, 0.002909556]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0739962, 1.0, 0.0, 0.0036926835, 0.0030341838, 0.0036932414, 0.0030341984]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0573971, 1.0, 0.0, 0.003084928, 0.0021330016, 0.0030848081, 0.00213297]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0624814, 1.0, 0.0, 0.0032848888, 0.0023952425, 0.0032848283, 0.0023952671]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0733134, 1.0, 0.0, 0.0041300706, 0.002534788, 0.0041300394, 0.0025348193]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0451329, 1.0, 0.0, 0.0030677933, 0.0010351529, 0.0030683372, 0.0010350395]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0779171, 1.0, 0.0, 0.0043695667, 0.0027137883, 0.0043696933, 0.0027138027]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0759537, 1.0, 0.0, 0.0033069362, 0.003597927, 0.003307046, 0.0035979534]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0812958, 1.0, 0.0, 0.0032483656, 0.0041421754, 0.0032482634, 0.004142168]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0655774, 1.0, 0.0, 0.0026388727, 0.0033226293, 0.0026396988, 0.0033226837]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0708199, 1.0, 0.0, 0.003556444, 0.0028817393, 0.0035563638, 0.0028817055]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0803638, 1.0, 0.0, 0.004227072, 0.0030787254, 0.0042271223, 0.0030787117]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0846242, 1.0, 0.0, 0.0028743737, 0.0048187403, 0.0028743937, 0.0048187356]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0863596, 1.0, 0.0, 0.004478797, 0.0033721244, 0.004478313, 0.0033721193]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0712557, 1.0, 0.0, 0.0030880217, 0.003389774, 0.0030878845, 0.0033897818]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0743222, 1.0, 0.0, 0.004573022, 0.0021835642, 0.0045728656, 0.0021833978]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0732552, 1.0, 0.0, 0.0040654046, 0.0025941664, 0.004065361, 0.0025941008]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0623237, 1.0, 0.0, 0.003333007, 0.0023328, 0.003332877, 0.0023327845]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0415868, 1.0, 0.0, 0.002432391, 0.0013482854, 0.002431692, 0.0013482757]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0499488, 1.0, 0.0, 0.0025880132, 0.0019527874, 0.0025879866, 0.001952795]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0585754, 1.0, 0.0, 0.0030760448, 0.0022489824, 0.0030762176, 0.0022489754]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0502319, 1.0, 0.0, 0.0038499665, 0.0007165597, 0.0038500559, 0.00071656296]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0947158, 1.0, 0.0, 0.004319322, 0.0042911433, 0.0043199672, 0.0042911833]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0638133, 1.0, 0.0, 0.002425766, 0.0033754623, 0.0024256422, 0.0033754224]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0824113, 1.0, 0.0, 0.0044944594, 0.0029974456, 0.0044946223, 0.0029974855]
W0822 12:59:28.696646 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.715202 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.736211 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.753946 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.772412 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.792045 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.878107 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.897553 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.917304 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.937082 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.957372 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 12:59:28.978284 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Epoch: 1
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0690359, 1.0, 0.0, 0.002908807, 0.003367193, 0.0029086964, 0.0033672038]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0828736, 1.0, 0.0, 0.004325145, 0.0032088323, 0.0043251896, 0.0032088072]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0789301, 1.0, 0.0, 0.0048052473, 0.0023702187, 0.0048053046, 0.002370237]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0674511, 1.0, 0.0, 0.0030081037, 0.0031238394, 0.0030078182, 0.0031238368]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0506923, 1.0, 0.0, 0.0035094658, 0.0010988972, 0.0035097501, 0.0010989867]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0756971, 1.0, 0.0, 0.0027716947, 0.0041098623, 0.0027717045, 0.0041097756]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0988199, 1.0, 0.0, 0.0030399049, 0.005943728, 0.0030398485, 0.0059436564]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0760825, 1.0, 0.0, 0.0031523965, 0.0037642352, 0.0031520324, 0.0037641423]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0683393, 1.0, 0.0, 0.0029137386, 0.003299105, 0.0029120487, 0.003298933]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.069293, 1.0, 0.0, 0.0033497447, 0.0029496374, 0.0033495626, 0.0029495822]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0790051, 1.0, 0.0, 0.0022527794, 0.0049294764, 0.0022530123, 0.004929535]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0660744, 1.0, 0.0, 0.0039958097, 0.0020109871, 0.0039953827, 0.0020109636]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0673909, 1.0, 0.0, 0.0023699692, 0.0037565092, 0.0023696898, 0.0037564773]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0651402, 1.0, 0.0, 0.0039214743, 0.002000365, 0.003921532, 0.0020003505]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0650758, 1.0, 0.0, 0.0032533435, 0.002662763, 0.0032518697, 0.002662723]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.058662, 1.0, 0.0, 0.0031617132, 0.0021711942, 0.003161782, 0.0021711853]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0514642, 1.0, 0.0, 0.0019652606, 0.0027133147, 0.0019651125, 0.0027132959]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0737677, 1.0, 0.0, 0.00286523, 0.0038409191, 0.0028652376, 0.0038408777]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0794905, 1.0, 0.0, 0.0030385405, 0.004187871, 0.003038527, 0.0041879574]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0535123, 1.0, 0.0, 0.0030541336, 0.0018106545, 0.0030537304, 0.0018106659]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.077323, 1.0, 0.0, 0.00253687, 0.0044925357, 0.0025364468, 0.004492525]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0763917, 1.0, 0.0, 0.0033263233, 0.0036183875, 0.003326186, 0.0036184522]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0754428, 1.0, 0.0, 0.0033466062, 0.0035119387, 0.003345548, 0.0035118305]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0612429, 1.0, 0.0, 0.0034765787, 0.002090917, 0.0034770353, 0.0020909025]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0503787, 1.0, 0.0, 0.002196201, 0.0023836978, 0.0021959045, 0.0023837374]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.075517, 1.0, 0.0, 0.003242367, 0.0036228593, 0.0032421346, 0.003622795]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0704234, 1.0, 0.0, 0.0040702857, 0.0023318431, 0.004070302, 0.0023318212]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0575237, 1.0, 0.0, 0.0025779274, 0.0026514744, 0.002578204, 0.0026514705]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.052472, 1.0, 0.0, 0.002380249, 0.0023899446, 0.0023801723, 0.0023899553]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0976458, 1.0, 0.0, 0.004596005, 0.004280909, 0.0045956727, 0.004280923]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0752236, 1.0, 0.0, 0.0032524911, 0.003586011, 0.0032526483, 0.0035859928]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0738326, 1.0, 0.0, 0.0031165336, 0.003595496, 0.0031167995, 0.0035954663]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0606256, 1.0, 0.0, 0.0029350608, 0.002576422, 0.0029342338, 0.0025764583]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0642027, 1.0, 0.0, 0.0028187367, 0.0030178954, 0.0028185486, 0.0030177254]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.055972, 1.0, 0.0, 0.0034350348, 0.0016532931, 0.0034353798, 0.0016533652]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0696948, 1.0, 0.0, 0.003709991, 0.0026259064, 0.003709926, 0.0026258607]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0499235, 1.0, 0.0, 0.003411762, 0.0011267848, 0.0034111529, 0.0011269166]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.059263, 1.0, 0.0, 0.004023206, 0.0013645109, 0.0040213643, 0.0013644792]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0471228, 1.0, 0.0, 0.0033818176, 0.0009020152, 0.0033824537, 0.0009020141]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0424316, 1.0, 0.0, 0.0026934939, 0.0011638699, 0.0026941667, 0.0011638134]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0818876, 1.0, 0.0, 0.003300084, 0.004144351, 0.0032989727, 0.004144259]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0875378, 1.0, 0.0, 0.0050630597, 0.0028948048, 0.0050642765, 0.0028948546]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0723424, 1.0, 0.0, 0.0025149612, 0.004061666, 0.00251455, 0.004061615]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0744872, 1.0, 0.0, 0.002846898, 0.0039246846, 0.002846796, 0.0039245617]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0575687, 1.0, 0.0, 0.002779054, 0.0024544718, 0.00277879, 0.002454618]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0415702, 1.0, 0.0, 0.0023469822, 0.0014322456, 0.0023456414, 0.001432311]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0754511, 1.0, 0.0, 0.0040341495, 0.0028250732, 0.0040339613, 0.0028250706]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0702459, 1.0, 0.0, 0.0028041434, 0.0035818587, 0.002804057, 0.0035817802]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0778897, 1.0, 0.0, 0.0029199668, 0.004161032, 0.0029186336, 0.0041609406]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0782099, 1.0, 0.0, 0.003100296, 0.0040096906, 0.0031004376, 0.0040096305]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0696911, 1.0, 0.0, 0.0029329679, 0.0034026187, 0.0029326736, 0.0034025484]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0722039, 1.0, 0.0, 0.003576219, 0.0029878162, 0.0035756277, 0.0029878698]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0788169, 1.0, 0.0, 0.0031494433, 0.0040157316, 0.003149445, 0.0040157894]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0547557, 1.0, 0.0, 0.0022319546, 0.0027458156, 0.0022322708, 0.0027455962]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0672694, 1.0, 0.0, 0.0033480022, 0.0027674837, 0.003347007, 0.0027675093]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0647525, 1.0, 0.0, 0.0025712266, 0.0033155691, 0.0025689583, 0.0033155228]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0649921, 1.0, 0.0, 0.0033634999, 0.0025451235, 0.003360709, 0.0025451174]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0700454, 1.0, 0.0, 0.004102381, 0.0022649579, 0.004107074, 0.0022649076]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0717363, 1.0, 0.0, 0.0038430905, 0.0026784507, 0.0038425163, 0.0026783664]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0575136, 1.0, 0.0, 0.0022858365, 0.002942732, 0.0022853059, 0.0029425807]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.051129, 1.0, 0.0, 0.0029304698, 0.0017177439, 0.0029290586, 0.0017176372]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0633619, 1.0, 0.0, 0.0026121608, 0.0031480354, 0.0026119584, 0.0031479988]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0811806, 1.0, 0.0, 0.0033721686, 0.0040073157, 0.0033784842, 0.004007233]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0837145, 1.0, 0.0, 0.0033826162, 0.004227848, 0.003382165, 0.0042276876]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0616775, 1.0, 0.0, 0.0030957947, 0.0025113367, 0.0030949702, 0.0025112615]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0660031, 1.0, 0.0, 0.0023560212, 0.0036443167, 0.002355568, 0.003644269]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0669566, 1.0, 0.0, 0.0029435083, 0.003143541, 0.0029428368, 0.0031434712]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0467743, 1.0, 0.0, 0.0024026977, 0.0018496225, 0.0024014488, 0.0018495583]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0828505, 1.0, 0.0, 0.0044814064, 0.0030505161, 0.0044807936, 0.0030503203]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0597439, 1.0, 0.0, 0.0023904028, 0.00304088, 0.0023900098, 0.0030408874]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0652426, 1.0, 0.0, 0.004161967, 0.0017692402, 0.0041613444, 0.001769146]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0781186, 1.0, 0.0, 0.0032573468, 0.003844549, 0.0032552246, 0.0038443434]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0607215, 1.0, 0.0, 0.0027751883, 0.002745027, 0.0027743669, 0.0027448612]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0699923, 1.0, 0.0, 0.0025502543, 0.003812763, 0.0025493565, 0.0038126225]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0699056, 1.0, 0.0, 0.0025083034, 0.0038471567, 0.0025039297, 0.0038471108]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0772461, 1.0, 0.0, 0.0027869977, 0.004235564, 0.0027852524, 0.0042352653]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0692925, 1.0, 0.0, 0.0032747467, 0.0030248929, 0.003270689, 0.003025419]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0579554, 1.0, 0.0, 0.0028439309, 0.0024247929, 0.0028435267, 0.0024247244]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0437514, 1.0, 0.0, 0.0031132712, 0.0008641704, 0.0031128041, 0.0008641989]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0517775, 1.0, 0.0, 0.0022416362, 0.0024654143, 0.0022417475, 0.0024652854]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0586634, 1.0, 0.0, 0.0029461482, 0.0023870608, 0.0029443253, 0.0023869488]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0749251, 1.0, 0.0, 0.0035061294, 0.0033053532, 0.003505185, 0.0033051241]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0564024, 1.0, 0.0, 0.0025257547, 0.0026019975, 0.0025229806, 0.0026019413]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0673636, 1.0, 0.0, 0.0034374665, 0.0026864354, 0.0034379463, 0.0026864987]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0816848, 1.0, 0.0, 0.003139732, 0.004286159, 0.003139875, 0.004286024]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0662302, 1.0, 0.0, 0.0033241857, 0.002696741, 0.0033242744, 0.0026966264]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0635854, 1.0, 0.0, 0.002820759, 0.0029598828, 0.002819197, 0.002959826]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0525088, 1.0, 0.0, 0.0026739584, 0.0021000733, 0.0026685582, 0.0021000463]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0603169, 1.0, 0.0, 0.002738479, 0.0027444796, 0.0027428984, 0.002744441]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0578811, 1.0, 0.0, 0.0025970214, 0.0026648347, 0.0025976426, 0.002664812]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0529727, 1.0, 0.0, 0.002345852, 0.0024698945, 0.0023451631, 0.002469975]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0741739, 1.0, 0.0, 0.0036837007, 0.003059436, 0.0036833805, 0.0030592834]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0489503, 1.0, 0.0, 0.0027278408, 0.0017222384, 0.0027272003, 0.0017223866]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0584309, 1.0, 0.0, 0.0030426648, 0.0022693058, 0.0030419582, 0.0022693032]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.05576, 1.0, 0.0, 0.002895498, 0.0021735672, 0.0028959112, 0.0021734422]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0704371, 1.0, 0.0, 0.0030447748, 0.0033586551, 0.0030438825, 0.0033589015]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0585555, 1.0, 0.0, 0.0026243734, 0.0026989118, 0.0026239108, 0.00269882]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0595974, 1.0, 0.0, 0.0025129043, 0.002905117, 0.002511977, 0.0029050908]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0482585, 1.0, 0.0, 0.002263237, 0.0021240371, 0.0022617173, 0.0021240667]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0519004, 1.0, 0.0, 0.0025234034, 0.0021946216, 0.0025255508, 0.0021946784]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0615052, 1.0, 0.0, 0.0032799293, 0.0023113347, 0.003281176, 0.0023113214]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0413585, 1.0, 0.0, 0.0025414922, 0.0012183666, 0.0025413905, 0.0012184889]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0636867, 1.0, 0.0, 0.0032056642, 0.0025839475, 0.0032067788, 0.002583893]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0638754, 1.0, 0.0, 0.0023310354, 0.003475741, 0.0023321854, 0.0034755766]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0690624, 1.0, 0.0, 0.0022851112, 0.0039933478, 0.0022846754, 0.003993195]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0590044, 1.0, 0.0, 0.0022372527, 0.0031268988, 0.0022361416, 0.003126856]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0603896, 1.0, 0.0, 0.0026443498, 0.0028455583, 0.002644991, 0.0028455728]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0666258, 1.0, 0.0, 0.0031364998, 0.0029203868, 0.0031366302, 0.002920326]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.071319, 1.0, 0.0, 0.0019209204, 0.0045627104, 0.0019202413, 0.0045624417]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0704637, 1.0, 0.0, 0.0031581768, 0.0032477318, 0.0031568694, 0.0032476843]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0571347, 1.0, 0.0, 0.0020918113, 0.0031023163, 0.00209124, 0.003102203]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0594218, 1.0, 0.0, 0.0033497117, 0.0020519346, 0.0033533927, 0.0020518934]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0574048, 1.0, 0.0, 0.0026998739, 0.0025189386, 0.0026978017, 0.0025187684]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0474591, 1.0, 0.0, 0.0020996686, 0.0022148513, 0.0020992109, 0.002214741]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0353155, 1.0, 0.0, 0.0018949468, 0.0013156135, 0.001893992, 0.0013157844]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0435133, 1.0, 0.0, 0.002103814, 0.0018518267, 0.0021051364, 0.0018518277]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0500723, 1.0, 0.0, 0.002416893, 0.0021349012, 0.0024195246, 0.0021348763]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.042225, 1.0, 0.0, 0.0030416262, 0.00079694495, 0.0030422262, 0.0007970494]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0771601, 1.0, 0.0, 0.0028419718, 0.004172641, 0.0028415876, 0.004172408]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0657964, 1.0, 0.0, 0.0027472656, 0.0032341143, 0.002748827, 0.0032337713]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0783491, 1.0, 0.0, 0.0042481273, 0.0028731367, 0.0042632525, 0.0028732328]
Epoch: 2
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.061259, 1.0, 0.0, 0.0024423595, 0.0031266783, 0.0024418945, 0.0031266848]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0762488, 1.0, 0.0, 0.0036676268, 0.0032638868, 0.0036692405, 0.0032643655]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0600425, 1.0, 0.0, 0.0032377578, 0.0022205813, 0.0032385404, 0.0022204658]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0767678, 1.0, 0.0, 0.004056763, 0.002922262, 0.004055498, 0.0029220288]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0424306, 1.0, 0.0, 0.0025824332, 0.0012747147, 0.0025843093, 0.0012748487]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0670744, 1.0, 0.0, 0.002128982, 0.003968633, 0.0021297112, 0.003968571]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0887794, 1.0, 0.0, 0.0022860523, 0.0057847043, 0.002287315, 0.0057846173]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.063317, 1.0, 0.0, 0.00218467, 0.0035714412, 0.0021846485, 0.0035712798]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0615164, 1.0, 0.0, 0.002598328, 0.0029943946, 0.0025949068, 0.0029941797]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0576092, 1.0, 0.0, 0.0023047668, 0.0029323497, 0.0023055123, 0.0029326025]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0730894, 1.0, 0.0, 0.00200796, 0.0046368353, 0.002005082, 0.0046363384]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0563979, 1.0, 0.0, 0.003114642, 0.002012339, 0.0031156263, 0.0020124847]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.057968, 1.0, 0.0, 0.0016790037, 0.0035908425, 0.0016788708, 0.0035907128]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0530388, 1.0, 0.0, 0.0029528085, 0.001868739, 0.002954541, 0.0018688994]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0539542, 1.0, 0.0, 0.0024093266, 0.0024959384, 0.0024059373, 0.002495679]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0480483, 1.0, 0.0, 0.002361334, 0.0020067028, 0.0023612578, 0.0020066197]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.042879, 1.0, 0.0, 0.0013706357, 0.0025274602, 0.0013706465, 0.002527379]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0621293, 1.0, 0.0, 0.0020485106, 0.003599551, 0.0020491988, 0.0035994272]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0631925, 1.0, 0.0, 0.0020884506, 0.0036562078, 0.0020895954, 0.0036562188]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0552627, 1.0, 0.0, 0.0021312716, 0.0028921773, 0.0021358037, 0.002892536]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0694221, 1.0, 0.0, 0.0019700672, 0.0043408787, 0.0019721591, 0.0043405876]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0656296, 1.0, 0.0, 0.0024027938, 0.0035635978, 0.002402244, 0.0035635524]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0619597, 1.0, 0.0, 0.0022251266, 0.0034076776, 0.0022240696, 0.0034076218]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0443435, 1.0, 0.0, 0.002135187, 0.0018959282, 0.0021366007, 0.0018958377]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0499337, 1.0, 0.0, 0.0022313213, 0.0023083333, 0.0022288444, 0.0023082634]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0640622, 1.0, 0.0, 0.0023771378, 0.003446613, 0.0023783888, 0.003446363]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0580457, 1.0, 0.0, 0.0031465678, 0.0021301175, 0.0031490405, 0.0021299575]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0486431, 1.0, 0.0, 0.0019776686, 0.0024445048, 0.0019770972, 0.002444311]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.04566, 1.0, 0.0, 0.0019027262, 0.002248522, 0.0018989019, 0.0022486188]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0834832, 1.0, 0.0, 0.003605139, 0.0039843502, 0.003603933, 0.003984281]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0596406, 1.0, 0.0, 0.0021709942, 0.0032508438, 0.0021715278, 0.0032507668]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0583608, 1.0, 0.0, 0.0020126696, 0.0032925834, 0.002015729, 0.0032926148]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0465386, 1.0, 0.0, 0.0018356898, 0.0023951703, 0.0018348638, 0.0023951225]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.05011, 1.0, 0.0, 0.0018752685, 0.0026802174, 0.0018750782, 0.002680068]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0447266, 1.0, 0.0, 0.0023408895, 0.0017249156, 0.0023432611, 0.0017252682]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.055094, 1.0, 0.0, 0.0025154874, 0.002492826, 0.0025183521, 0.002492636]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0372342, 1.0, 0.0, 0.0022806767, 0.0011045688, 0.0022770518, 0.0011046659]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0450032, 1.0, 0.0, 0.0027802878, 0.0013109366, 0.0027800004, 0.0013110216]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0335577, 1.0, 0.0, 0.0022059518, 0.0008446739, 0.0022065616, 0.0008448336]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0380403, 1.0, 0.0, 0.0023271893, 0.0011309357, 0.002328386, 0.0011306133]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0725842, 1.0, 0.0, 0.002555321, 0.004043279, 0.0025551007, 0.0040429803]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0722293, 1.0, 0.0, 0.003784782, 0.0027814046, 0.0037859515, 0.0027814207]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0604196, 1.0, 0.0, 0.0016394679, 0.0038532522, 0.0016391543, 0.0038532254]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.059217, 1.0, 0.0, 0.0017665966, 0.0036166157, 0.0017682037, 0.0036165244]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0452725, 1.0, 0.0, 0.0016868194, 0.0024290504, 0.001684617, 0.002429049]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0355186, 1.0, 0.0, 0.0016571472, 0.0015718825, 0.0016563495, 0.0015719752]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0603846, 1.0, 0.0, 0.0028282804, 0.0026610773, 0.0028300057, 0.0026610973]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0557445, 1.0, 0.0, 0.0016256084, 0.0034420872, 0.0016256236, 0.003441954]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0669335, 1.0, 0.0, 0.002121899, 0.0039631696, 0.002119782, 0.003962987]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0593663, 1.0, 0.0, 0.0017041132, 0.003692768, 0.0017047763, 0.0036927382]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.05051, 1.0, 0.0, 0.0015142155, 0.0030780744, 0.0015088164, 0.003078164]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0550034, 1.0, 0.0, 0.002115359, 0.0028847477, 0.0021173372, 0.002884934]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0635129, 1.0, 0.0, 0.0018894451, 0.0038843653, 0.00189041, 0.0038844706]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.047862, 1.0, 0.0, 0.00171995, 0.0026312955, 0.0017184562, 0.002631185]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.05466, 1.0, 0.0, 0.0023490847, 0.0026196023, 0.0023535872, 0.0026195466]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0561117, 1.0, 0.0, 0.0019735054, 0.0031274513, 0.001974703, 0.0031273537]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0480297, 1.0, 0.0, 0.0018382845, 0.0025281142, 0.0018374963, 0.0025281622]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0464865, 1.0, 0.0, 0.00216116, 0.0020648616, 0.0021614614, 0.0020647668]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0480962, 1.0, 0.0, 0.0019813338, 0.0023911158, 0.0019807606, 0.0023909642]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0492793, 1.0, 0.0, 0.0018538698, 0.002626535, 0.0018488222, 0.002626478]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0362929, 1.0, 0.0, 0.0019228206, 0.0013762095, 0.0019258481, 0.0013767632]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.047023, 1.0, 0.0, 0.0014762672, 0.0027984467, 0.0014775873, 0.0027982595]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0573773, 1.0, 0.0, 0.0016067433, 0.0036092275, 0.0016083473, 0.003609267]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0644308, 1.0, 0.0, 0.0021126862, 0.0037450194, 0.0021088577, 0.0037449421]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0463731, 1.0, 0.0, 0.0021069155, 0.0021088654, 0.0021061725, 0.0021091893]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0556995, 1.0, 0.0, 0.0018634859, 0.0032004148, 0.0018596449, 0.0032007976]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0523547, 1.0, 0.0, 0.0018449273, 0.0029143007, 0.0018478204, 0.0029145917]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0341142, 1.0, 0.0, 0.0014344461, 0.0016668406, 0.0014343087, 0.0016670444]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0686315, 1.0, 0.0, 0.0033318568, 0.0029072764, 0.003332968, 0.0029072736]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0476406, 1.0, 0.0, 0.0014259843, 0.0029050913, 0.0014247888, 0.0029050652]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0446297, 1.0, 0.0, 0.0023683147, 0.0016887967, 0.0023696073, 0.0016888438]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0752852, 1.0, 0.0, 0.0031588557, 0.0036857799, 0.0031529812, 0.003685802]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0431309, 1.0, 0.0, 0.0014783232, 0.0024426784, 0.0014782897, 0.0024425355]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0525625, 1.0, 0.0, 0.0013579663, 0.003420405, 0.0013585312, 0.003420348]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0551721, 1.0, 0.0, 0.0016604142, 0.0033552034, 0.0016607353, 0.0033552023]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0628487, 1.0, 0.0, 0.0018207688, 0.003892755, 0.0018205697, 0.0038929477]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0522014, 1.0, 0.0, 0.0019648117, 0.0027808629, 0.0019637104, 0.0027809558]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0481422, 1.0, 0.0, 0.00206586, 0.0023108707, 0.002063952, 0.0023108162]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0264069, 1.0, 0.0, 0.00148029, 0.00092031475, 0.0014804709, 0.00092034356]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0370853, 1.0, 0.0, 0.00095449446, 0.002416918, 0.0009541576, 0.0024169153]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0468363, 1.0, 0.0, 0.0019274622, 0.0023303214, 0.001928134, 0.002330317]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0620333, 1.0, 0.0, 0.0024296562, 0.0032098175, 0.0024287133, 0.0032097748]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0417036, 1.0, 0.0, 0.0012979513, 0.0024933536, 0.0012970854, 0.0024933456]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0493389, 1.0, 0.0, 0.0019274976, 0.0025577503, 0.0019285575, 0.0025578276]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0582824, 1.0, 0.0, 0.0012374436, 0.0040609213, 0.0012378432, 0.004060886]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0447869, 1.0, 0.0, 0.0014940441, 0.0025775745, 0.0014930558, 0.0025775316]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0474793, 1.0, 0.0, 0.0016763309, 0.002640178, 0.0016739096, 0.002640233]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0405004, 1.0, 0.0, 0.0015026813, 0.00217932, 0.0015010163, 0.002179355]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.040252, 1.0, 0.0, 0.0010502003, 0.0026090117, 0.0010507766, 0.0026089835]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0459871, 1.0, 0.0, 0.0016498787, 0.0025307355, 0.0016503447, 0.00253074]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0429528, 1.0, 0.0, 0.0015410698, 0.0023639132, 0.001539162, 0.0023638806]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0553709, 1.0, 0.0, 0.0021943008, 0.0028393369, 0.0021952435, 0.0028392829]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0398393, 1.0, 0.0, 0.001770867, 0.0018507807, 0.0017718923, 0.0018508034]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0420873, 1.0, 0.0, 0.0015307306, 0.0022954515, 0.0015301667, 0.0022954238]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0383918, 1.0, 0.0, 0.0014439363, 0.0020463332, 0.001442817, 0.002046308]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0621653, 1.0, 0.0, 0.0024200382, 0.0032314458, 0.0024188394, 0.0032315524]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0459155, 1.0, 0.0, 0.0016276736, 0.002546456, 0.0016277721, 0.00254644]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0459532, 1.0, 0.0, 0.0014020189, 0.002775622, 0.001401169, 0.0027755997]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0419289, 1.0, 0.0, 0.0016989178, 0.002113074, 0.0016956226, 0.0021131714]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0354477, 1.0, 0.0, 0.0012092374, 0.0020133057, 0.0012090843, 0.0020132298]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0446681, 1.0, 0.0, 0.0019317153, 0.002128841, 0.0019338353, 0.0021287624]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0386283, 1.0, 0.0, 0.0022101018, 0.0013016385, 0.0022092075, 0.001301758]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0493385, 1.0, 0.0, 0.0020478745, 0.0024372793, 0.0020496733, 0.002437241]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0551047, 1.0, 0.0, 0.0016676272, 0.0033417717, 0.0016689023, 0.0033418112]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0559654, 1.0, 0.0, 0.0012619337, 0.0038258685, 0.0012614162, 0.003825849]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0533264, 1.0, 0.0, 0.001911834, 0.0029362226, 0.0019096434, 0.0029362473]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0467163, 1.0, 0.0, 0.0014709327, 0.0027759043, 0.0014721402, 0.0027758442]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0528431, 1.0, 0.0, 0.0020548003, 0.0027490682, 0.0020553889, 0.0027490254]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0623486, 1.0, 0.0, 0.0013942681, 0.0042738398, 0.0013938048, 0.0042736717]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0571885, 1.0, 0.0, 0.002141499, 0.0030574682, 0.0021415167, 0.003057334]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0443932, 1.0, 0.0, 0.0012539402, 0.0027820002, 0.0012519797, 0.0027818577]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0434794, 1.0, 0.0, 0.0020980705, 0.001854219, 0.0021023015, 0.0018542846]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0416527, 1.0, 0.0, 0.0014644209, 0.002322259, 0.0014636046, 0.0023222526]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0386976, 1.0, 0.0, 0.0014516012, 0.0020667296, 0.0014477673, 0.0020664888]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0289363, 1.0, 0.0, 0.0012929605, 0.0013377871, 0.0012912059, 0.0013376256]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0362641, 1.0, 0.0, 0.0015417014, 0.0017549911, 0.0015421574, 0.0017550038]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.040037, 1.0, 0.0, 0.0016481484, 0.0019914294, 0.0016500272, 0.0019913064]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0354906, 1.0, 0.0, 0.0023681677, 0.0008581633, 0.002368992, 0.0008582865]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0638645, 1.0, 0.0, 0.001774144, 0.004031552, 0.0017760888, 0.0040314132]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0663065, 1.0, 0.0, 0.002969727, 0.003058016, 0.0029712291, 0.003057837]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0525385, 1.0, 0.0, 0.002075063, 0.00270091, 0.0020777057, 0.0027010192]
Epoch: 3
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0448604, 1.0, 0.0, 0.0012180633, 0.0028602816, 0.001216554, 0.002860312]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0561738, 1.0, 0.0, 0.0019169755, 0.0031893505, 0.0019211348, 0.0031893002]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0408058, 1.0, 0.0, 0.0016860184, 0.0020235386, 0.0016866224, 0.0020236687]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0619934, 1.0, 0.0, 0.0029238907, 0.0027121748, 0.002920683, 0.0027120668]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0304688, 1.0, 0.0, 0.0014125878, 0.0013572723, 0.0014131258, 0.0013571728]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0529622, 1.0, 0.0, 0.001044853, 0.0037698264, 0.001045636, 0.0037697887]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0745748, 1.0, 0.0, 0.0012361947, 0.005543242, 0.001237172, 0.0055432133]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0488625, 1.0, 0.0, 0.0011559338, 0.003286126, 0.0011558679, 0.0032860376]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0492578, 1.0, 0.0, 0.0018717357, 0.0026066029, 0.0018678609, 0.0026063947]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.045736, 1.0, 0.0, 0.0013813493, 0.002776374, 0.0013822915, 0.0027764156]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0650197, 1.0, 0.0, 0.0016082036, 0.004303183, 0.0016028085, 0.0043031406]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0435903, 1.0, 0.0, 0.0020342884, 0.0019282617, 0.0020367284, 0.0019281919]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0525838, 1.0, 0.0, 0.0014289808, 0.0033514136, 0.0014282695, 0.0033515624]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0416791, 1.0, 0.0, 0.0020474494, 0.0017413237, 0.0020500962, 0.0017413762]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0402898, 1.0, 0.0, 0.0014238189, 0.0022391924, 0.0014204005, 0.0022392112]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0358033, 1.0, 0.0, 0.0014490376, 0.0018058624, 0.0014484474, 0.0018058759]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0408269, 1.0, 0.0, 0.0014316612, 0.0022799424, 0.0014310277, 0.0022800162]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0518101, 1.0, 0.0, 0.0013876111, 0.0033223084, 0.0013887058, 0.0033223578]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0515076, 1.0, 0.0, 0.0014865563, 0.0031957338, 0.0014890502, 0.0031956555]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0536673, 1.0, 0.0, 0.001700399, 0.003178093, 0.0017039608, 0.003178387]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0619975, 1.0, 0.0, 0.0016965059, 0.003939595, 0.0016969235, 0.003939644]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0534726, 1.0, 0.0, 0.0015992555, 0.0032620127, 0.0015979701, 0.0032620004]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0492343, 1.0, 0.0, 0.001495443, 0.0029805934, 0.0014932607, 0.002980715]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0324969, 1.0, 0.0, 0.0011105454, 0.0018436334, 0.0011116227, 0.001843574]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0469764, 1.0, 0.0, 0.0020259256, 0.002245003, 0.0020220357, 0.0022450571]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0520284, 1.0, 0.0, 0.0016257174, 0.0031041326, 0.0016259408, 0.003104017]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0452393, 1.0, 0.0, 0.0022305278, 0.0018819647, 0.0022324196, 0.0018819345]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.043676, 1.0, 0.0, 0.0017110461, 0.0022596354, 0.0017095729, 0.0022596447]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0400087, 1.0, 0.0, 0.0016910083, 0.0019464851, 0.001687178, 0.0019465241]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0714169, 1.0, 0.0, 0.0028368316, 0.003655468, 0.0028383667, 0.0036553994]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0486455, 1.0, 0.0, 0.0015446346, 0.0028775805, 0.0015459446, 0.0028775197]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0485846, 1.0, 0.0, 0.0014189631, 0.0029975409, 0.0014219545, 0.0029976615]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0371429, 1.0, 0.0, 0.0010961846, 0.0022806455, 0.0010940287, 0.0022805557]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0401723, 1.0, 0.0, 0.0012591704, 0.0023929905, 0.001257626, 0.0023930352]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.034815, 1.0, 0.0, 0.0014981817, 0.0016666745, 0.0014997064, 0.0016666101]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0434588, 1.0, 0.0, 0.0016823725, 0.0022682748, 0.0016837992, 0.0022683996]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0271293, 1.0, 0.0, 0.0013218017, 0.0011448361, 0.0013179923, 0.001144836]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0338068, 1.0, 0.0, 0.0017580059, 0.0013152121, 0.0017593992, 0.0013152852]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0256686, 1.0, 0.0, 0.0014980288, 0.0008355837, 0.0014969188, 0.00083557254]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0359348, 1.0, 0.0, 0.0022262526, 0.0010405377, 0.002226182, 0.0010405736]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0642096, 1.0, 0.0, 0.0019103345, 0.003927054, 0.0019086767, 0.003927071]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0625513, 1.0, 0.0, 0.0029983404, 0.002688012, 0.0029996834, 0.0026880554]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0599779, 1.0, 0.0, 0.0017303358, 0.0037222104, 0.0017299257, 0.003722371]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0506968, 1.0, 0.0, 0.0011305698, 0.0034780537, 0.0011325844, 0.003478032]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0338602, 1.0, 0.0, 0.0010281637, 0.0020502352, 0.001025914, 0.0020502936]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0335854, 1.0, 0.0, 0.0013840471, 0.0016692514, 0.0013832765, 0.0016691294]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.049949, 1.0, 0.0, 0.0021945222, 0.0023460493, 0.002197111, 0.0023462162]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0440352, 1.0, 0.0, 0.00088463334, 0.0031186396, 0.00088388636, 0.003118681]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0589926, 1.0, 0.0, 0.0018239546, 0.0035392954, 0.0018206134, 0.0035396013]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0461208, 1.0, 0.0, 0.0010245492, 0.003168127, 0.0010259073, 0.0031681473]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0411375, 1.0, 0.0, 0.0008710142, 0.0028694835, 0.0008628529, 0.0028695927]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.04818, 1.0, 0.0, 0.0016905597, 0.0026891949, 0.001693359, 0.002689153]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0557241, 1.0, 0.0, 0.0014661234, 0.003599605, 0.0014671113, 0.0035997736]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0459291, 1.0, 0.0, 0.0016725353, 0.0025029639, 0.0016711064, 0.0025030277]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0493436, 1.0, 0.0, 0.002074691, 0.0024107604, 0.0020782528, 0.0024107932]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0499312, 1.0, 0.0, 0.0016417892, 0.0028972905, 0.0016432898, 0.002897202]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0429589, 1.0, 0.0, 0.0014536129, 0.002451808, 0.0014528027, 0.0024518045]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0385786, 1.0, 0.0, 0.0016472951, 0.0018597123, 0.0016487604, 0.0018597905]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0462707, 1.0, 0.0, 0.0020587451, 0.0021477311, 0.00205789, 0.002148021]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0434289, 1.0, 0.0, 0.0015702348, 0.0023784635, 0.0015635954, 0.0023782975]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0341845, 1.0, 0.0, 0.0018259895, 0.0012813739, 0.0018289913, 0.0012818389]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0427506, 1.0, 0.0, 0.0013870979, 0.0024992004, 0.0013887242, 0.0024990253]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0528765, 1.0, 0.0, 0.0015078299, 0.0032990184, 0.0015087489, 0.0032992659]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0584245, 1.0, 0.0, 0.0019247998, 0.0033868344, 0.0019212, 0.0033870311]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0416371, 1.0, 0.0, 0.0018825429, 0.0019027971, 0.0018806776, 0.0019030473]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0531042, 1.0, 0.0, 0.0018998754, 0.002928121, 0.0018955003, 0.002928661]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0444041, 1.0, 0.0, 0.0015549404, 0.0024815456, 0.0015577029, 0.0024816054]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0300926, 1.0, 0.0, 0.0011495962, 0.0015861285, 0.0011491568, 0.001586141]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0618354, 1.0, 0.0, 0.003099252, 0.0025219382, 0.0031014825, 0.0025219813]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0447012, 1.0, 0.0, 0.0013592942, 0.0027046, 0.0013578138, 0.0027044734]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.039856, 1.0, 0.0, 0.0020354195, 0.0015877254, 0.002036849, 0.0015877993]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0754404, 1.0, 0.0, 0.003368022, 0.0034903982, 0.0033655772, 0.0034906173]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0371281, 1.0, 0.0, 0.0012292163, 0.0021461083, 0.0012288536, 0.0021460284]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0473185, 1.0, 0.0, 0.0011686006, 0.0031330634, 0.0011689229, 0.0031329482]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0489453, 1.0, 0.0, 0.0015460143, 0.0029036142, 0.0015453936, 0.002903558]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0526471, 1.0, 0.0, 0.0017807202, 0.0030053305, 0.0017808985, 0.0030057386]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.051291, 1.0, 0.0, 0.0018862335, 0.0027764079, 0.0018876566, 0.0027768551]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0401871, 1.0, 0.0, 0.0018684652, 0.0017852697, 0.0018644629, 0.0017853396]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0253744, 1.0, 0.0, 0.0012594284, 0.0010473407, 0.0012595513, 0.00104712]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0327599, 1.0, 0.0, 0.0008303677, 0.0021478543, 0.0008298436, 0.0021479093]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.043262, 1.0, 0.0, 0.0019067113, 0.0020261141, 0.001907411, 0.0020262098]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0538027, 1.0, 0.0, 0.0020693636, 0.0028219505, 0.0020675682, 0.002822066]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0363598, 1.0, 0.0, 0.0012498116, 0.0020556827, 0.0012491654, 0.002055646]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0422004, 1.0, 0.0, 0.0017293787, 0.0021068177, 0.0017314374, 0.0021070507]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0479255, 1.0, 0.0, 0.001021441, 0.0033353511, 0.0010221592, 0.0033354056]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0380319, 1.0, 0.0, 0.0013917799, 0.0020657147, 0.001390921, 0.0020659752]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0377374, 1.0, 0.0, 0.0014914986, 0.0019395554, 0.0014867329, 0.0019400226]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0364668, 1.0, 0.0, 0.0015063027, 0.0018091535, 0.0015031466, 0.001809108]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0308026, 1.0, 0.0, 0.0008899169, 0.0019102658, 0.0008905189, 0.0019102027]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0357379, 1.0, 0.0, 0.0015901958, 0.0016586275, 0.0015908729, 0.0016587474]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0383425, 1.0, 0.0, 0.0015967563, 0.0018890213, 0.0015949906, 0.0018896351]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0458148, 1.0, 0.0, 0.002228053, 0.001936743, 0.0022293585, 0.0019374341]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0384184, 1.0, 0.0, 0.0014769156, 0.0020155502, 0.0014780825, 0.0020155795]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0393739, 1.0, 0.0, 0.0011380723, 0.0024414514, 0.0011373907, 0.0024413047]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0313901, 1.0, 0.0, 0.0014848039, 0.0013689894, 0.0014832506, 0.0013689441]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.05415, 1.0, 0.0, 0.0023059295, 0.0026168588, 0.0023040215, 0.0026181317]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.036317, 1.0, 0.0, 0.0015657935, 0.0017357082, 0.0015662457, 0.0017357314]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0373544, 1.0, 0.0, 0.0013732079, 0.0020225984, 0.0013735087, 0.0020227216]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0394585, 1.0, 0.0, 0.0015529164, 0.00203438, 0.001551047, 0.002034537]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0292891, 1.0, 0.0, 0.0010822369, 0.0015804018, 0.0010822365, 0.0015804588]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.034809, 1.0, 0.0, 0.0018564131, 0.0013079578, 0.0018573311, 0.0013080542]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0380292, 1.0, 0.0, 0.002098152, 0.0013592157, 0.0020962697, 0.0013592346]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0392976, 1.0, 0.0, 0.0018215036, 0.0017509274, 0.0018224837, 0.0017508736]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0457252, 1.0, 0.0, 0.0016019029, 0.002554865, 0.0016026342, 0.0025548697]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0442926, 1.0, 0.0, 0.0011929383, 0.0028337007, 0.0011923946, 0.0028337776]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0381316, 1.0, 0.0, 0.0018674509, 0.0015991395, 0.0018663887, 0.001599262]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0415275, 1.0, 0.0, 0.0014053297, 0.0023698122, 0.0014061715, 0.0023698392]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0409368, 1.0, 0.0, 0.0020255137, 0.0016959885, 0.0020258897, 0.0016960364]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0460821, 1.0, 0.0, 0.0013136412, 0.0028756508, 0.0013136711, 0.0028756051]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0420878, 1.0, 0.0, 0.001970326, 0.0018558055, 0.0019704592, 0.0018561202]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0330106, 1.0, 0.0, 0.0012242303, 0.0017767693, 0.001223725, 0.0017768978]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.041586, 1.0, 0.0, 0.0020470268, 0.0017332791, 0.0020493518, 0.0017336772]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0306844, 1.0, 0.0, 0.0012230524, 0.0015664668, 0.0012226538, 0.00156652]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0294102, 1.0, 0.0, 0.001284631, 0.0013893243, 0.0012813596, 0.0013893042]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0278063, 1.0, 0.0, 0.0012923914, 0.0012355788, 0.0012909079, 0.0012356297]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0293608, 1.0, 0.0, 0.0014988377, 0.0011702874, 0.0014991595, 0.001170296]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0336057, 1.0, 0.0, 0.0016702468, 0.0013846701, 0.0016717348, 0.0013847399]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0381013, 1.0, 0.0, 0.0022951681, 0.0011685595, 0.002295517, 0.0011684945]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0550685, 1.0, 0.0, 0.0016828883, 0.0033232477, 0.0016839603, 0.0033232328]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0575942, 1.0, 0.0, 0.0030224393, 0.0022131423, 0.0030251504, 0.002213138]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0421624, 1.0, 0.0, 0.0019605733, 0.0018723273, 0.0019608564, 0.0018725279]
Epoch: 4
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0330777, 1.0, 0.0, 0.0011036424, 0.0019033534, 0.001104306, 0.0019033647]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0507387, 1.0, 0.0, 0.0017924949, 0.0028200524, 0.0017928712, 0.0028203619]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0304247, 1.0, 0.0, 0.0015128051, 0.0012530746, 0.0015126803, 0.0012532892]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0555289, 1.0, 0.0, 0.003126495, 0.0019214593, 0.0031277877, 0.0019215889]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0278066, 1.0, 0.0, 0.0013024904, 0.0012253812, 0.0013024567, 0.0012254877]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0429995, 1.0, 0.0, 0.0009929154, 0.0029161326, 0.0009929466, 0.0029160806]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0625939, 1.0, 0.0, 0.0012213369, 0.004469002, 0.001221669, 0.0044689644]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0339642, 1.0, 0.0, 0.0011108165, 0.0019769222, 0.0011098761, 0.0019769806]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0405968, 1.0, 0.0, 0.0018581162, 0.0018326414, 0.0018566409, 0.0018326604]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0339158, 1.0, 0.0, 0.0012867684, 0.0017964477, 0.0012869956, 0.0017966237]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0516727, 1.0, 0.0, 0.0016473285, 0.0030504316, 0.0016445233, 0.003050521]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0367287, 1.0, 0.0, 0.0019712925, 0.0013676754, 0.001971323, 0.0013676553]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.042877, 1.0, 0.0, 0.0013688824, 0.002529014, 0.0013689203, 0.0025292016]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0325801, 1.0, 0.0, 0.0019873925, 0.0009744016, 0.0019876284, 0.00097450987]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0288583, 1.0, 0.0, 0.0013420356, 0.0012815001, 0.0013414274, 0.0012814594]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0270394, 1.0, 0.0, 0.0014089935, 0.0010491944, 0.0014083094, 0.0010491768]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0304267, 1.0, 0.0, 0.0014186823, 0.0013473155, 0.0014194113, 0.0013472908]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.039814, 1.0, 0.0, 0.0013177244, 0.00230174, 0.0013175241, 0.0023018424]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0363724, 1.0, 0.0, 0.0014373279, 0.0018692524, 0.0014374196, 0.0018692268]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0538534, 1.0, 0.0, 0.0016720218, 0.0032237666, 0.0016718116, 0.0032237412]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0471892, 1.0, 0.0, 0.0016541779, 0.0026357388, 0.0016542737, 0.0026358108]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0384039, 1.0, 0.0, 0.0015688301, 0.0019225482, 0.0015675854, 0.0019225436]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.034234, 1.0, 0.0, 0.0014696645, 0.0016426677, 0.0014677958, 0.0016428909]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0331441, 1.0, 0.0, 0.0010398712, 0.001973173, 0.0010403632, 0.0019733105]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0413616, 1.0, 0.0, 0.0019734958, 0.0017868007, 0.0019716637, 0.0017868595]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0419585, 1.0, 0.0, 0.001553891, 0.002260548, 0.0015535272, 0.002260484]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0347553, 1.0, 0.0, 0.0021443628, 0.0010152394, 0.0021439781, 0.0010153678]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0370524, 1.0, 0.0, 0.0016822792, 0.0016861043, 0.0016821541, 0.0016862894]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0306146, 1.0, 0.0, 0.0017084804, 0.0010745925, 0.0017091547, 0.0010747414]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0579332, 1.0, 0.0, 0.002763271, 0.002503399, 0.0027632047, 0.0025033422]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0342313, 1.0, 0.0, 0.0014881361, 0.0016238318, 0.0014875607, 0.0016239503]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0330878, 1.0, 0.0, 0.0013762026, 0.0016317432, 0.0013762164, 0.0016321242]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0365356, 1.0, 0.0, 0.0010609633, 0.0022604729, 0.0010608627, 0.0022604722]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0298898, 1.0, 0.0, 0.001243714, 0.0014735295, 0.001243563, 0.0014737318]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.029283, 1.0, 0.0, 0.0014267126, 0.0012353458, 0.0014271401, 0.0012353108]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0386486, 1.0, 0.0, 0.0016592994, 0.0018542128, 0.0016592295, 0.0018541624]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0262525, 1.0, 0.0, 0.0012538886, 0.0011328207, 0.0012524901, 0.0011328316]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0296991, 1.0, 0.0, 0.0016864154, 0.0010134531, 0.001686955, 0.0010134205]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.023532, 1.0, 0.0, 0.0014999206, 0.0006393603, 0.0014998522, 0.0006394065]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0310748, 1.0, 0.0, 0.0022103782, 0.0006145891, 0.0022105838, 0.0006145594]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0581974, 1.0, 0.0, 0.0018384214, 0.0034524142, 0.0018365596, 0.0034523914]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0598983, 1.0, 0.0, 0.0029424313, 0.002502864, 0.0029424918, 0.0025028659]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0531839, 1.0, 0.0, 0.0017259539, 0.0031089676, 0.0017256541, 0.003108983]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0411459, 1.0, 0.0, 0.0010905152, 0.00264996, 0.0010911429, 0.0026499815]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0250903, 1.0, 0.0, 0.0010106881, 0.0012702569, 0.001010569, 0.0012702481]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0347874, 1.0, 0.0, 0.0013626008, 0.0017998342, 0.0013633796, 0.0017996924]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.040244, 1.0, 0.0, 0.0021382123, 0.0015203756, 0.0021378754, 0.0015203212]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0326241, 1.0, 0.0, 0.00083288335, 0.0021330044, 0.0008322748, 0.002133015]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0450839, 1.0, 0.0, 0.0017751174, 0.0023235166, 0.0017739679, 0.0023234813]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0295857, 1.0, 0.0, 0.0009508746, 0.0017387683, 0.00095057604, 0.0017388143]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0256686, 1.0, 0.0, 0.00080033275, 0.0015332298, 0.0008000506, 0.0015329474]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0389767, 1.0, 0.0, 0.0016733097, 0.0018700107, 0.0016735307, 0.001869962]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0434147, 1.0, 0.0, 0.001451079, 0.0024957033, 0.0014509985, 0.0024959105]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0393986, 1.0, 0.0, 0.0016491537, 0.00193251, 0.0016495424, 0.0019323607]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0354514, 1.0, 0.0, 0.002018386, 0.0012043009, 0.002020359, 0.0012042182]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0402992, 1.0, 0.0, 0.0016145395, 0.0020490584, 0.0016143303, 0.0020489926]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.035596, 1.0, 0.0, 0.0014106481, 0.001825345, 0.0014108705, 0.0018252386]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0374851, 1.0, 0.0, 0.0016503234, 0.001757436, 0.0016502265, 0.0017573435]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0356803, 1.0, 0.0, 0.0019511163, 0.0012925435, 0.0019511859, 0.0012924786]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0344706, 1.0, 0.0, 0.0015624147, 0.001571475, 0.0015603006, 0.0015713418]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0349888, 1.0, 0.0, 0.0017869894, 0.0013937308, 0.0017878938, 0.0013935424]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0333954, 1.0, 0.0, 0.0014039921, 0.0016318999, 0.0014046261, 0.0016318469]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.043887, 1.0, 0.0, 0.0015781943, 0.002411544, 0.0015783093, 0.0024112454]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0429944, 1.0, 0.0, 0.0017921603, 0.0021164801, 0.0017914667, 0.0021165023]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0443746, 1.0, 0.0, 0.0018435052, 0.0021906106, 0.00184333, 0.0021900686]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0485786, 1.0, 0.0, 0.0019230657, 0.0024932977, 0.0019215334, 0.0024935305]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.032913, 1.0, 0.0, 0.0014792627, 0.0015127747, 0.0014797816, 0.001512771]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320251, 1.0, 0.0, 0.0011004398, 0.0018109512, 0.0011000347, 0.0018109761]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0502541, 1.0, 0.0, 0.0030763177, 0.0014921203, 0.0030775592, 0.0014922041]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0425205, 1.0, 0.0, 0.0013644925, 0.0025010968, 0.0013635599, 0.0025011068]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.038648, 1.0, 0.0, 0.0020058346, 0.0015076067, 0.0020060446, 0.0015075639]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0690837, 1.0, 0.0, 0.003371088, 0.002909351, 0.0033698943, 0.00290942]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0283442, 1.0, 0.0, 0.0011832935, 0.0013934904, 0.0011828681, 0.0013934721]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0353428, 1.0, 0.0, 0.0011373033, 0.0020757322, 0.0011367784, 0.0020756903]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0345355, 1.0, 0.0, 0.0015219986, 0.0016178159, 0.0015196144, 0.001617868]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0403298, 1.0, 0.0, 0.0017941601, 0.0018722031, 0.0017937205, 0.0018723694]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0493597, 1.0, 0.0, 0.0018905163, 0.002596775, 0.001889895, 0.0025969006]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0329591, 1.0, 0.0, 0.001825029, 0.0011714193, 0.0018231187, 0.0011715115]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0283525, 1.0, 0.0, 0.0012339215, 0.0013436022, 0.001233734, 0.0013434973]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0281037, 1.0, 0.0, 0.0008253503, 0.0017295585, 0.0008250782, 0.0017296304]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0393, 1.0, 0.0, 0.001894875, 0.0016778281, 0.0018950392, 0.001677901]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0489414, 1.0, 0.0, 0.0020155706, 0.002433747, 0.0020144992, 0.0024337033]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0297709, 1.0, 0.0, 0.0012307838, 0.0014757416, 0.0012298864, 0.0014757225]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0355603, 1.0, 0.0, 0.0016815527, 0.0015511337, 0.0016823305, 0.0015510571]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0359275, 1.0, 0.0, 0.0009775301, 0.0022886158, 0.0009773426, 0.002288697]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0377254, 1.0, 0.0, 0.0013764155, 0.002053297, 0.0013750569, 0.0020532035]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0346549, 1.0, 0.0, 0.0014442799, 0.0017063217, 0.0014423763, 0.0017063433]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0331541, 1.0, 0.0, 0.0015185141, 0.0014956768, 0.0015165377, 0.001495677]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0273308, 1.0, 0.0, 0.000855754, 0.001628853, 0.0008559791, 0.0016287754]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0321162, 1.0, 0.0, 0.0015713507, 0.0013482671, 0.0015717379, 0.0013482735]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0356641, 1.0, 0.0, 0.0016349626, 0.0016073426, 0.0016338096, 0.0016072044]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.041522, 1.0, 0.0, 0.002246338, 0.0015283622, 0.002246788, 0.0015283767]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0382972, 1.0, 0.0, 0.0014333008, 0.0020483, 0.0014328877, 0.0020481977]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.041647, 1.0, 0.0, 0.0010740439, 0.0027120966, 0.0010734699, 0.0027120966]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0270022, 1.0, 0.0, 0.001383692, 0.0010711808, 0.0013824552, 0.0010711259]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0529441, 1.0, 0.0, 0.0023117294, 0.0025015364, 0.002310128, 0.0025012922]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0334865, 1.0, 0.0, 0.0015569003, 0.0014873286, 0.0015568992, 0.0014873615]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0353447, 1.0, 0.0, 0.001330408, 0.0018827377, 0.0013304533, 0.0018827332]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0414983, 1.0, 0.0, 0.0015399309, 0.0022327276, 0.001538809, 0.0022329078]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.028789, 1.0, 0.0, 0.0010587696, 0.0015584778, 0.0010583117, 0.0015581588]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0321313, 1.0, 0.0, 0.001831722, 0.0010892618, 0.0018322744, 0.001089205]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0385205, 1.0, 0.0, 0.0020578434, 0.0014441203, 0.002056764, 0.0014440867]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0364233, 1.0, 0.0, 0.0017803957, 0.0015307614, 0.0017811335, 0.0015306963]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.042672, 1.0, 0.0, 0.0015849844, 0.0022942014, 0.0015859233, 0.002294151]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0408012, 1.0, 0.0, 0.0011818176, 0.002527443, 0.0011813955, 0.0025272665]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.033378, 1.0, 0.0, 0.0018601099, 0.0011742993, 0.001859802, 0.0011741875]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.039913, 1.0, 0.0, 0.001390784, 0.0022377595, 0.0013900303, 0.0022376678]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.037596, 1.0, 0.0, 0.0020189402, 0.0013989724, 0.002017988, 0.0013989757]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0431477, 1.0, 0.0, 0.0012859765, 0.0026365276, 0.0012860936, 0.0026364494]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0379936, 1.0, 0.0, 0.0018826702, 0.0015712979, 0.0018825248, 0.0015713396]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.032048, 1.0, 0.0, 0.0012284692, 0.0016849383, 0.0012288693, 0.0016849947]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0409995, 1.0, 0.0, 0.0020395727, 0.0016876117, 0.0020403906, 0.0016872794]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0285599, 1.0, 0.0, 0.0011208621, 0.0014754883, 0.0011207468, 0.0014755173]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0274608, 1.0, 0.0, 0.001301678, 0.0011949949, 0.0012993965, 0.0011947424]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0273479, 1.0, 0.0, 0.0012444728, 0.0012418061, 0.0012434854, 0.0012417145]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0282086, 1.0, 0.0, 0.0015287551, 0.0010356676, 0.0015288924, 0.0010355954]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0338664, 1.0, 0.0, 0.0017493367, 0.0013293321, 0.0017504502, 0.0013293487]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.038089, 1.0, 0.0, 0.00233057, 0.0011320782, 0.0023305812, 0.0011319892]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0541134, 1.0, 0.0, 0.0016695508, 0.0032497472, 0.0016705474, 0.0032497344]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0612043, 1.0, 0.0, 0.0033742678, 0.0021895003, 0.0033770213, 0.0021894677]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0401676, 1.0, 0.0, 0.0017955087, 0.0018560593, 0.0017958273, 0.0018560293]
Epoch: 5
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0321149, 1.0, 0.0, 0.0010831645, 0.0018363311, 0.0010837085, 0.0018362277]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0505283, 1.0, 0.0, 0.0018016666, 0.0027917677, 0.0018019155, 0.0027920166]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0293219, 1.0, 0.0, 0.0014541083, 0.0012116103, 0.0014531264, 0.0012116742]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0570531, 1.0, 0.0, 0.0033368277, 0.0018497005, 0.0033381763, 0.0018496567]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0260382, 1.0, 0.0, 0.0012166495, 0.001150459, 0.0012165516, 0.0011504539]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0419397, 1.0, 0.0, 0.0009809325, 0.0028317731, 0.000980989, 0.0028317538]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0623679, 1.0, 0.0, 0.0012505442, 0.00441924, 0.0012508145, 0.0044192085]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0337526, 1.0, 0.0, 0.0011117123, 0.0019567867, 0.0011107955, 0.0019568095]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0390381, 1.0, 0.0, 0.0019186395, 0.0016303873, 0.0019175031, 0.0016303451]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0333004, 1.0, 0.0, 0.0012416434, 0.0017856328, 0.0012417673, 0.0017857701]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0486488, 1.0, 0.0, 0.0016584905, 0.0027643328, 0.0016561537, 0.002764447]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0383344, 1.0, 0.0, 0.0019683463, 0.0015166133, 0.001968104, 0.0015165485]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0419221, 1.0, 0.0, 0.001328176, 0.0024829167, 0.0013282152, 0.0024829623]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.031464, 1.0, 0.0, 0.0019795166, 0.0008808427, 0.0019796449, 0.0008808921]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0280018, 1.0, 0.0, 0.0013024367, 0.0012432236, 0.0013021356, 0.001243155]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0265932, 1.0, 0.0, 0.0013880511, 0.0010296013, 0.0013872359, 0.0010295358]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0299579, 1.0, 0.0, 0.0014312291, 0.0012921444, 0.0014319639, 0.0012921878]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0394728, 1.0, 0.0, 0.0012909066, 0.002297556, 0.0012906085, 0.0022976059]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0357324, 1.0, 0.0, 0.0014241233, 0.0018242857, 0.0014242181, 0.0018240821]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0551349, 1.0, 0.0, 0.0016605698, 0.0033516972, 0.0016601692, 0.003351915]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0437675, 1.0, 0.0, 0.0016374348, 0.0023414108, 0.0016375604, 0.0023414304]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0357783, 1.0, 0.0, 0.0015756565, 0.0016770235, 0.0015745442, 0.0016768933]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0318655, 1.0, 0.0, 0.0014529895, 0.0014439842, 0.0014517459, 0.0014440232]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0329696, 1.0, 0.0, 0.0010025853, 0.001994634, 0.0010029547, 0.0019944664]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0408646, 1.0, 0.0, 0.0019507878, 0.0017643142, 0.0019492753, 0.0017643131]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0422926, 1.0, 0.0, 0.0015210281, 0.0023237825, 0.0015207855, 0.002323702]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0337644, 1.0, 0.0, 0.0021097201, 0.0009597956, 0.0021094214, 0.00095984444]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.036468, 1.0, 0.0, 0.0016635879, 0.0016517064, 0.0016633437, 0.0016517568]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0306519, 1.0, 0.0, 0.0017192488, 0.0010672382, 0.0017198878, 0.0010672486]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.056576, 1.0, 0.0, 0.0027223758, 0.0024209274, 0.0027221497, 0.0024209078]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0334932, 1.0, 0.0, 0.0014609697, 0.0015838965, 0.0014604405, 0.0015840009]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0322293, 1.0, 0.0, 0.0013568816, 0.0015730282, 0.0013570355, 0.0015731778]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0369302, 1.0, 0.0, 0.0010423587, 0.0023149513, 0.0010423331, 0.0023148647]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0287381, 1.0, 0.0, 0.0012350588, 0.0013775285, 0.0012347281, 0.001377553]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0297359, 1.0, 0.0, 0.0013959456, 0.0013073093, 0.0013961531, 0.0013071977]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.038103, 1.0, 0.0, 0.001648207, 0.0018157223, 0.0016480787, 0.0018155982]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0261639, 1.0, 0.0, 0.0012208926, 0.0011577581, 0.0012196039, 0.001157739]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0291063, 1.0, 0.0, 0.0016466996, 0.0009993494, 0.0016466548, 0.000999218]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0237782, 1.0, 0.0, 0.0015105079, 0.0006511212, 0.0015107058, 0.00065115426]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0306513, 1.0, 0.0, 0.0021998486, 0.0005865948, 0.0022002247, 0.0005865991]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0576851, 1.0, 0.0, 0.0018084819, 0.003435756, 0.0018071017, 0.0034357794]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0596653, 1.0, 0.0, 0.0029279278, 0.0024962048, 0.0029278751, 0.002496158]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0530102, 1.0, 0.0, 0.0016820033, 0.0031371266, 0.0016816906, 0.003137214]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0417839, 1.0, 0.0, 0.0010675299, 0.0027309617, 0.0010680384, 0.0027310052]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.024475, 1.0, 0.0, 0.001012279, 0.001212738, 0.0010123206, 0.0012124707]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0329804, 1.0, 0.0, 0.0013317405, 0.0016664469, 0.0013322816, 0.0016663544]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0401931, 1.0, 0.0, 0.0021632784, 0.001490673, 0.0021628104, 0.0014906557]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0311702, 1.0, 0.0, 0.00083098374, 0.0020027123, 0.0008304911, 0.0020027114]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0438734, 1.0, 0.0, 0.0018040992, 0.0021844627, 0.0018034532, 0.0021843428]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0281981, 1.0, 0.0, 0.0009041101, 0.0016594003, 0.000903607, 0.0016594178]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0249823, 1.0, 0.0, 0.0007678484, 0.0015032886, 0.00076806557, 0.0015028771]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0385642, 1.0, 0.0, 0.001678926, 0.0018269201, 0.0016788722, 0.0018268549]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.043465, 1.0, 0.0, 0.0014469638, 0.0025043953, 0.001446964, 0.0025044843]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0386494, 1.0, 0.0, 0.0016505562, 0.0018629887, 0.0016510165, 0.0018628369]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0348594, 1.0, 0.0, 0.0019912175, 0.0011777122, 0.0019925942, 0.001177599]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399438, 1.0, 0.0, 0.0016068814, 0.002024398, 0.0016066161, 0.002024408]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0353708, 1.0, 0.0, 0.0013986926, 0.0018168166, 0.0013988642, 0.001816743]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0375707, 1.0, 0.0, 0.0016679757, 0.0017475757, 0.0016676772, 0.0017475539]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0343401, 1.0, 0.0, 0.0018718146, 0.0012500142, 0.0018718686, 0.0012499716]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0343455, 1.0, 0.0, 0.0015891443, 0.0015333329, 0.0015875122, 0.0015332643]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0340399, 1.0, 0.0, 0.0017610535, 0.0013334176, 0.0017617668, 0.0013333894]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.032835, 1.0, 0.0, 0.0013999889, 0.0015849606, 0.0014005674, 0.0015849341]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0438683, 1.0, 0.0, 0.0016061324, 0.0023819136, 0.0016061745, 0.002381677]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0425488, 1.0, 0.0, 0.0017301007, 0.0021380251, 0.001729484, 0.002137999]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0426165, 1.0, 0.0, 0.0018324, 0.0020418959, 0.0018319774, 0.0020414605]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.04828, 1.0, 0.0, 0.0019431924, 0.0024460224, 0.0019416916, 0.002446162]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0318094, 1.0, 0.0, 0.0014266351, 0.0014651155, 0.0014270188, 0.0014648493]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0321313, 1.0, 0.0, 0.001077873, 0.0018432045, 0.0010773428, 0.0018431854]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0494711, 1.0, 0.0, 0.003059897, 0.0014373921, 0.0030607877, 0.0014374198]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0422422, 1.0, 0.0, 0.0013566585, 0.0024836035, 0.00135596, 0.0024835137]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0388948, 1.0, 0.0, 0.00202587, 0.001510007, 0.002026056, 0.0015098876]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0681715, 1.0, 0.0, 0.00333902, 0.002858509, 0.0033376985, 0.0028585638]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0276773, 1.0, 0.0, 0.0011749206, 0.001341227, 0.0011746539, 0.0013411966]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0347325, 1.0, 0.0, 0.0011185004, 0.0020390397, 0.0011180234, 0.002038981]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0337244, 1.0, 0.0, 0.0015100066, 0.0015560342, 0.001507835, 0.0015560351]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0396878, 1.0, 0.0, 0.0018050559, 0.0018030661, 0.0018046374, 0.0018019908]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0506049, 1.0, 0.0, 0.0019021035, 0.0026983693, 0.0019015407, 0.002698719]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0325242, 1.0, 0.0, 0.0018010896, 0.0011558195, 0.0017994851, 0.0011557264]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288154, 1.0, 0.0, 0.0012225754, 0.001397032, 0.0012223746, 0.001396904]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0277851, 1.0, 0.0, 0.0008358952, 0.0016900375, 0.00083568064, 0.0016900762]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0388051, 1.0, 0.0, 0.0018749563, 0.0016527644, 0.0018751095, 0.0016527231]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0487385, 1.0, 0.0, 0.0020061105, 0.0024247381, 0.0020053145, 0.0024246154]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0297376, 1.0, 0.0, 0.0012186874, 0.0014848142, 0.001217863, 0.0014847808]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0351161, 1.0, 0.0, 0.0016623533, 0.0015299988, 0.0016627781, 0.0015297984]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0364196, 1.0, 0.0, 0.0009658711, 0.0023450088, 0.0009657898, 0.0023450023]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0363717, 1.0, 0.0, 0.0013685564, 0.0019380823, 0.0013674798, 0.0019378434]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0342997, 1.0, 0.0, 0.0014208555, 0.0016974467, 0.0014194432, 0.0016972602]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0333934, 1.0, 0.0, 0.001525395, 0.0015105144, 0.0015237932, 0.0015105018]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0263617, 1.0, 0.0, 0.0008417252, 0.0015547927, 0.0008418665, 0.001554702]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.031276, 1.0, 0.0, 0.0015567818, 0.0012864426, 0.0015572968, 0.0012864068]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0358428, 1.0, 0.0, 0.0016501853, 0.0016083324, 0.001649424, 0.0016081388]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0414544, 1.0, 0.0, 0.002254095, 0.0015144569, 0.002254474, 0.0015143869]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0378687, 1.0, 0.0, 0.0014303331, 0.002012343, 0.0014296332, 0.0020122563]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416992, 1.0, 0.0, 0.0010522292, 0.002738642, 0.0010518385, 0.0027386625]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0262793, 1.0, 0.0, 0.001369548, 0.0010195905, 0.001368488, 0.0010195215]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.052463, 1.0, 0.0, 0.0023089359, 0.0024605717, 0.0023076003, 0.0024602236]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0329528, 1.0, 0.0, 0.0015549744, 0.0014407234, 0.0015549334, 0.0014407581]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0349382, 1.0, 0.0, 0.001318945, 0.0018572733, 0.0013189535, 0.0018572202]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0414308, 1.0, 0.0, 0.001524538, 0.0022419852, 0.0015234166, 0.0022421554]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0286593, 1.0, 0.0, 0.0010568042, 0.0015486565, 0.0010563771, 0.0015482837]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0317839, 1.0, 0.0, 0.0018408778, 0.001048528, 0.0018413765, 0.0010484471]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0383039, 1.0, 0.0, 0.002008916, 0.0014733453, 0.0020079627, 0.0014733193]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0353507, 1.0, 0.0, 0.0017306283, 0.0014830208, 0.0017311142, 0.0014829466]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0422237, 1.0, 0.0, 0.0015880009, 0.0022504781, 0.001588496, 0.0022504514]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0406858, 1.0, 0.0, 0.0011852948, 0.0025134601, 0.001185063, 0.0025132084]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0331628, 1.0, 0.0, 0.0018492995, 0.0011655411, 0.0018490285, 0.0011653847]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0393175, 1.0, 0.0, 0.0013934409, 0.0021809489, 0.0013927075, 0.002180926]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0374167, 1.0, 0.0, 0.0020168188, 0.0013847892, 0.0020159874, 0.0013846678]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0417945, 1.0, 0.0, 0.0012651349, 0.0025343804, 0.0012652206, 0.002534309]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0368506, 1.0, 0.0, 0.0018442811, 0.0015057841, 0.0018441788, 0.0015056918]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0316753, 1.0, 0.0, 0.0012262643, 0.0016532936, 0.0012267086, 0.0016532219]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0412905, 1.0, 0.0, 0.0020377631, 0.0017159069, 0.0020382602, 0.0017155213]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0278174, 1.0, 0.0, 0.0010759531, 0.0014529119, 0.001075853, 0.0014528816]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0283786, 1.0, 0.0, 0.0014197556, 0.0011603308, 0.0014175845, 0.0011600319]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0272392, 1.0, 0.0, 0.0012151527, 0.0012612203, 0.0012143797, 0.0012611236]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.028085, 1.0, 0.0, 0.0015415684, 0.0010116257, 0.0015416661, 0.0010115238]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.034316, 1.0, 0.0, 0.0018057849, 0.0013137725, 0.0018067034, 0.0013137449]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0390033, 1.0, 0.0, 0.0024026623, 0.0011431037, 0.0024026185, 0.0011430186]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0547489, 1.0, 0.0, 0.0017489104, 0.0032281654, 0.0017499821, 0.0032281633]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0627022, 1.0, 0.0, 0.0035247542, 0.0021752222, 0.0035271281, 0.0021752422]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0394355, 1.0, 0.0, 0.0017232383, 0.0018617997, 0.0017234461, 0.0018616887]
Epoch: 6
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0324286, 1.0, 0.0, 0.0011188127, 0.0018292186, 0.0011192763, 0.0018290167]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0510256, 1.0, 0.0, 0.001881999, 0.002756659, 0.0018820391, 0.002756937]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0308774, 1.0, 0.0, 0.0015990809, 0.0012080447, 0.0015981786, 0.0012079928]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0558732, 1.0, 0.0, 0.0032561878, 0.0018230622, 0.0032575957, 0.0018229714]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0250604, 1.0, 0.0, 0.0011125517, 0.001165655, 0.001112697, 0.0011656426]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0410887, 1.0, 0.0, 0.0009405903, 0.0027947365, 0.00094069197, 0.002794748]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0616277, 1.0, 0.0, 0.0012078607, 0.0043946435, 0.001208029, 0.0043946104]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0335512, 1.0, 0.0, 0.0011027171, 0.001947475, 0.0011018873, 0.0019474344]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.037788, 1.0, 0.0, 0.0018952747, 0.0015401045, 0.0018942201, 0.0015400178]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0330459, 1.0, 0.0, 0.0012241512, 0.0017800236, 0.0012241298, 0.0017800814]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0473258, 1.0, 0.0, 0.0016406914, 0.0026618722, 0.0016383477, 0.0026619602]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0392356, 1.0, 0.0, 0.001973615, 0.0015933006, 0.0019731154, 0.0015932776]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.040907, 1.0, 0.0, 0.0012686827, 0.0024501241, 0.0012686859, 0.0024501737]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.031062, 1.0, 0.0, 0.0019613544, 0.00086244795, 0.0019615453, 0.00086246815]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0280436, 1.0, 0.0, 0.0013230741, 0.0012263791, 0.0013227214, 0.0012263115]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0262475, 1.0, 0.0, 0.0013772105, 0.0010089967, 0.0013763388, 0.0010089321]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0295414, 1.0, 0.0, 0.0014108482, 0.0012746523, 0.0014115695, 0.0012747197]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0393585, 1.0, 0.0, 0.001280211, 0.002297863, 0.0012798891, 0.0022978943]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0358485, 1.0, 0.0, 0.001416761, 0.001842227, 0.0014165475, 0.001842002]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.054148, 1.0, 0.0, 0.0016545996, 0.0032679795, 0.001654296, 0.0032679406]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0423471, 1.0, 0.0, 0.0016256243, 0.0022241008, 0.0016257211, 0.002224083]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0349082, 1.0, 0.0, 0.001576148, 0.0015974415, 0.0015749467, 0.0015973165]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0312914, 1.0, 0.0, 0.0014359807, 0.001408774, 0.0014349775, 0.0014087597]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0322298, 1.0, 0.0, 0.0009813734, 0.0019485811, 0.0009817726, 0.0019483778]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0412394, 1.0, 0.0, 0.001963397, 0.0017857247, 0.001962383, 0.0017857105]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0417135, 1.0, 0.0, 0.0014866891, 0.002305463, 0.0014865482, 0.0023054155]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.033207, 1.0, 0.0, 0.0020806459, 0.0009381961, 0.0020804089, 0.00093820627]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0360153, 1.0, 0.0, 0.0016421886, 0.0016319421, 0.0016419702, 0.0016319694]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0307719, 1.0, 0.0, 0.001726896, 0.0010704963, 0.0017273647, 0.0010704588]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0563962, 1.0, 0.0, 0.0027092707, 0.0024177204, 0.0027087238, 0.0024177115]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0334104, 1.0, 0.0, 0.0014532276, 0.0015841287, 0.0014526718, 0.0015842173]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.031915, 1.0, 0.0, 0.0013484161, 0.0015529236, 0.0013485698, 0.001552968]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0367448, 1.0, 0.0, 0.0010323817, 0.0023080865, 0.0010322803, 0.002307984]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.02812, 1.0, 0.0, 0.0012281821, 0.0013282651, 0.0012276518, 0.0013280176]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0301182, 1.0, 0.0, 0.0013738603, 0.001364162, 0.0013740448, 0.001363936]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0377498, 1.0, 0.0, 0.0016398317, 0.0017920013, 0.0016397357, 0.0017917533]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0262245, 1.0, 0.0, 0.0012053397, 0.0011788297, 0.0012040928, 0.0011787978]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0289661, 1.0, 0.0, 0.0016302639, 0.0010030763, 0.0016299912, 0.0010028353]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.023892, 1.0, 0.0, 0.0015114876, 0.0006604943, 0.0015116788, 0.000660526]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0304341, 1.0, 0.0, 0.002188438, 0.00057825726, 0.0021888157, 0.0005782491]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0574179, 1.0, 0.0, 0.0017901552, 0.0034297951, 0.0017885913, 0.0034298194]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0595213, 1.0, 0.0, 0.0029182327, 0.0024928134, 0.0029181775, 0.002492746]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0526544, 1.0, 0.0, 0.0016414544, 0.0031453131, 0.001641216, 0.003145478]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0418324, 1.0, 0.0, 0.0010461534, 0.0027567386, 0.001046692, 0.0027568047]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0245063, 1.0, 0.0, 0.0010222837, 0.0012056066, 0.0010223158, 0.001205046]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0321218, 1.0, 0.0, 0.0013047394, 0.0016153937, 0.0013052258, 0.0016153082]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0405895, 1.0, 0.0, 0.0022064643, 0.0014835297, 0.0022060536, 0.0014834629]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0311838, 1.0, 0.0, 0.0008697638, 0.0019651619, 0.0008693535, 0.0019651514]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0435069, 1.0, 0.0, 0.0018115176, 0.0021437074, 0.0018111534, 0.0021434573]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0274804, 1.0, 0.0, 0.0008670549, 0.001631204, 0.00086664956, 0.0016311698]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0243326, 1.0, 0.0, 0.00072983484, 0.0014822526, 0.00073008786, 0.0014817824]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0383694, 1.0, 0.0, 0.0016846736, 0.0018034581, 0.0016846182, 0.0018033513]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0430458, 1.0, 0.0, 0.0014308651, 0.0024823837, 0.0014308619, 0.0024824035]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0390394, 1.0, 0.0, 0.0016652232, 0.0018838062, 0.0016655962, 0.0018834679]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0344651, 1.0, 0.0, 0.001961442, 0.001171658, 0.0019626329, 0.0011714014]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0398067, 1.0, 0.0, 0.0016036648, 0.0020151623, 0.0016034283, 0.0020150382]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0352546, 1.0, 0.0, 0.001384046, 0.0018209262, 0.0013842466, 0.0018207106]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0373602, 1.0, 0.0, 0.0016810566, 0.0017153571, 0.0016807537, 0.0017152538]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0334696, 1.0, 0.0, 0.001803467, 0.0012392075, 0.0018035825, 0.001239184]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0341825, 1.0, 0.0, 0.0016019177, 0.0015057087, 0.0016007525, 0.0015055274]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0339596, 1.0, 0.0, 0.0017479146, 0.0013392895, 0.0017484005, 0.001339083]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.03228, 1.0, 0.0, 0.0013849481, 0.0015495378, 0.00138555, 0.0015494699]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0436025, 1.0, 0.0, 0.0016091047, 0.0023547986, 0.0016091843, 0.0023542787]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0423547, 1.0, 0.0, 0.0017157726, 0.0021347213, 0.0017152169, 0.0021346346]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0421404, 1.0, 0.0, 0.0018318756, 0.0019991696, 0.001831452, 0.001998413]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.048096, 1.0, 0.0, 0.0019436451, 0.0024288294, 0.0019423203, 0.0024289049]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0314497, 1.0, 0.0, 0.0014098504, 0.0014492304, 0.0014102471, 0.001448621]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320933, 1.0, 0.0, 0.0010596786, 0.0018579622, 0.0010590898, 0.001857867]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0490484, 1.0, 0.0, 0.0030533196, 0.001405547, 0.003054121, 0.0014055427]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0422475, 1.0, 0.0, 0.001365112, 0.0024756435, 0.00136443, 0.0024754675]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0389894, 1.0, 0.0, 0.0020298534, 0.0015146545, 0.0020300564, 0.0015144171]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0680184, 1.0, 0.0, 0.003345402, 0.0028382265, 0.0033437994, 0.0028382982]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0274659, 1.0, 0.0, 0.0011724541, 0.0013244615, 0.001172259, 0.0013244215]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0345644, 1.0, 0.0, 0.0011097437, 0.0020325312, 0.0011092178, 0.0020324423]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0332307, 1.0, 0.0, 0.0015045373, 0.0015166111, 0.0015025117, 0.001516576]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.039331, 1.0, 0.0, 0.0018115349, 0.0017641587, 0.0018111296, 0.001762848]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.051732, 1.0, 0.0, 0.0019136391, 0.002789294, 0.001912815, 0.0027897446]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323495, 1.0, 0.0, 0.001785082, 0.0011559231, 0.0017835672, 0.0011557844]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.028925, 1.0, 0.0, 0.0012141174, 0.0014154542, 0.001213834, 0.0014153314]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0276675, 1.0, 0.0, 0.000841372, 0.0016738812, 0.00084116287, 0.0016739264]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0384481, 1.0, 0.0, 0.0018537523, 0.0016415133, 0.0018539086, 0.0016414701]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0487977, 1.0, 0.0, 0.002014786, 0.0024214634, 0.0020139944, 0.002421291]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0296644, 1.0, 0.0, 0.0012104779, 0.0014863557, 0.0012096965, 0.0014863025]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0349165, 1.0, 0.0, 0.0016535863, 0.0015206309, 0.001654048, 0.0015203243]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.036685, 1.0, 0.0, 0.0009618592, 0.0023731515, 0.00096178154, 0.002373104]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0355731, 1.0, 0.0, 0.0013644323, 0.0018696131, 0.0013632348, 0.0018692717]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0340847, 1.0, 0.0, 0.0014045865, 0.001694194, 0.0014031216, 0.0016938865]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0337023, 1.0, 0.0, 0.0015331735, 0.0015308426, 0.001531374, 0.0015308205]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0257596, 1.0, 0.0, 0.0008390617, 0.0015027198, 0.00083916914, 0.0015025771]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0306852, 1.0, 0.0, 0.0015458791, 0.0012436466, 0.0015463049, 0.0012435724]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0360981, 1.0, 0.0, 0.0016660475, 0.0016157202, 0.001665246, 0.0016152919]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0414839, 1.0, 0.0, 0.0022597748, 0.0015114568, 0.0022603767, 0.00151121]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0375749, 1.0, 0.0, 0.001430898, 0.0019851008, 0.0014298606, 0.0019850156]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0417494, 1.0, 0.0, 0.0010503076, 0.0027451282, 0.0010498818, 0.0027451809]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0258551, 1.0, 0.0, 0.0013561319, 0.0009944281, 0.0013550234, 0.000994331]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0523013, 1.0, 0.0, 0.0023083407, 0.0024465197, 0.0023068315, 0.0024457972]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.032638, 1.0, 0.0, 0.001549351, 0.0014177291, 0.0015493558, 0.0014177745]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0346316, 1.0, 0.0, 0.0013071328, 0.0018412094, 0.0013071129, 0.001841111]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.041532, 1.0, 0.0, 0.001523871, 0.0022518486, 0.0015228252, 0.0022520307]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.028479, 1.0, 0.0, 0.0010448277, 0.0015442612, 0.001044441, 0.0015437659]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0315155, 1.0, 0.0, 0.001834064, 0.0010309431, 0.0018345779, 0.0010308553]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0381064, 1.0, 0.0, 0.0019869113, 0.001477388, 0.0019861404, 0.0014774107]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.034826, 1.0, 0.0, 0.0017020436, 0.0014639122, 0.0017025933, 0.0014638344]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.042026, 1.0, 0.0, 0.001586461, 0.00223403, 0.0015871191, 0.0022339872]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0407809, 1.0, 0.0, 0.0011878312, 0.0025195857, 0.0011875437, 0.0025192322]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0330613, 1.0, 0.0, 0.0018371753, 0.0011684576, 0.0018367576, 0.0011682123]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0391, 1.0, 0.0, 0.001397529, 0.0021570742, 0.0013968443, 0.0021570912]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0373979, 1.0, 0.0, 0.002017763, 0.0013821428, 0.0020168233, 0.0013819342]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0408185, 1.0, 0.0, 0.0012437827, 0.002466993, 0.0012437911, 0.002466903]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0361403, 1.0, 0.0, 0.0018134188, 0.0014720778, 0.0018133104, 0.0014719495]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0315073, 1.0, 0.0, 0.0012298273, 0.0016344588, 0.0012301949, 0.0016342683]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.041343, 1.0, 0.0, 0.0020325808, 0.0017258831, 0.002033105, 0.0017252432]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0276055, 1.0, 0.0, 0.0010705204, 0.0014390945, 0.0010703566, 0.0014389867]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0285578, 1.0, 0.0, 0.0014510801, 0.0011453121, 0.0014489468, 0.0011449091]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0272852, 1.0, 0.0, 0.0012072078, 0.001273346, 0.0012065026, 0.0012731744]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0278757, 1.0, 0.0, 0.0015307462, 0.0010034046, 0.0015308578, 0.0010032689]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.034238, 1.0, 0.0, 0.001807664, 0.0013048039, 0.0018085621, 0.0013047545]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0392399, 1.0, 0.0, 0.0024157208, 0.001151545, 0.0024157483, 0.0011514518]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0549954, 1.0, 0.0, 0.0017824322, 0.0032170543, 0.0017834529, 0.0032170494]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0622886, 1.0, 0.0, 0.003495268, 0.0021671574, 0.0034973715, 0.0021671]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395288, 1.0, 0.0, 0.0017276886, 0.0018658262, 0.0017280008, 0.0018656205]
Epoch: 7
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0324637, 1.0, 0.0, 0.0011298468, 0.0018213957, 0.0011302207, 0.0018210947]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0507885, 1.0, 0.0, 0.0018780823, 0.002739029, 0.0018781571, 0.0027392583]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0310246, 1.0, 0.0, 0.0016194793, 0.0012010266, 0.0016186056, 0.0012009349]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.054724, 1.0, 0.0, 0.0031646658, 0.0018101479, 0.0031658532, 0.0018100364]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0251697, 1.0, 0.0, 0.001111531, 0.0011766166, 0.0011116812, 0.0011765917]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0409944, 1.0, 0.0, 0.00094579405, 0.0027809623, 0.0009458489, 0.002780978]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0616328, 1.0, 0.0, 0.0012019197, 0.0044010556, 0.0012019884, 0.004401035]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0336665, 1.0, 0.0, 0.0010984209, 0.0019622594, 0.0010975474, 0.0019621786]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0367225, 1.0, 0.0, 0.0018860224, 0.00145254, 0.0018846381, 0.0014523787]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0329287, 1.0, 0.0, 0.0012144552, 0.0017790673, 0.0012144786, 0.0017789596]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0466609, 1.0, 0.0, 0.001638793, 0.0026032939, 0.001636711, 0.0026033004]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0399873, 1.0, 0.0, 0.0019731624, 0.0016620944, 0.0019726807, 0.001662066]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0404195, 1.0, 0.0, 0.0012496831, 0.0024248217, 0.0012496902, 0.0024247072]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0309374, 1.0, 0.0, 0.0019608266, 0.00085164513, 0.0019610962, 0.00085158687]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0279093, 1.0, 0.0, 0.0013178838, 0.0012193662, 0.001317494, 0.0012192343]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.025984, 1.0, 0.0, 0.0013680032, 0.0009942651, 0.0013671985, 0.0009941813]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0295124, 1.0, 0.0, 0.0014158125, 0.0012670665, 0.001416503, 0.001267144]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0392146, 1.0, 0.0, 0.0012686509, 0.0022963583, 0.0012683193, 0.00229635]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0358166, 1.0, 0.0, 0.0014116568, 0.0018444424, 0.0014114861, 0.0018441285]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0537504, 1.0, 0.0, 0.0016489069, 0.0032375476, 0.0016485497, 0.0032373779]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.041497, 1.0, 0.0, 0.00161804, 0.0021544113, 0.0016181103, 0.0021543573]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0346092, 1.0, 0.0, 0.0015751215, 0.0015712813, 0.0015739028, 0.0015711423]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.031014, 1.0, 0.0, 0.0014295543, 0.0013899785, 0.0014286289, 0.0013899351]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.031491, 1.0, 0.0, 0.00096260174, 0.0019002118, 0.0009629648, 0.0018999681]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.041421, 1.0, 0.0, 0.0019752379, 0.00179041, 0.0019741752, 0.0017903764]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0414479, 1.0, 0.0, 0.0014589217, 0.0023090816, 0.0014587734, 0.002309083]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.032917, 1.0, 0.0, 0.002054419, 0.00093805994, 0.0020542385, 0.0009380261]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.035932, 1.0, 0.0, 0.0016460373, 0.0016205313, 0.001645736, 0.0016205122]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0308107, 1.0, 0.0, 0.0017286878, 0.0010722528, 0.0017291453, 0.0010721653]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0563548, 1.0, 0.0, 0.0027064565, 0.0024167558, 0.0027059237, 0.0024167378]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.033414, 1.0, 0.0, 0.0014508227, 0.0015868673, 0.0014502308, 0.0015869265]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0317265, 1.0, 0.0, 0.001342026, 0.0015421824, 0.0013422093, 0.0015421516]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0364507, 1.0, 0.0, 0.0010284671, 0.0022852588, 0.0010283631, 0.0022851373]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.027779, 1.0, 0.0, 0.0012228994, 0.0013025433, 0.0012224407, 0.0013021608]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0302236, 1.0, 0.0, 0.0013561406, 0.0013914853, 0.0013562588, 0.001391228]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0376129, 1.0, 0.0, 0.0016304762, 0.0017889237, 0.0016303341, 0.0017885957]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.026108, 1.0, 0.0, 0.001192605, 0.0011809543, 0.0011915156, 0.0011809139]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0287591, 1.0, 0.0, 0.0016131885, 0.0010013238, 0.0016129867, 0.0010010158]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0239812, 1.0, 0.0, 0.0015219103, 0.0006581908, 0.0015220575, 0.0006582075]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0302597, 1.0, 0.0, 0.0021784487, 0.00057239155, 0.002178785, 0.00057238515]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0572778, 1.0, 0.0, 0.0017794722, 0.0034277479, 0.0017779443, 0.0034277895]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.059503, 1.0, 0.0, 0.0029180283, 0.0024913433, 0.0029179594, 0.0024912546]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.052295, 1.0, 0.0, 0.0016062055, 0.0031478908, 0.0016059532, 0.003148095]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.041878, 1.0, 0.0, 0.0010355923, 0.0027714465, 0.0010360866, 0.0027715259]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0246335, 1.0, 0.0, 0.0010352478, 0.0012042272, 0.0010351564, 0.0012035486]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0317502, 1.0, 0.0, 0.001295256, 0.0015911143, 0.0012956173, 0.0015910098]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0405524, 1.0, 0.0, 0.0022209412, 0.0014656861, 0.0022205343, 0.001465572]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0310684, 1.0, 0.0, 0.0008832108, 0.0019412352, 0.0008828038, 0.0019411966]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0429932, 1.0, 0.0, 0.0017942332, 0.0021143025, 0.0017939003, 0.0021139649]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0269719, 1.0, 0.0, 0.0008468559, 0.0016051901, 0.00084641716, 0.001605117]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0240732, 1.0, 0.0, 0.0007137174, 0.0014747862, 0.0007139792, 0.0014743116]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382079, 1.0, 0.0, 0.0016866531, 0.0017868157, 0.0016864756, 0.0017867015]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0428034, 1.0, 0.0, 0.0014112077, 0.002479996, 0.0014113258, 0.0024799872]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0393157, 1.0, 0.0, 0.0016957857, 0.0018783397, 0.0016963151, 0.0018780007]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0342734, 1.0, 0.0, 0.0019508197, 0.001164853, 0.001952053, 0.0011645835]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0398456, 1.0, 0.0, 0.0016098573, 0.0020124856, 0.00160966, 0.0020123417]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.035115, 1.0, 0.0, 0.001374054, 0.0018182297, 0.001374233, 0.0018179803]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0371807, 1.0, 0.0, 0.0016851876, 0.00169491, 0.0016848694, 0.0016947541]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0329586, 1.0, 0.0, 0.0017670068, 0.0012292302, 0.0017671175, 0.0012291705]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.034103, 1.0, 0.0, 0.0016133275, 0.0014870702, 0.001612165, 0.0014868921]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0339932, 1.0, 0.0, 0.0017484541, 0.0013418235, 0.0017489138, 0.0013415733]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0320743, 1.0, 0.0, 0.0013862199, 0.0015295696, 0.0013868865, 0.0015294858]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0436674, 1.0, 0.0, 0.0016286976, 0.0023411051, 0.0016288618, 0.0023405345]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0421889, 1.0, 0.0, 0.0016949625, 0.0021404545, 0.001694425, 0.0021403283]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417441, 1.0, 0.0, 0.001825039, 0.0019700038, 0.0018246477, 0.001969155]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0479931, 1.0, 0.0, 0.0019524014, 0.002410732, 0.0019510302, 0.0024107844]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0312567, 1.0, 0.0, 0.0013980579, 0.0014434825, 0.0013984347, 0.001442756]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320653, 1.0, 0.0, 0.0010509293, 0.0018641495, 0.0010504259, 0.0018640441]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0489259, 1.0, 0.0, 0.0030565085, 0.0013912196, 0.0030573178, 0.0013911955]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0422288, 1.0, 0.0, 0.0013691115, 0.0024699625, 0.00136843, 0.0024697506]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0390718, 1.0, 0.0, 0.002037317, 0.0015146604, 0.0020375769, 0.0015144099]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0679628, 1.0, 0.0, 0.0033544104, 0.002824171, 0.0033527694, 0.0028242196]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273529, 1.0, 0.0, 0.0011750873, 0.0013115674, 0.0011749808, 0.0013115166]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0343639, 1.0, 0.0, 0.0011019559, 0.0020220883, 0.0011013906, 0.0020220056]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0330106, 1.0, 0.0, 0.0015045895, 0.0014965604, 0.0015025521, 0.0014965298]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.039125, 1.0, 0.0, 0.001815367, 0.0017416216, 0.0018149368, 0.0017400405]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0525457, 1.0, 0.0, 0.00191548, 0.0028614313, 0.0019146472, 0.002861943]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323375, 1.0, 0.0, 0.0017859223, 0.0011539956, 0.0017845209, 0.0011537807]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288779, 1.0, 0.0, 0.0012052855, 0.0014200073, 0.0012050029, 0.0014198932]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0276532, 1.0, 0.0, 0.00084655406, 0.0016673966, 0.00084633566, 0.0016674355]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0382296, 1.0, 0.0, 0.0018362972, 0.001639106, 0.001836502, 0.0016390599]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0490547, 1.0, 0.0, 0.0020321822, 0.0024274315, 0.0020312886, 0.0024272471]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0297241, 1.0, 0.0, 0.0012048845, 0.001497394, 0.001203953, 0.0014973402]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0348735, 1.0, 0.0, 0.0016490193, 0.0015212935, 0.001649379, 0.0015209843]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0370286, 1.0, 0.0, 0.0009607809, 0.002405453, 0.0009607898, 0.0024053925]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0350347, 1.0, 0.0, 0.0013627573, 0.0018223749, 0.0013614027, 0.0018219863]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0338292, 1.0, 0.0, 0.0013919866, 0.0016835523, 0.0013905833, 0.0016831888]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0338455, 1.0, 0.0, 0.001536235, 0.0015407668, 0.0015346874, 0.0015407407]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0253861, 1.0, 0.0, 0.0008347912, 0.0014730432, 0.00083487347, 0.0014729118]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0303192, 1.0, 0.0, 0.0015383142, 0.0012179457, 0.0015387828, 0.00121786]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0362928, 1.0, 0.0, 0.0016741846, 0.0016252665, 0.0016734882, 0.0016247941]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0414069, 1.0, 0.0, 0.0022595944, 0.0015046534, 0.0022600517, 0.0015043323]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.037353, 1.0, 0.0, 0.0014255117, 0.0019703242, 0.00142431, 0.0019702518]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416893, 1.0, 0.0, 0.0010434221, 0.0027465483, 0.0010430072, 0.0027466083]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0256511, 1.0, 0.0, 0.0013443364, 0.0009876945, 0.0013431896, 0.0009875984]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0522478, 1.0, 0.0, 0.002308029, 0.0024419674, 0.002306609, 0.002441179]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0326208, 1.0, 0.0, 0.0015564976, 0.0014090347, 0.0015564839, 0.0014090779]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0345117, 1.0, 0.0, 0.0013029104, 0.0018345205, 0.0013029608, 0.0018344261]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0415024, 1.0, 0.0, 0.0015177346, 0.0022552942, 0.0015165574, 0.0022554838]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0284611, 1.0, 0.0, 0.0010434492, 0.001544007, 0.0010430019, 0.0015435002]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0316491, 1.0, 0.0, 0.0018540577, 0.0010230851, 0.0018544861, 0.0010229965]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.037405, 1.0, 0.0, 0.0019212121, 0.001479309, 0.0019204281, 0.0014793321]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0344152, 1.0, 0.0, 0.0016746538, 0.0014539605, 0.0016752419, 0.0014538737]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.042141, 1.0, 0.0, 0.001602111, 0.0022288032, 0.0016029727, 0.002228769]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409002, 1.0, 0.0, 0.0011899228, 0.0025283496, 0.0011895846, 0.002528011]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0330578, 1.0, 0.0, 0.0018280944, 0.001177245, 0.0018275303, 0.0011769915]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0389047, 1.0, 0.0, 0.0014084959, 0.0021283473, 0.0014078696, 0.0021283515]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0373527, 1.0, 0.0, 0.0020191236, 0.0013766867, 0.0020181302, 0.0013764563]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0401633, 1.0, 0.0, 0.0012350169, 0.0024161888, 0.0012350429, 0.0024160952]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0357589, 1.0, 0.0, 0.0017892494, 0.0014615732, 0.0017890414, 0.0014614637]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0313314, 1.0, 0.0, 0.0012311018, 0.0016172021, 0.0012314382, 0.0016169851]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0413069, 1.0, 0.0, 0.00202354, 0.0017316389, 0.0020240066, 0.0017310549]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0275006, 1.0, 0.0, 0.00106777, 0.0014323264, 0.0010675759, 0.001432228]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0284303, 1.0, 0.0, 0.0014506371, 0.0011341682, 0.0014484539, 0.0011337795]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0272763, 1.0, 0.0, 0.0011996848, 0.0012800524, 0.0011990047, 0.0012798884]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0277303, 1.0, 0.0, 0.0015244628, 0.000996482, 0.0015245681, 0.0009963503]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0341834, 1.0, 0.0, 0.0018073877, 0.0013000921, 0.001808363, 0.0013000423]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0393369, 1.0, 0.0, 0.002421009, 0.0011550805, 0.002421014, 0.0011549921]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.055113, 1.0, 0.0, 0.0017992283, 0.003210961, 0.0018002368, 0.0032109558]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0621262, 1.0, 0.0, 0.0034844452, 0.0021631918, 0.003486656, 0.0021631417]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0394561, 1.0, 0.0, 0.0017200344, 0.0018668722, 0.0017203048, 0.0018666824]
Epoch: 8
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.032553, 1.0, 0.0, 0.0011377493, 0.0018216118, 0.0011381079, 0.0018212885]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0505737, 1.0, 0.0, 0.0018668526, 0.0027307204, 0.0018670205, 0.0027309142]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.03123, 1.0, 0.0, 0.0016417201, 0.0011974713, 0.0016407976, 0.0011973665]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0538192, 1.0, 0.0, 0.0030898086, 0.0018027325, 0.0030912599, 0.0018026002]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0252905, 1.0, 0.0, 0.0011125009, 0.0011866271, 0.0011126414, 0.001186592]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0409449, 1.0, 0.0, 0.0009458693, 0.002776403, 0.0009458146, 0.0027764344]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0616767, 1.0, 0.0, 0.0011968288, 0.0044101486, 0.0011968805, 0.004410134]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0338519, 1.0, 0.0, 0.0011005476, 0.001976973, 0.001099735, 0.001976889]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.035814, 1.0, 0.0, 0.0018724641, 0.0013835197, 0.0018708931, 0.0013833388]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0328888, 1.0, 0.0, 0.00120981, 0.0017800895, 0.0012098139, 0.001779936]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0462354, 1.0, 0.0, 0.001640435, 0.0025629778, 0.0016382368, 0.0025629895]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0405216, 1.0, 0.0, 0.0019667274, 0.0017170899, 0.0019664122, 0.0017170617]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.040152, 1.0, 0.0, 0.0012451975, 0.0024049967, 0.0012451846, 0.0024048674]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0308325, 1.0, 0.0, 0.0019529593, 0.0008499685, 0.0019532447, 0.000849907]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0278461, 1.0, 0.0, 0.001320089, 0.0012114149, 0.0013197332, 0.0012113086]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0258142, 1.0, 0.0, 0.0013604467, 0.000986364, 0.0013597355, 0.0009862932]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0293807, 1.0, 0.0, 0.0014075296, 0.0012633653, 0.001408193, 0.0012634424]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0391563, 1.0, 0.0, 0.001265032, 0.0022946426, 0.0012647586, 0.0022946447]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0358461, 1.0, 0.0, 0.0014093528, 0.001849426, 0.0014092205, 0.0018491199]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0533023, 1.0, 0.0, 0.001645802, 0.0031998986, 0.0016455646, 0.003199684]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0411031, 1.0, 0.0, 0.0016138082, 0.002122828, 0.0016139946, 0.0021227864]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0344405, 1.0, 0.0, 0.0015696681, 0.0015614197, 0.0015683926, 0.0015612643]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030941, 1.0, 0.0, 0.0014270784, 0.0013858473, 0.0014260106, 0.0013857826]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0310729, 1.0, 0.0, 0.0009541862, 0.0018706067, 0.00095456827, 0.001870374]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0414016, 1.0, 0.0, 0.0019777052, 0.0017861887, 0.0019765792, 0.001786145]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0412673, 1.0, 0.0, 0.0014445463, 0.0023070388, 0.0014444103, 0.0023070124]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0327992, 1.0, 0.0, 0.0020434952, 0.0009382754, 0.0020433161, 0.000938184]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.035845, 1.0, 0.0, 0.0016423918, 0.0016162728, 0.0016421233, 0.0016162276]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0308973, 1.0, 0.0, 0.0017348782, 0.0010739288, 0.0017353378, 0.0010737951]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0564039, 1.0, 0.0, 0.0027045729, 0.002423102, 0.0027040194, 0.0024230815]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.033492, 1.0, 0.0, 0.001450009, 0.0015947621, 0.0014494768, 0.0015947944]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.031699, 1.0, 0.0, 0.0013384447, 0.0015432623, 0.001338688, 0.0015431906]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0361491, 1.0, 0.0, 0.0010247709, 0.0022615436, 0.0010246162, 0.002261421]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0276306, 1.0, 0.0, 0.0012189958, 0.0012929596, 0.0012185804, 0.001292524]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0303857, 1.0, 0.0, 0.0013496648, 0.0014126946, 0.0013497691, 0.001412434]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0375513, 1.0, 0.0, 0.0016260576, 0.0017877332, 0.0016259435, 0.0017874136]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0260104, 1.0, 0.0, 0.001182488, 0.0011822004, 0.0011813894, 0.001182157]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0286548, 1.0, 0.0, 0.0016042894, 0.0010007105, 0.0016042858, 0.001000408]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0240611, 1.0, 0.0, 0.001529126, 0.0006582476, 0.0015291438, 0.00065825065]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0302109, 1.0, 0.0, 0.0021773102, 0.0005691215, 0.0021775302, 0.0005691218]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.057113, 1.0, 0.0, 0.001765723, 0.0034265039, 0.0017641687, 0.0034265588]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0595244, 1.0, 0.0, 0.002921178, 0.0024901463, 0.002921128, 0.0024900553]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0520704, 1.0, 0.0, 0.001583895, 0.0031497716, 0.0015837058, 0.0031499453]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0419314, 1.0, 0.0, 0.0010326323, 0.0027792593, 0.001033149, 0.0027793383]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0247422, 1.0, 0.0, 0.0010444598, 0.0012048953, 0.0010443435, 0.0012042115]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0315133, 1.0, 0.0, 0.001286963, 0.0015778709, 0.0012873235, 0.0015777738]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0407144, 1.0, 0.0, 0.0022444122, 0.0014569275, 0.002244079, 0.0014568161]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0312508, 1.0, 0.0, 0.00091321464, 0.0019278147, 0.00091283163, 0.0019277681]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0422697, 1.0, 0.0, 0.0017477295, 0.0020950434, 0.0017472096, 0.0020947119]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.02672, 1.0, 0.0, 0.0008384531, 0.0015906757, 0.0008380988, 0.001590591]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0237794, 1.0, 0.0, 0.00068981404, 0.0014719582, 0.0006900453, 0.0014715025]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382059, 1.0, 0.0, 0.0016916189, 0.001781672, 0.0016914747, 0.0017815573]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0427002, 1.0, 0.0, 0.0013977767, 0.0024840673, 0.0013977799, 0.002484022]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0395069, 1.0, 0.0, 0.0017228769, 0.001868651, 0.0017233236, 0.001868308]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0340747, 1.0, 0.0, 0.0019408311, 0.0011567654, 0.0019420206, 0.0011565152]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0398594, 1.0, 0.0, 0.0016154781, 0.0020081378, 0.0016152341, 0.0020079848]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0350637, 1.0, 0.0, 0.0013717972, 0.0018158295, 0.0013719182, 0.0018155978]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0371912, 1.0, 0.0, 0.0016936428, 0.001687425, 0.0016932179, 0.0016872586]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0324441, 1.0, 0.0, 0.0017240959, 0.0012253618, 0.0017241754, 0.0012253071]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.034126, 1.0, 0.0, 0.0016237893, 0.0014786993, 0.0016226596, 0.0014785397]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0340093, 1.0, 0.0, 0.0017482217, 0.0013435237, 0.0017486522, 0.0013432645]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0319461, 1.0, 0.0, 0.001382995, 0.0015211306, 0.0013836604, 0.001521056]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0435971, 1.0, 0.0, 0.001627891, 0.0023355298, 0.0016280249, 0.0023349582]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0420858, 1.0, 0.0, 0.0016803747, 0.0021456573, 0.0016798694, 0.0021455432]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.04168, 1.0, 0.0, 0.0018373076, 0.0019518939, 0.0018367859, 0.0019511457]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0477668, 1.0, 0.0, 0.0019398484, 0.0024027135, 0.0019384343, 0.0024027964]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0312222, 1.0, 0.0, 0.001398149, 0.0014402645, 0.0013985478, 0.0014395651]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320046, 1.0, 0.0, 0.0010412146, 0.0018683589, 0.0010406589, 0.001868261]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0486971, 1.0, 0.0, 0.0030497836, 0.0013771611, 0.0030505164, 0.0013771366]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0422931, 1.0, 0.0, 0.001376196, 0.0024687075, 0.001375499, 0.0024684777]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0390846, 1.0, 0.0, 0.002034712, 0.0015184397, 0.0020349587, 0.0015181876]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0679867, 1.0, 0.0, 0.0033632764, 0.0028174915, 0.0033615977, 0.002817524]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272498, 1.0, 0.0, 0.0011709232, 0.0013063594, 0.0011707946, 0.0013063152]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0343153, 1.0, 0.0, 0.0011007495, 0.0020188848, 0.001100187, 0.0020188037]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0329403, 1.0, 0.0, 0.0015037237, 0.0014910283, 0.0015017824, 0.0014909923]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.038921, 1.0, 0.0, 0.0018124192, 0.0017260567, 0.0018119472, 0.0017242173]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0529693, 1.0, 0.0, 0.0019088917, 0.002906546, 0.0019079682, 0.0029070661]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323374, 1.0, 0.0, 0.0017850756, 0.0011548253, 0.0017837811, 0.0011546034]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.02886, 1.0, 0.0, 0.0012043363, 0.001419344, 0.0012039766, 0.0014192434]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0275617, 1.0, 0.0, 0.0008435382, 0.0016620765, 0.0008433666, 0.0016621158]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0380954, 1.0, 0.0, 0.0018266663, 0.0016365232, 0.001826838, 0.0016364927]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0492148, 1.0, 0.0, 0.002045306, 0.002428854, 0.00204452, 0.0024286811]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0297265, 1.0, 0.0, 0.0012015142, 0.0015009707, 0.0012006508, 0.001500922]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.034803, 1.0, 0.0, 0.0016427079, 0.0015212067, 0.0016430405, 0.0015209066]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0371817, 1.0, 0.0, 0.00095751777, 0.0024226597, 0.0009575173, 0.0024225845]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0347749, 1.0, 0.0, 0.001362697, 0.0017988466, 0.0013611683, 0.0017984386]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0336857, 1.0, 0.0, 0.0013836143, 0.0016788876, 0.0013821002, 0.0016785299]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340297, 1.0, 0.0, 0.0015414862, 0.0015522789, 0.0015398405, 0.0015522566]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0250872, 1.0, 0.0, 0.0008259286, 0.0014547389, 0.000825985, 0.0014545952]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0301216, 1.0, 0.0, 0.0015359921, 0.0012022913, 0.0015364356, 0.0012021896]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0365049, 1.0, 0.0, 0.0016833981, 0.0016353403, 0.0016826966, 0.0016348318]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0415087, 1.0, 0.0, 0.0022717575, 0.0015017509, 0.0022722487, 0.001501369]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.037324, 1.0, 0.0, 0.0014285723, 0.00196464, 0.0014273359, 0.00196458]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.04169, 1.0, 0.0, 0.0010441369, 0.0027458903, 0.0010436657, 0.002745963]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0255257, 1.0, 0.0, 0.0013375267, 0.0009831074, 0.0013363445, 0.0009830156]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0522057, 1.0, 0.0, 0.002307025, 0.0024391424, 0.0023057444, 0.0024382775]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0324686, 1.0, 0.0, 0.0015487359, 0.0014029467, 0.0015487187, 0.0014029896]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0344249, 1.0, 0.0, 0.0012990701, 0.0018304776, 0.0012989966, 0.0018303592]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0415907, 1.0, 0.0, 0.0015188938, 0.00226216, 0.0015177425, 0.0022623567]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283597, 1.0, 0.0, 0.0010343692, 0.001543882, 0.0010339102, 0.0015433012]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.031447, 1.0, 0.0, 0.0018394608, 0.0010193506, 0.0018397174, 0.0010192565]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0374843, 1.0, 0.0, 0.0019289752, 0.0014787487, 0.001928369, 0.0014788012]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0342577, 1.0, 0.0, 0.001664816, 0.0014494774, 0.0016653028, 0.001449385]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.042059, 1.0, 0.0, 0.0015979132, 0.002225577, 0.0015985086, 0.0022255336]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409247, 1.0, 0.0, 0.0011867168, 0.002533772, 0.001186356, 0.0025334167]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.033075, 1.0, 0.0, 0.001825141, 0.0011817738, 0.0018243955, 0.001181516]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0387962, 1.0, 0.0, 0.001411723, 0.0021152624, 0.0014110672, 0.002115231]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0373225, 1.0, 0.0, 0.0020184233, 0.0013746332, 0.0020174412, 0.0013743893]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0398353, 1.0, 0.0, 0.0012296207, 0.002391794, 0.0012295494, 0.0023916843]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0355451, 1.0, 0.0, 0.0017767875, 0.0014546277, 0.0017765057, 0.0014544846]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0313035, 1.0, 0.0, 0.0012321332, 0.0016136253, 0.0012324628, 0.0016134183]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0412711, 1.0, 0.0, 0.0020170866, 0.0017348512, 0.0020174955, 0.0017342239]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0274144, 1.0, 0.0, 0.001067718, 0.0014245235, 0.0010674978, 0.0014244076]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0281911, 1.0, 0.0, 0.0014350838, 0.0011279681, 0.001432949, 0.0011275457]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.027231, 1.0, 0.0, 0.0011934513, 0.0012821748, 0.0011927246, 0.0012820103]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276097, 1.0, 0.0, 0.0015184704, 0.000991503, 0.0015185736, 0.0009913717]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0341007, 1.0, 0.0, 0.0018020209, 0.0012979577, 0.0018029492, 0.0012978951]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0393313, 1.0, 0.0, 0.002419326, 0.0011562449, 0.0024193474, 0.0011561566]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551006, 1.0, 0.0, 0.0017997972, 0.003209257, 0.0018007355, 0.003209251]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0620557, 1.0, 0.0, 0.003479459, 0.0021617925, 0.0034815378, 0.0021617583]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395218, 1.0, 0.0, 0.0017242065, 0.0018686743, 0.0017245143, 0.001868492]
Epoch: 9
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0324439, 1.0, 0.0, 0.00113142, 0.0018180229, 0.0011317637, 0.001817708]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0504963, 1.0, 0.0, 0.0018611061, 0.002729437, 0.0018612624, 0.0027296375]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0312511, 1.0, 0.0, 0.0016486682, 0.0011924442, 0.0016477563, 0.0011923446]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0532835, 1.0, 0.0, 0.0030443112, 0.0017995326, 0.0030456195, 0.0017993938]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0253448, 1.0, 0.0, 0.0011142329, 0.0011898221, 0.0011143874, 0.0011897809]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0410131, 1.0, 0.0, 0.0009518546, 0.002776618, 0.0009518181, 0.0027766558]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.061671, 1.0, 0.0, 0.0011930398, 0.0044134203, 0.0011930766, 0.004413414]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0338416, 1.0, 0.0, 0.0010963196, 0.0019802514, 0.0010956002, 0.0019801767]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0356133, 1.0, 0.0, 0.001879421, 0.0013582896, 0.0018780805, 0.0013581112]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0327486, 1.0, 0.0, 0.001201427, 0.0017757553, 0.0012013089, 0.0017755567]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0460857, 1.0, 0.0, 0.0016416349, 0.0025481663, 0.0016394367, 0.0025481882]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0406803, 1.0, 0.0, 0.0019646804, 0.0017335783, 0.0019642687, 0.0017335414]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0400118, 1.0, 0.0, 0.0012410161, 0.0023964243, 0.0012409987, 0.0023963174]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0307848, 1.0, 0.0, 0.0019536777, 0.00084493426, 0.0019539585, 0.0008448862]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0277684, 1.0, 0.0, 0.0013161125, 0.0012083253, 0.0013157539, 0.0012082288]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0257007, 1.0, 0.0, 0.0013563908, 0.000980109, 0.0013556131, 0.0009800431]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0293313, 1.0, 0.0, 0.0014070538, 0.0012593766, 0.0014076708, 0.0012594572]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0391176, 1.0, 0.0, 0.0012633337, 0.0022928347, 0.0012630493, 0.0022928407]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0358037, 1.0, 0.0, 0.0014066768, 0.0018482481, 0.0014064821, 0.0018479426]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0532659, 1.0, 0.0, 0.0016433587, 0.0031990283, 0.0016431352, 0.0031988323]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.041024, 1.0, 0.0, 0.0016095636, 0.002119875, 0.0016096248, 0.002119881]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0344162, 1.0, 0.0, 0.0015677643, 0.0015610943, 0.0015666271, 0.0015609227]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030837, 1.0, 0.0, 0.0014295245, 0.0013739495, 0.0014285308, 0.0013739001]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0310428, 1.0, 0.0, 0.0009458584, 0.0018762089, 0.0009462215, 0.001876038]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0413183, 1.0, 0.0, 0.0019704981, 0.0017858164, 0.001969501, 0.0017857729]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0412296, 1.0, 0.0, 0.0014434846, 0.0023046788, 0.0014433849, 0.002304704]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0327524, 1.0, 0.0, 0.0020409166, 0.00093659875, 0.0020407315, 0.0009365232]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0357757, 1.0, 0.0, 0.001636948, 0.0016154202, 0.001636673, 0.0016153965]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0309821, 1.0, 0.0, 0.0017434708, 0.0010730538, 0.0017438708, 0.0010729792]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0563595, 1.0, 0.0, 0.0026992192, 0.0024244273, 0.0026985684, 0.0024244376]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0334203, 1.0, 0.0, 0.001443751, 0.0015944979, 0.0014432485, 0.0015945485]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0316284, 1.0, 0.0, 0.0013323696, 0.001542936, 0.0013325573, 0.001542866]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0360456, 1.0, 0.0, 0.0010233612, 0.0022535278, 0.0010231856, 0.0022533867]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0275317, 1.0, 0.0, 0.0012159836, 0.0012869895, 0.0012155033, 0.0012865535]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.03047, 1.0, 0.0, 0.0013468217, 0.0014231885, 0.0013468609, 0.0014229533]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0375127, 1.0, 0.0, 0.0016251364, 0.0017851582, 0.001624993, 0.0017848375]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0259677, 1.0, 0.0, 0.0011759399, 0.0011848575, 0.0011748886, 0.001184818]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0285019, 1.0, 0.0, 0.0015936475, 0.0009974615, 0.0015935574, 0.0009971465]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0241766, 1.0, 0.0, 0.0015379688, 0.0006598936, 0.00153803, 0.00065989164]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0300634, 1.0, 0.0, 0.002168708, 0.00056430313, 0.002169001, 0.0005642998]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0570606, 1.0, 0.0, 0.001761439, 0.0034260193, 0.0017600509, 0.0034260661]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0596396, 1.0, 0.0, 0.0029299576, 0.002491829, 0.002929897, 0.0024917321]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0518633, 1.0, 0.0, 0.0015569987, 0.0031578531, 0.0015567645, 0.00315801]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0419626, 1.0, 0.0, 0.001021303, 0.002793426, 0.001021784, 0.0027935002]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0250034, 1.0, 0.0, 0.001061747, 0.001211353, 0.0010616439, 0.0012107283]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0311738, 1.0, 0.0, 0.001278413, 0.0015555499, 0.001278736, 0.0015554556]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0410908, 1.0, 0.0, 0.0022774725, 0.0014580961, 0.002277153, 0.0014580059]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0315338, 1.0, 0.0, 0.0009457872, 0.0019209769, 0.0009453809, 0.0019209475]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0417162, 1.0, 0.0, 0.0017069695, 0.0020855004, 0.0017063632, 0.002085161]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0266389, 1.0, 0.0, 0.000837123, 0.0015846326, 0.0008367671, 0.001584546]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0236765, 1.0, 0.0, 0.0006848186, 0.0014676022, 0.00068504596, 0.0014671793]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382222, 1.0, 0.0, 0.0016974417, 0.0017773351, 0.0016972015, 0.0017772191]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0425165, 1.0, 0.0, 0.0013790817, 0.0024860436, 0.001379226, 0.0024859484]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0401725, 1.0, 0.0, 0.0017840788, 0.0018679607, 0.0017846159, 0.001867558]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0339272, 1.0, 0.0, 0.0019306407, 0.0011535528, 0.0019319844, 0.0011532889]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0400025, 1.0, 0.0, 0.0016287093, 0.0020079094, 0.0016284604, 0.0020077582]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0348612, 1.0, 0.0, 0.0013567153, 0.0018124935, 0.0013568251, 0.0018122551]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0371702, 1.0, 0.0, 0.0016990951, 0.0016800807, 0.0016986706, 0.001679935]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.031881, 1.0, 0.0, 0.0016756479, 0.0012226169, 0.0016756984, 0.0012225336]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0341643, 1.0, 0.0, 0.0016362757, 0.0014696668, 0.0016352753, 0.0014694902]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0339592, 1.0, 0.0, 0.0017433097, 0.0013438857, 0.0017437111, 0.0013436442]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0317287, 1.0, 0.0, 0.0013763316, 0.001508039, 0.0013771032, 0.0015079724]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0435132, 1.0, 0.0, 0.0016288823, 0.0023269071, 0.0016289509, 0.0023262836]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0418929, 1.0, 0.0, 0.0016612469, 0.0021472592, 0.0016607032, 0.0021471526]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0416486, 1.0, 0.0, 0.0018393921, 0.001946982, 0.0018387374, 0.0019461974]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0476629, 1.0, 0.0, 0.0019281089, 0.0024050106, 0.0019265842, 0.0024050714]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0311251, 1.0, 0.0, 0.0013941182, 0.0014354648, 0.001394494, 0.0014346988]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320103, 1.0, 0.0, 0.0010340377, 0.0018760468, 0.0010335234, 0.0018759524]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0484585, 1.0, 0.0, 0.0030388117, 0.0013664449, 0.0030394976, 0.0013664144]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0424092, 1.0, 0.0, 0.0013874876, 0.002467989, 0.0013866483, 0.0024677617]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0391345, 1.0, 0.0, 0.0020351287, 0.001522548, 0.002035359, 0.0015222998]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0678704, 1.0, 0.0, 0.0033569685, 0.0028131898, 0.0033555678, 0.002813217]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.027288, 1.0, 0.0, 0.0011772981, 0.0013034383, 0.0011771519, 0.0013034118]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0342704, 1.0, 0.0, 0.0010972028, 0.0020183413, 0.0010967029, 0.0020182712]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0329014, 1.0, 0.0, 0.0015018356, 0.0014893741, 0.0014998727, 0.0014893446]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0388218, 1.0, 0.0, 0.001811872, 0.0017175862, 0.0018114187, 0.001715777]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0532429, 1.0, 0.0, 0.0019123172, 0.0029279622, 0.0019115929, 0.0029285315]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.03227, 1.0, 0.0, 0.0017801609, 0.0011536046, 0.0017788965, 0.0011534404]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288913, 1.0, 0.0, 0.0012097913, 0.0014167263, 0.0012095432, 0.0014166217]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.02762, 1.0, 0.0, 0.00085430604, 0.0016566121, 0.0008541467, 0.0016566472]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0377566, 1.0, 0.0, 0.0018018212, 0.0016305834, 0.001801933, 0.001630517]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0496285, 1.0, 0.0, 0.0020859444, 0.0024258127, 0.0020852159, 0.0024256182]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0296805, 1.0, 0.0, 0.0012001318, 0.0014981695, 0.001199404, 0.0014981244]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0348551, 1.0, 0.0, 0.0016506852, 0.0015179475, 0.0016510248, 0.001517633]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0372484, 1.0, 0.0, 0.00096442504, 0.002421793, 0.00096439465, 0.002421714]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0345548, 1.0, 0.0, 0.001361062, 0.0017804562, 0.0013597393, 0.0017800049]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.033734, 1.0, 0.0, 0.0013850564, 0.0016818186, 0.0013836935, 0.0016815162]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0341469, 1.0, 0.0, 0.0015424807, 0.001561912, 0.0015410159, 0.0015618941]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.025091, 1.0, 0.0, 0.0008321741, 0.0014488315, 0.00083225034, 0.0014487174]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0300235, 1.0, 0.0, 0.001531628, 0.001197756, 0.0015319254, 0.0011976503]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.036612, 1.0, 0.0, 0.0016905544, 0.0016379213, 0.0016898387, 0.0016374815]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0414885, 1.0, 0.0, 0.0022725435, 0.0014991404, 0.002272941, 0.001498756]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0372123, 1.0, 0.0, 0.0014196933, 0.0019633328, 0.0014186755, 0.0019632936]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416677, 1.0, 0.0, 0.001043898, 0.0027441, 0.0010434056, 0.0027441862]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0252297, 1.0, 0.0, 0.0013108756, 0.000982847, 0.0013097711, 0.0009827534]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0522387, 1.0, 0.0, 0.0023085438, 0.0024406384, 0.0023070541, 0.0024397653]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0324405, 1.0, 0.0, 0.0015477394, 0.0014013838, 0.0015477668, 0.0014014171]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343361, 1.0, 0.0, 0.0012941586, 0.0018273056, 0.0012941188, 0.0018272001]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0416539, 1.0, 0.0, 0.0015223539, 0.0022644557, 0.0015212242, 0.0022646585]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283715, 1.0, 0.0, 0.001036667, 0.0015426541, 0.0010362124, 0.0015421306]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.031607, 1.0, 0.0, 0.0018543506, 0.001018998, 0.001854624, 0.0010189003]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0369732, 1.0, 0.0, 0.0018853473, 0.0014759208, 0.0018845779, 0.0014759912]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340499, 1.0, 0.0, 0.0016473803, 0.00144803, 0.001647817, 0.0014479253]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0422118, 1.0, 0.0, 0.0016130344, 0.002224355, 0.0016136509, 0.0022243042]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409505, 1.0, 0.0, 0.001185001, 0.0025378333, 0.0011847073, 0.0025375183]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0330518, 1.0, 0.0, 0.0018198695, 0.0011849158, 0.0018192847, 0.0011846647]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0387527, 1.0, 0.0, 0.0014161945, 0.0021068226, 0.0014157685, 0.0021068081]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372826, 1.0, 0.0, 0.0020180861, 0.0013713457, 0.0020172033, 0.0013710756]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.039641, 1.0, 0.0, 0.001221318, 0.0023824247, 0.0012213257, 0.0023822894]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0353653, 1.0, 0.0, 0.001762579, 0.0014524903, 0.0017623098, 0.0014523249]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0312408, 1.0, 0.0, 0.0012308678, 0.0016091911, 0.0012312223, 0.0016089753]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0412427, 1.0, 0.0, 0.0020093028, 0.001740055, 0.0020096179, 0.0017394777]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0274051, 1.0, 0.0, 0.0010715857, 0.0014198255, 0.0010713565, 0.0014197193]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0280427, 1.0, 0.0, 0.0014242753, 0.0011252784, 0.0014223261, 0.0011248459]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0271119, 1.0, 0.0, 0.0011812365, 0.0012835611, 0.0011805267, 0.0012833974]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0275955, 1.0, 0.0, 0.0015187638, 0.0009899226, 0.0015188395, 0.0009897994]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0341179, 1.0, 0.0, 0.0018059757, 0.0012955798, 0.0018068596, 0.0012955228]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0393779, 1.0, 0.0, 0.002421848, 0.0011579728, 0.0024218576, 0.0011578923]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.055084, 1.0, 0.0, 0.0017992216, 0.003208339, 0.0018001049, 0.0032083308]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0622047, 1.0, 0.0, 0.0034954343, 0.0021593438, 0.0034975917, 0.0021593124]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395396, 1.0, 0.0, 0.0017254717, 0.0018690241, 0.0017257485, 0.0018688447]
Epoch: 10
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0323281, 1.0, 0.0, 0.001124511, 0.001814421, 0.0011247884, 0.0018140612]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0504589, 1.0, 0.0, 0.001859524, 0.0027276105, 0.0018598007, 0.0027278005]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.031292, 1.0, 0.0, 0.0016548524, 0.0011899834, 0.0016538263, 0.0011898843]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0528562, 1.0, 0.0, 0.0030071675, 0.0017978078, 0.0030087149, 0.0017976491]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0254263, 1.0, 0.0, 0.0011219222, 0.0011895557, 0.0011220247, 0.0011894947]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0411372, 1.0, 0.0, 0.0009606509, 0.0027791152, 0.00096047856, 0.002779171]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0617807, 1.0, 0.0, 0.0011921944, 0.004424229, 0.0011922051, 0.0044242274]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0339004, 1.0, 0.0, 0.001091185, 0.0019907444, 0.0010904064, 0.0019906613]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.035418, 1.0, 0.0, 0.0018887031, 0.0013312737, 0.0018871687, 0.0013310732]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0326613, 1.0, 0.0, 0.0011962533, 0.0017729918, 0.001196149, 0.0017727658]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0458897, 1.0, 0.0, 0.0016349837, 0.0025370163, 0.0016328017, 0.002537016]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0409417, 1.0, 0.0, 0.0019663437, 0.0017556796, 0.0019659034, 0.0017556377]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0398617, 1.0, 0.0, 0.0012333571, 0.0023904594, 0.0012333256, 0.0023903064]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0306587, 1.0, 0.0, 0.001946439, 0.00084069284, 0.0019467542, 0.00084061257]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0279248, 1.0, 0.0, 0.001330405, 0.0012082551, 0.0013299877, 0.0012081431]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0256726, 1.0, 0.0, 0.0013552678, 0.0009786815, 0.0013544597, 0.0009786062]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0291489, 1.0, 0.0, 0.0013926416, 0.0012571979, 0.0013932901, 0.0012572889]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0391272, 1.0, 0.0, 0.0012638409, 0.002293206, 0.001263496, 0.0022932063]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0357649, 1.0, 0.0, 0.0014057236, 0.0018456802, 0.001405492, 0.0018453619]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0532699, 1.0, 0.0, 0.0016411826, 0.0032015813, 0.0016409612, 0.0032013953]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0409255, 1.0, 0.0, 0.0016074312, 0.002113055, 0.0016075291, 0.0021130745]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343753, 1.0, 0.0, 0.0015645998, 0.0015605604, 0.001563462, 0.0015603853]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0307472, 1.0, 0.0, 0.0014252996, 0.0013700011, 0.0014242505, 0.0013699654]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0309067, 1.0, 0.0, 0.00094759197, 0.0018620861, 0.00094795914, 0.0018619053]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0413009, 1.0, 0.0, 0.0019720993, 0.0017826173, 0.0019710688, 0.0017825696]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410603, 1.0, 0.0, 0.0014329292, 0.0022998494, 0.0014327979, 0.0022998443]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0326711, 1.0, 0.0, 0.002033887, 0.00093623006, 0.0020337312, 0.00093611]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0357426, 1.0, 0.0, 0.0016343896, 0.0016149755, 0.0016340569, 0.001614928]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0309962, 1.0, 0.0, 0.0017441657, 0.0010736522, 0.0017444657, 0.0010735723]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0564606, 1.0, 0.0, 0.0027050802, 0.0024277552, 0.0027044108, 0.002427761]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0334976, 1.0, 0.0, 0.0014471479, 0.001598126, 0.0014466243, 0.0015981636]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0316288, 1.0, 0.0, 0.0013308268, 0.0015445041, 0.0013311025, 0.0015444302]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0359943, 1.0, 0.0, 0.001023562, 0.0022486849, 0.001023312, 0.0022485415]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0274299, 1.0, 0.0, 0.0012101731, 0.0012835445, 0.0012096041, 0.0012830986]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305015, 1.0, 0.0, 0.0013467374, 0.0014261346, 0.0013468167, 0.00142589]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374721, 1.0, 0.0, 0.0016207139, 0.001785897, 0.0016205696, 0.0017855683]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0259283, 1.0, 0.0, 0.0011751957, 0.0011820155, 0.0011741084, 0.001181973]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0284619, 1.0, 0.0, 0.0015925106, 0.0009949805, 0.0015923507, 0.0009946579]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0242023, 1.0, 0.0, 0.0015447333, 0.00065547077, 0.0015447896, 0.0006554575]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0300467, 1.0, 0.0, 0.0021655955, 0.0005658937, 0.0021659024, 0.0005659015]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0570239, 1.0, 0.0, 0.0017554049, 0.0034287386, 0.00175366, 0.0034288124]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0597216, 1.0, 0.0, 0.0029379684, 0.0024912814, 0.002937959, 0.0024911754]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0516275, 1.0, 0.0, 0.0015428972, 0.0031505115, 0.0015426882, 0.0031506554]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0417714, 1.0, 0.0, 0.001012768, 0.0027845781, 0.0010133749, 0.0027846522]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.025018, 1.0, 0.0, 0.0010703845, 0.0012040648, 0.0010701863, 0.0012033989]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0312786, 1.0, 0.0, 0.0012735031, 0.0015700038, 0.0012737231, 0.0015698853]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0410273, 1.0, 0.0, 0.0022790446, 0.001450752, 0.002278723, 0.001450675]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0315151, 1.0, 0.0, 0.000947178, 0.0019178751, 0.0009467453, 0.0019178621]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0416824, 1.0, 0.0, 0.0017070026, 0.0020824014, 0.0017063085, 0.0020820377]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0264946, 1.0, 0.0, 0.0008309409, 0.0015777003, 0.0008306274, 0.0015776101]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0236408, 1.0, 0.0, 0.00068238366, 0.0014668123, 0.00068245025, 0.0014664021]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382248, 1.0, 0.0, 0.0017054975, 0.0017694964, 0.0017054233, 0.0017693688]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.042595, 1.0, 0.0, 0.0013813579, 0.0024909284, 0.0013814468, 0.002490812]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0401672, 1.0, 0.0, 0.0017876294, 0.0018639545, 0.0017878801, 0.0018635092]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0337806, 1.0, 0.0, 0.0019238971, 0.0011469729, 0.001925185, 0.0011466872]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399861, 1.0, 0.0, 0.0016281907, 0.0020069443, 0.0016278884, 0.002006803]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0347992, 1.0, 0.0, 0.0013555312, 0.0018080459, 0.0013556147, 0.0018077795]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0371982, 1.0, 0.0, 0.0017027828, 0.001678912, 0.0017023941, 0.0016787786]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318362, 1.0, 0.0, 0.0016726253, 0.0012215814, 0.00167262, 0.0012214768]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0342093, 1.0, 0.0, 0.0016456784, 0.0014643709, 0.0016445508, 0.0014641965]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.03402, 1.0, 0.0, 0.0017485488, 0.0013441439, 0.0017490487, 0.0013439077]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0316861, 1.0, 0.0, 0.0013772073, 0.0015032643, 0.0013780113, 0.0015032006]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0434645, 1.0, 0.0, 0.0016285852, 0.002322794, 0.0016285498, 0.0023221453]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0418916, 1.0, 0.0, 0.0016605414, 0.0021478527, 0.0016599582, 0.0021477283]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.041791, 1.0, 0.0, 0.0018543592, 0.0019449702, 0.001853424, 0.0019441718]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0475641, 1.0, 0.0, 0.0019134625, 0.0024107038, 0.0019116974, 0.0024107406]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0311637, 1.0, 0.0, 0.0014018489, 0.0014312634, 0.0014021979, 0.0014303576]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320442, 1.0, 0.0, 0.0010261943, 0.001886966, 0.001025785, 0.0018868647]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0483892, 1.0, 0.0, 0.003040085, 0.0013588794, 0.003040708, 0.0013588379]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0424515, 1.0, 0.0, 0.0013931736, 0.002466164, 0.0013922477, 0.0024658784]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0391772, 1.0, 0.0, 0.002035463, 0.0015261027, 0.0020356388, 0.0015258369]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0679647, 1.0, 0.0, 0.0033656035, 0.0028131478, 0.0033640158, 0.002813172]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272827, 1.0, 0.0, 0.0011769935, 0.0013032819, 0.0011768762, 0.0013032489]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0342201, 1.0, 0.0, 0.0010954603, 0.0020155092, 0.0010948884, 0.0020154372]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0329167, 1.0, 0.0, 0.0015032071, 0.0014894117, 0.0015011276, 0.0014893867]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0386869, 1.0, 0.0, 0.001808669, 0.0017085498, 0.0018082187, 0.0017064556]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0531139, 1.0, 0.0, 0.0019109984, 0.0029175663, 0.0019101906, 0.0029181219]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323534, 1.0, 0.0, 0.0017883562, 0.0011529862, 0.0017872327, 0.0011528626]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.028915, 1.0, 0.0, 0.0012133231, 0.001415363, 0.0012129813, 0.0014152665]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0276526, 1.0, 0.0, 0.0008563771, 0.0016574976, 0.00085624156, 0.001657546]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0376128, 1.0, 0.0, 0.0017895212, 0.0016298183, 0.0017896469, 0.0016297665]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0498927, 1.0, 0.0, 0.002112751, 0.0024230354, 0.002112084, 0.0024228173]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0295817, 1.0, 0.0, 0.0011978735, 0.0014914337, 0.0011970578, 0.001491386]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0348347, 1.0, 0.0, 0.0016517846, 0.0015150114, 0.0016520902, 0.0015146647]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0371393, 1.0, 0.0, 0.0009669867, 0.002409313, 0.00096696685, 0.0024092544]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.034662, 1.0, 0.0, 0.0013640465, 0.001787239, 0.0013624509, 0.0017867665]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0336739, 1.0, 0.0, 0.0013806471, 0.0016807949, 0.0013790536, 0.0016804591]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340511, 1.0, 0.0, 0.0015391663, 0.0015565394, 0.001537479, 0.0015565208]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0251037, 1.0, 0.0, 0.00083390676, 0.0014482505, 0.0008339372, 0.001448126]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0299464, 1.0, 0.0, 0.0015269408, 0.0011954377, 0.0015273071, 0.0011953068]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0367848, 1.0, 0.0, 0.0017012835, 0.0016429061, 0.0017005156, 0.0016423812]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0415006, 1.0, 0.0, 0.0022753081, 0.0014974428, 0.002275892, 0.0014969882]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0372391, 1.0, 0.0, 0.0014214161, 0.0019641109, 0.0014197222, 0.001964084]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416528, 1.0, 0.0, 0.0010412559, 0.0027454048, 0.0010406682, 0.0027455108]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0251284, 1.0, 0.0, 0.001301845, 0.0009826735, 0.0013005972, 0.0009825737]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.052259, 1.0, 0.0, 0.0023095089, 0.002441506, 0.002308261, 0.0024405688]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0324306, 1.0, 0.0, 0.0015470188, 0.0014012274, 0.0015469918, 0.0014012607]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343298, 1.0, 0.0, 0.0012945246, 0.0018263827, 0.0012943917, 0.001826264]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0416703, 1.0, 0.0, 0.0015214226, 0.0022668678, 0.0015203115, 0.002267092]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283796, 1.0, 0.0, 0.0010370783, 0.0015429803, 0.0010365756, 0.001542432]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0316832, 1.0, 0.0, 0.0018606514, 0.0010196401, 0.0018607702, 0.0010195303]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0367198, 1.0, 0.0, 0.0018658221, 0.0014724184, 0.0018650072, 0.0014724918]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340375, 1.0, 0.0, 0.0016456663, 0.0014486206, 0.0016461061, 0.0014484918]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0422624, 1.0, 0.0, 0.0016170508, 0.002224939, 0.0016176957, 0.0022248782]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409765, 1.0, 0.0, 0.0011838595, 0.002541338, 0.001183528, 0.0025410238]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.033056, 1.0, 0.0, 0.0018157845, 0.0011893918, 0.0018151987, 0.0011891384]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0387954, 1.0, 0.0, 0.001424105, 0.0021027797, 0.0014237717, 0.0021027387]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372795, 1.0, 0.0, 0.0020218426, 0.0013673062, 0.0020210152, 0.0013670052]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0395162, 1.0, 0.0, 0.0012186526, 0.0023737377, 0.0012186326, 0.0023736134]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0352459, 1.0, 0.0, 0.0017552088, 0.0014489962, 0.0017549973, 0.0014487879]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0312365, 1.0, 0.0, 0.0012309533, 0.0016087163, 0.0012312636, 0.001608453]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0411242, 1.0, 0.0, 0.0020029247, 0.0017356918, 0.0020031251, 0.0017349626]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.027441, 1.0, 0.0, 0.0010739206, 0.0014207606, 0.0010736018, 0.0014206038]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0280051, 1.0, 0.0, 0.001415649, 0.0011305118, 0.0014136247, 0.0011300349]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0269908, 1.0, 0.0, 0.001171489, 0.0012822918, 0.0011708193, 0.0012821113]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276172, 1.0, 0.0, 0.0015199195, 0.0009907327, 0.0015200117, 0.0009905931]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0341551, 1.0, 0.0, 0.0018088522, 0.0012960847, 0.0018097495, 0.0012960047]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.039419, 1.0, 0.0, 0.0024235854, 0.001159976, 0.0024235803, 0.0011598791]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0550655, 1.0, 0.0, 0.001798322, 0.0032075495, 0.0017991816, 0.0032075532]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0622963, 1.0, 0.0, 0.003504951, 0.00215815, 0.003506959, 0.0021581103]
Batch: 120
D_Loss: [0.5 0.5]
W0822 13:05:44.663225 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.688777 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.707403 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
G_Loss: [1.0395207, 1.0, 0.0, 0.0017244318, 0.0018683599, 0.0017247358, 0.001868157]
W0822 13:05:44.726286 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.747255 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.765892 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.837347 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.854864 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.872599 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.891363 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.910731 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:05:44.929961 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Epoch: 11
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0323367, 1.0, 0.0, 0.0011241152, 0.0018155951, 0.001124394, 0.0018151808]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0503628, 1.0, 0.0, 0.0018500803, 0.0027283058, 0.001850457, 0.002728514]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0312318, 1.0, 0.0, 0.0016515641, 0.0011877902, 0.0016505847, 0.0011876842]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0526011, 1.0, 0.0, 0.0029847133, 0.001797103, 0.0029860102, 0.0017969267]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0254378, 1.0, 0.0, 0.0011237985, 0.0011887223, 0.0011239868, 0.0011886555]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.04115, 1.0, 0.0, 0.00096145994, 0.0027794505, 0.0009614271, 0.0027794938]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0618309, 1.0, 0.0, 0.0011945376, 0.004426442, 0.0011946002, 0.0044264365]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0339528, 1.0, 0.0, 0.0010948367, 0.0019918424, 0.0010941806, 0.001991741]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0352837, 1.0, 0.0, 0.0018823864, 0.0013253622, 0.0018811417, 0.0013251161]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0325928, 1.0, 0.0, 0.001193433, 0.0017695928, 0.0011932442, 0.0017693006]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0459387, 1.0, 0.0, 0.0016430512, 0.0025333862, 0.0016409806, 0.002533331]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0409789, 1.0, 0.0, 0.0019650105, 0.0017603971, 0.0019644913, 0.0017603482]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0398563, 1.0, 0.0, 0.0012317761, 0.002391544, 0.0012317654, 0.0023913246]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0306146, 1.0, 0.0, 0.0019502258, 0.0008329125, 0.0019504044, 0.0008327899]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0278572, 1.0, 0.0, 0.0013229538, 0.0012095734, 0.0013226029, 0.0012094376]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0256124, 1.0, 0.0, 0.0013513099, 0.0009771731, 0.001350531, 0.0009770879]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0291504, 1.0, 0.0, 0.0013964527, 0.0012535241, 0.0013970059, 0.0012536319]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390815, 1.0, 0.0, 0.0012611935, 0.0022916913, 0.0012608815, 0.0022916775]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0356854, 1.0, 0.0, 0.0014040777, 0.0018401194, 0.0014037343, 0.001839764]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0533812, 1.0, 0.0, 0.0016389363, 0.0032139225, 0.0016388382, 0.003213745]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0408405, 1.0, 0.0, 0.0016051515, 0.0021076202, 0.0016051807, 0.0021076542]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343695, 1.0, 0.0, 0.0015657765, 0.0015588452, 0.0015646787, 0.00155865]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030734, 1.0, 0.0, 0.0014263052, 0.0013677701, 0.0014253322, 0.0013677485]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.030753, 1.0, 0.0, 0.00094601145, 0.0018497031, 0.0009463716, 0.0018495363]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0411596, 1.0, 0.0, 0.001967278, 0.0017746023, 0.0019663046, 0.0017745531]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410502, 1.0, 0.0, 0.0014272587, 0.002304604, 0.0014270826, 0.002304586]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0326457, 1.0, 0.0, 0.0020299717, 0.0009378608, 0.0020297982, 0.00093773176]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0357407, 1.0, 0.0, 0.0016334985, 0.0016156968, 0.0016332241, 0.0016156484]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0309975, 1.0, 0.0, 0.0017442014, 0.0010737269, 0.0017445728, 0.001073651]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0565068, 1.0, 0.0, 0.0027060725, 0.00243095, 0.0027055466, 0.0024309661]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0335611, 1.0, 0.0, 0.0014482795, 0.0016027761, 0.0014477682, 0.0016028096]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0316498, 1.0, 0.0, 0.0013298015, 0.0015474313, 0.0013301087, 0.0015473482]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358492, 1.0, 0.0, 0.0010238667, 0.002235189, 0.0010236499, 0.002235056]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0273771, 1.0, 0.0, 0.0012088493, 0.0012800747, 0.0012082891, 0.0012795706]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305208, 1.0, 0.0, 0.0013432361, 0.0014314093, 0.0013432561, 0.0014311505]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374768, 1.0, 0.0, 0.0016206247, 0.0017863839, 0.001620487, 0.0017860571]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.025887, 1.0, 0.0, 0.0011720724, 0.0011813934, 0.0011709844, 0.0011813489]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0284808, 1.0, 0.0, 0.0015945237, 0.0009946988, 0.0015943318, 0.0009943608]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0242063, 1.0, 0.0, 0.001546591, 0.0006539728, 0.0015466863, 0.0006539606]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0300008, 1.0, 0.0, 0.0021633091, 0.0005640001, 0.002163655, 0.0005640091]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569484, 1.0, 0.0, 0.0017493027, 0.0034279549, 0.0017478431, 0.003428021]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0596284, 1.0, 0.0, 0.0029300237, 0.002490765, 0.0029299534, 0.0024906397]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0519603, 1.0, 0.0, 0.0015712148, 0.0031524496, 0.0015710248, 0.0031526173]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0418161, 1.0, 0.0, 0.0010142459, 0.0027871658, 0.0010147793, 0.00278724]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0250661, 1.0, 0.0, 0.0010722729, 0.0012065526, 0.0010720936, 0.0012058143]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0312382, 1.0, 0.0, 0.0012745999, 0.0015652336, 0.0012748619, 0.0015651244]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0409294, 1.0, 0.0, 0.002269697, 0.0014511984, 0.0022694024, 0.0014511201]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0313928, 1.0, 0.0, 0.00093904405, 0.0019148804, 0.0009386196, 0.0019148644]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0417317, 1.0, 0.0, 0.0017164878, 0.0020773949, 0.0017159237, 0.0020770184]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0264509, 1.0, 0.0, 0.0008306788, 0.0015739801, 0.0008303555, 0.0015738854]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0234834, 1.0, 0.0, 0.0006694563, 0.0014654221, 0.0006695849, 0.001464962]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382384, 1.0, 0.0, 0.0017052942, 0.001770944, 0.0017051275, 0.0017708022]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0426133, 1.0, 0.0, 0.0013837926, 0.0024901384, 0.0013838619, 0.0024900145]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0400281, 1.0, 0.0, 0.0017754594, 0.0018634717, 0.0017758657, 0.001862994]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0336918, 1.0, 0.0, 0.0019223378, 0.0011404637, 0.0019236985, 0.0011401761]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399668, 1.0, 0.0, 0.0016270105, 0.0020063599, 0.001626766, 0.0020062518]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0348059, 1.0, 0.0, 0.0013576493, 0.001806534, 0.0013577425, 0.0018062503]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0372316, 1.0, 0.0, 0.0017037175, 0.0016810317, 0.0017033075, 0.0016808908]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318253, 1.0, 0.0, 0.0016719571, 0.0012212485, 0.0016719708, 0.0012211658]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0342718, 1.0, 0.0, 0.001651462, 0.001464254, 0.0016504985, 0.0014640903]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0340409, 1.0, 0.0, 0.0017538104, 0.0013408118, 0.0017541659, 0.0013405979]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0316879, 1.0, 0.0, 0.0013764875, 0.0015041651, 0.0013772183, 0.0015041055]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0434883, 1.0, 0.0, 0.0016283198, 0.002325226, 0.0016283307, 0.0023245858]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0419443, 1.0, 0.0, 0.0016621866, 0.0021509873, 0.0016616343, 0.0021508508]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417616, 1.0, 0.0, 0.0018625229, 0.0019341323, 0.0018617483, 0.0019333637]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0474747, 1.0, 0.0, 0.0019048523, 0.002411157, 0.0019034126, 0.0024111827]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0311613, 1.0, 0.0, 0.0014035819, 0.0014293151, 0.0014039078, 0.0014283289]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319352, 1.0, 0.0, 0.0010228488, 0.0018804037, 0.0010223082, 0.0018802817]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0484107, 1.0, 0.0, 0.0030392348, 0.001361674, 0.0030398727, 0.0013616271]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0424701, 1.0, 0.0, 0.0013979883, 0.0024630234, 0.0013972141, 0.0024627303]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0391904, 1.0, 0.0, 0.0020342157, 0.0015285598, 0.0020344346, 0.0015282803]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0680645, 1.0, 0.0, 0.0033780918, 0.0028097492, 0.0033762543, 0.0028097718]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0271482, 1.0, 0.0, 0.0011698867, 0.0012981535, 0.0011697779, 0.0012981191]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0341114, 1.0, 0.0, 0.0010941883, 0.002006908, 0.0010936817, 0.002006827]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.032817, 1.0, 0.0, 0.001498675, 0.0014848701, 0.0014967266, 0.0014848409]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0386829, 1.0, 0.0, 0.0018053416, 0.0017115471, 0.0018048419, 0.0017092072]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0532146, 1.0, 0.0, 0.0019051428, 0.0029325872, 0.0019039673, 0.00293325]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0322618, 1.0, 0.0, 0.0017862476, 0.0011467696, 0.0017851193, 0.0011465575]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288622, 1.0, 0.0, 0.0012176784, 0.001406204, 0.0012173473, 0.001406091]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.027604, 1.0, 0.0, 0.0008524457, 0.0016570194, 0.00085233746, 0.0016570631]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0376023, 1.0, 0.0, 0.001789174, 0.0016292054, 0.0017892893, 0.001629135]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0501205, 1.0, 0.0, 0.0021322633, 0.0024242168, 0.0021316526, 0.0024239612]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0295638, 1.0, 0.0, 0.0011964676, 0.0014912207, 0.0011957011, 0.0014911642]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0349053, 1.0, 0.0, 0.0016575903, 0.0015156261, 0.0016578797, 0.0015152558]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0370905, 1.0, 0.0, 0.000968389, 0.0024035028, 0.00096838153, 0.0024034055]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0348382, 1.0, 0.0, 0.0013633508, 0.001803945, 0.0013617771, 0.0018034596]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0335083, 1.0, 0.0, 0.001377302, 0.001669084, 0.0013757634, 0.0016686823]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.034083, 1.0, 0.0, 0.0015483373, 0.0015502714, 0.0015467147, 0.0015502421]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0250909, 1.0, 0.0, 0.0008276855, 0.0014533252, 0.00082772766, 0.0014531821]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0300019, 1.0, 0.0, 0.001530272, 0.0011971559, 0.0015305117, 0.0011970063]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0369562, 1.0, 0.0, 0.0017113802, 0.0016484035, 0.0017106461, 0.001647756]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0415838, 1.0, 0.0, 0.00228605, 0.001494302, 0.0022865243, 0.0014937483]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0373693, 1.0, 0.0, 0.001435728, 0.0019616047, 0.0014343441, 0.001961551]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416721, 1.0, 0.0, 0.0010385198, 0.0027498826, 0.0010380205, 0.0027499907]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0252323, 1.0, 0.0, 0.0013118285, 0.0009821363, 0.0013105882, 0.0009820266]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0522727, 1.0, 0.0, 0.0023085745, 0.0024437124, 0.0023072953, 0.002442649]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0324935, 1.0, 0.0, 0.0015550313, 0.0013989215, 0.0015550256, 0.0013989605]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343374, 1.0, 0.0, 0.0012959186, 0.0018256886, 0.0012957308, 0.0018255344]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0418372, 1.0, 0.0, 0.0015288198, 0.0022746467, 0.0015276595, 0.002274899]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283438, 1.0, 0.0, 0.0010339868, 0.0015428137, 0.0010335029, 0.0015421951]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0316055, 1.0, 0.0, 0.0018551488, 0.0010180814, 0.0018552805, 0.0010179565]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0369488, 1.0, 0.0, 0.0018877308, 0.0014712877, 0.0018872516, 0.0014713479]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340042, 1.0, 0.0, 0.0016417835, 0.001449476, 0.00164226, 0.0014493335]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0422082, 1.0, 0.0, 0.0016093815, 0.0022276626, 0.001609986, 0.0022276144]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410159, 1.0, 0.0, 0.0011829378, 0.00254585, 0.0011825422, 0.0025454916]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0329851, 1.0, 0.0, 0.0018103325, 0.0011884046, 0.0018094528, 0.0011881252]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0388821, 1.0, 0.0, 0.0014302635, 0.0021045303, 0.0014297321, 0.002104488]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372465, 1.0, 0.0, 0.0020227036, 0.0013634465, 0.0020218021, 0.0013631068]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0394688, 1.0, 0.0, 0.0012204057, 0.0023676907, 0.0012203606, 0.0023675526]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0351853, 1.0, 0.0, 0.0017483862, 0.0014503268, 0.0017481763, 0.0014501022]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.03115, 1.0, 0.0, 0.0012287338, 0.001603093, 0.0012289302, 0.0016028014]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0412239, 1.0, 0.0, 0.0020021475, 0.0017455344, 0.0020024113, 0.001744752]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.027418, 1.0, 0.0, 0.0010767886, 0.0014158064, 0.0010764957, 0.0014156211]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0278081, 1.0, 0.0, 0.0014068652, 0.0011213713, 0.001405045, 0.0011208579]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0269545, 1.0, 0.0, 0.001164819, 0.0012856687, 0.0011642542, 0.0012854822]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0275568, 1.0, 0.0, 0.0015197261, 0.0009854473, 0.001519802, 0.0009853032]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0341727, 1.0, 0.0, 0.0018093591, 0.0012971733, 0.0018101365, 0.0012970921]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0393889, 1.0, 0.0, 0.0024241568, 0.0011566657, 0.002424172, 0.0011565677]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0550456, 1.0, 0.0, 0.0017952684, 0.0032088014, 0.0017960744, 0.0032088114]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0625811, 1.0, 0.0, 0.00352718, 0.002161853, 0.0035289517, 0.0021618302]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396342, 1.0, 0.0, 0.0017308495, 0.0018722616, 0.0017310887, 0.001872032]
Epoch: 12
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0322598, 1.0, 0.0, 0.0011198395, 0.0018128885, 0.001120087, 0.0018124282]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0503893, 1.0, 0.0, 0.0018490104, 0.0027318003, 0.0018491406, 0.0027319973]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0313398, 1.0, 0.0, 0.0016636832, 0.0011854826, 0.0016626946, 0.0011853718]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0522501, 1.0, 0.0, 0.002955145, 0.0017947778, 0.0029562963, 0.0017945593]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0255921, 1.0, 0.0, 0.0011349194, 0.0011916235, 0.0011351663, 0.0011915343]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0412933, 1.0, 0.0, 0.0009722909, 0.0027816454, 0.0009722056, 0.0027817045]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0619395, 1.0, 0.0, 0.0011967098, 0.004434155, 0.0011967157, 0.004434155]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0339878, 1.0, 0.0, 0.0010893322, 0.0020005254, 0.0010887287, 0.0020004169]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0352515, 1.0, 0.0, 0.0018976391, 0.0013071636, 0.0018964962, 0.0013068786]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0325302, 1.0, 0.0, 0.0011891802, 0.0017681655, 0.0011890002, 0.0017677927]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0458735, 1.0, 0.0, 0.0016421725, 0.0025283357, 0.0016402307, 0.002528283]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0410993, 1.0, 0.0, 0.0019671987, 0.0017691484, 0.0019667353, 0.0017690955]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0398601, 1.0, 0.0, 0.0012344642, 0.0023892168, 0.0012344546, 0.0023889693]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0305709, 1.0, 0.0, 0.0019477874, 0.0008313742, 0.0019479955, 0.0008312345]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0279328, 1.0, 0.0, 0.0013303411, 0.0012090469, 0.00133, 0.0012089121]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0255995, 1.0, 0.0, 0.0013509946, 0.0009763025, 0.0013502815, 0.00097621424]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.029031, 1.0, 0.0, 0.0013871347, 0.0012520028, 0.0013876369, 0.0012521031]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390912, 1.0, 0.0, 0.0012633707, 0.0022904212, 0.001263057, 0.002290396]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0356503, 1.0, 0.0, 0.0014044071, 0.0018365975, 0.0014040751, 0.001836179]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0535171, 1.0, 0.0, 0.0016379151, 0.0032273054, 0.0016378628, 0.0032271165]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0408206, 1.0, 0.0, 0.0016032603, 0.002107705, 0.0016032215, 0.0021077124]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0342971, 1.0, 0.0, 0.0015622894, 0.00155575, 0.0015612186, 0.0015555352]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0307493, 1.0, 0.0, 0.0014304855, 0.0013649908, 0.0014295562, 0.001364903]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0307204, 1.0, 0.0, 0.0009474328, 0.001845317, 0.0009478205, 0.0018450882]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0410788, 1.0, 0.0, 0.001964277, 0.0017702521, 0.0019634352, 0.0017701918]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0411072, 1.0, 0.0, 0.0014270052, 0.0023100097, 0.0014268814, 0.0023099994]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0326824, 1.0, 0.0, 0.0020313908, 0.0009397787, 0.0020312257, 0.00093960075]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0357639, 1.0, 0.0, 0.0016335995, 0.001617705, 0.0016333163, 0.001617594]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0310783, 1.0, 0.0, 0.001750379, 0.001074913, 0.0017506945, 0.0010747638]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.056543, 1.0, 0.0, 0.0027083852, 0.0024319433, 0.0027077375, 0.0024319491]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0335373, 1.0, 0.0, 0.0014475638, 0.0016013298, 0.001447054, 0.0016013358]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0316349, 1.0, 0.0, 0.0013277059, 0.0015481808, 0.0013279683, 0.0015480093]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358385, 1.0, 0.0, 0.0010247192, 0.0022333625, 0.0010244942, 0.0022331837]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0273486, 1.0, 0.0, 0.001206194, 0.0012801485, 0.0012056712, 0.0012795243]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305355, 1.0, 0.0, 0.0013444446, 0.0014315317, 0.0013444773, 0.0014312046]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374681, 1.0, 0.0, 0.0016203473, 0.0017858725, 0.0016202513, 0.0017854791]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0258951, 1.0, 0.0, 0.0011744491, 0.0011797473, 0.001173496, 0.0011797051]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0284617, 1.0, 0.0, 0.0015954152, 0.0009920567, 0.0015952883, 0.0009916654]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0241714, 1.0, 0.0, 0.0015438814, 0.0006534999, 0.0015439427, 0.00065348984]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0298698, 1.0, 0.0, 0.0021564094, 0.00055900915, 0.0021566674, 0.00055900397]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569289, 1.0, 0.0, 0.0017498797, 0.0034255804, 0.0017483983, 0.0034256647]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0597357, 1.0, 0.0, 0.0029381744, 0.0024923524, 0.0029380936, 0.002492225]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.051959, 1.0, 0.0, 0.0015602547, 0.0031632888, 0.0015600391, 0.003163468]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0419225, 1.0, 0.0, 0.0010086319, 0.0028024586, 0.001009068, 0.0028025447]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.025182, 1.0, 0.0, 0.0010776313, 0.0012117317, 0.0010775329, 0.0012109082]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0309743, 1.0, 0.0, 0.0012676964, 0.0015481402, 0.0012679477, 0.0015480353]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0410583, 1.0, 0.0, 0.002280614, 0.0014519928, 0.0022803857, 0.0014518964]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0314364, 1.0, 0.0, 0.00094654865, 0.0019113575, 0.0009461213, 0.0019113322]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.041595, 1.0, 0.0, 0.0017144505, 0.0020669766, 0.0017140565, 0.002066505]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0263451, 1.0, 0.0, 0.00082486565, 0.0015701733, 0.00082452304, 0.0015700685]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0235792, 1.0, 0.0, 0.00067663484, 0.0014669554, 0.0006768231, 0.0014664843]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.038159, 1.0, 0.0, 0.0017093482, 0.0017596834, 0.0017091023, 0.0017595303]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0427678, 1.0, 0.0, 0.0013834782, 0.0025045085, 0.0013835788, 0.002504368]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0399755, 1.0, 0.0, 0.0017866716, 0.0018474835, 0.0017871193, 0.0018468987]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0335411, 1.0, 0.0, 0.0019167198, 0.0011323891, 0.001917856, 0.0011320846]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399394, 1.0, 0.0, 0.0016287846, 0.002002108, 0.0016285162, 0.0020019505]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.034786, 1.0, 0.0, 0.0013609754, 0.0018013946, 0.0013611579, 0.0018010833]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.037446, 1.0, 0.0, 0.0017108255, 0.0016934325, 0.0017103088, 0.0016932922]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318396, 1.0, 0.0, 0.0016760343, 0.0012184854, 0.0016760351, 0.0012183662]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0343025, 1.0, 0.0, 0.0016522987, 0.0014661901, 0.001651496, 0.001465987]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0339794, 1.0, 0.0, 0.0017594968, 0.0013295357, 0.0017598051, 0.0013292842]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0317249, 1.0, 0.0, 0.001379326, 0.0015047041, 0.0013800104, 0.0015046487]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0435373, 1.0, 0.0, 0.001631492, 0.002326496, 0.0016316068, 0.00232576]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0420926, 1.0, 0.0, 0.0016707785, 0.0021558753, 0.0016702423, 0.0021557356]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0418032, 1.0, 0.0, 0.0018688731, 0.0019315677, 0.0018681462, 0.001930693]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0474918, 1.0, 0.0, 0.0018997716, 0.0024178145, 0.0018982057, 0.0024178093]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0312588, 1.0, 0.0, 0.0014151029, 0.0014266998, 0.0014154159, 0.0014255343]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0320085, 1.0, 0.0, 0.0010195752, 0.001890339, 0.0010192066, 0.0018902048]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.048393, 1.0, 0.0, 0.0030440972, 0.0013552147, 0.003044678, 0.001355161]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0425326, 1.0, 0.0, 0.0014031556, 0.002463553, 0.001402298, 0.0024632055]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0392503, 1.0, 0.0, 0.0020375792, 0.0015306245, 0.0020378958, 0.0015303197]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0681744, 1.0, 0.0, 0.003388579, 0.0028092563, 0.0033867569, 0.0028092675]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272175, 1.0, 0.0, 0.0011767185, 0.0012976177, 0.0011766144, 0.0012975826]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0340794, 1.0, 0.0, 0.0010935534, 0.002004635, 0.0010930416, 0.0020045503]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328437, 1.0, 0.0, 0.0014993816, 0.0014865814, 0.0014976196, 0.0014865589]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0386486, 1.0, 0.0, 0.0018102836, 0.0017034813, 0.0018098608, 0.0017011305]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0530132, 1.0, 0.0, 0.0019035081, 0.0029158853, 0.001902756, 0.0029165468]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323844, 1.0, 0.0, 0.0018009346, 0.0011432116, 0.0017998897, 0.0011430343]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288466, 1.0, 0.0, 0.0012206733, 0.0014017862, 0.0012203215, 0.001401664]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0276686, 1.0, 0.0, 0.0008588275, 0.0016564985, 0.00085873157, 0.00165655]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0373843, 1.0, 0.0, 0.0017720647, 0.0016264993, 0.0017721764, 0.0016264099]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.05052, 1.0, 0.0, 0.0021712645, 0.0024215335, 0.0021706931, 0.002421239]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0294982, 1.0, 0.0, 0.0011971663, 0.0014845652, 0.0011963851, 0.0014845057]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0349444, 1.0, 0.0, 0.0016622887, 0.0015144974, 0.0016624928, 0.0015140786]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0369774, 1.0, 0.0, 0.00097129267, 0.002390305, 0.0009712784, 0.0023901968]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0349406, 1.0, 0.0, 0.0013636108, 0.001812988, 0.0013622013, 0.0018124776]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.033543, 1.0, 0.0, 0.0013761722, 0.0016733292, 0.0013749315, 0.0016729257]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340883, 1.0, 0.0, 0.001550395, 0.0015486651, 0.0015489818, 0.0015486337]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0251708, 1.0, 0.0, 0.00083225785, 0.001455998, 0.00083229237, 0.0014558616]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0299679, 1.0, 0.0, 0.0015260257, 0.0011983179, 0.0015263286, 0.0011981626]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.037053, 1.0, 0.0, 0.001717377, 0.0016511923, 0.0017166866, 0.0016505283]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0415728, 1.0, 0.0, 0.0022875287, 0.0014918286, 0.0022879436, 0.0014912344]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0373123, 1.0, 0.0, 0.0014310749, 0.0019610822, 0.0014297472, 0.0019610464]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0416936, 1.0, 0.0, 0.0010362451, 0.002754106, 0.0010357611, 0.0027542277]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0251259, 1.0, 0.0, 0.0013002299, 0.0009840338, 0.0012992041, 0.0009839224]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0523212, 1.0, 0.0, 0.0023102663, 0.0024464098, 0.002309246, 0.002445268]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0323906, 1.0, 0.0, 0.0015465785, 0.0013980202, 0.0015466, 0.0013980573]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343072, 1.0, 0.0, 0.0012925202, 0.0018263548, 0.0012923734, 0.0018261945]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.04191, 1.0, 0.0, 0.001532235, 0.0022778483, 0.0015311022, 0.002278116]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283513, 1.0, 0.0, 0.0010360176, 0.0015414865, 0.001035527, 0.0015408238]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0317677, 1.0, 0.0, 0.0018693353, 0.001018642, 0.0018694772, 0.0010185196]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0364772, 1.0, 0.0, 0.0018485645, 0.0014675765, 0.0018482247, 0.0014676332]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339174, 1.0, 0.0, 0.0016321852, 0.0014511896, 0.0016325833, 0.0014510553]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0424056, 1.0, 0.0, 0.0016244684, 0.0022305646, 0.0016248755, 0.002230528]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410008, 1.0, 0.0, 0.0011793062, 0.0025480965, 0.0011790971, 0.0025477065]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0329291, 1.0, 0.0, 0.0018060234, 0.001187607, 0.0018054165, 0.0011873161]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0389458, 1.0, 0.0, 0.001435783, 0.0021048023, 0.0014351741, 0.0021047476]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372012, 1.0, 0.0, 0.0020200936, 0.0013619306, 0.0020192803, 0.0013615761]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0395455, 1.0, 0.0, 0.0012279751, 0.0023671025, 0.0012278678, 0.0023669451]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350372, 1.0, 0.0, 0.0017418212, 0.001443414, 0.001741589, 0.0014431922]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.031065, 1.0, 0.0, 0.0012228314, 0.0016012493, 0.0012231334, 0.0016009742]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0411683, 1.0, 0.0, 0.001996861, 0.0017457615, 0.00199695, 0.0017450652]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0274836, 1.0, 0.0, 0.0010784748, 0.0014200837, 0.0010781428, 0.0014199265]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0278425, 1.0, 0.0, 0.0014055455, 0.0011257906, 0.0014038044, 0.0011252959]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0268382, 1.0, 0.0, 0.0011574005, 0.001282494, 0.0011568719, 0.0012823094]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0275668, 1.0, 0.0, 0.0015226747, 0.0009834035, 0.0015227222, 0.0009832669]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0342203, 1.0, 0.0, 0.0018131885, 0.0012976975, 0.0018139054, 0.0012976135]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394483, 1.0, 0.0, 0.0024290415, 0.0011571757, 0.0024290187, 0.0011570773]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551319, 1.0, 0.0, 0.0018020467, 0.003209876, 0.0018028443, 0.0032098826]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0625298, 1.0, 0.0, 0.003523067, 0.0021613187, 0.0035246697, 0.0021612858]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396577, 1.0, 0.0, 0.0017354385, 0.001869818, 0.001735624, 0.0018695795]
Epoch: 13
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0321978, 1.0, 0.0, 0.0011141397, 0.0018129607, 0.0011144129, 0.0018124796]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0502799, 1.0, 0.0, 0.0018397161, 0.002731163, 0.0018396699, 0.0027313333]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0313462, 1.0, 0.0, 0.0016613491, 0.0011884249, 0.0016602231, 0.0011883226]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0519907, 1.0, 0.0, 0.0029316219, 0.0017947451, 0.0029326158, 0.0017945122]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0255972, 1.0, 0.0, 0.0011405637, 0.0011864394, 0.0011407918, 0.0011863541]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0414006, 1.0, 0.0, 0.0009781185, 0.0027855607, 0.0009781141, 0.0027856203]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.062035, 1.0, 0.0, 0.0012023309, 0.004437206, 0.0012023662, 0.0044372026]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0340332, 1.0, 0.0, 0.0010924052, 0.0020015752, 0.0010917895, 0.0020014658]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.035343, 1.0, 0.0, 0.0019016849, 0.0013114591, 0.0019004915, 0.0013111739]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0324681, 1.0, 0.0, 0.0011877588, 0.0017639403, 0.0011875306, 0.0017635536]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0459112, 1.0, 0.0, 0.0016435432, 0.002530397, 0.0016415226, 0.0025303233]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0411265, 1.0, 0.0, 0.0019717212, 0.0017671096, 0.0019711652, 0.0017670654]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0398711, 1.0, 0.0, 0.0012316653, 0.0023929907, 0.0012316713, 0.002392738]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0305204, 1.0, 0.0, 0.001949372, 0.00082521426, 0.001949508, 0.0008250601]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0280105, 1.0, 0.0, 0.0013354516, 0.0012109939, 0.0013351298, 0.0012108351]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0255977, 1.0, 0.0, 0.0013500849, 0.0009770688, 0.0013493123, 0.0009769796]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.02905, 1.0, 0.0, 0.0013914423, 0.0012494035, 0.0013919405, 0.0012495217]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390925, 1.0, 0.0, 0.0012670215, 0.0022868803, 0.0012666731, 0.002286861]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0355847, 1.0, 0.0, 0.0014072589, 0.0018277836, 0.0014069221, 0.001827365]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0537802, 1.0, 0.0, 0.0016369617, 0.0032521687, 0.001636922, 0.003252008]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0408067, 1.0, 0.0, 0.0016002376, 0.002109449, 0.0016002124, 0.0021094824]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343403, 1.0, 0.0, 0.001566573, 0.0015553865, 0.0015655651, 0.0015551242]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030706, 1.0, 0.0, 0.001430782, 0.001360774, 0.0014298328, 0.0013607026]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0307518, 1.0, 0.0, 0.0009514183, 0.001844191, 0.00095179287, 0.0018439812]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0409182, 1.0, 0.0, 0.0019568321, 0.0017630958, 0.0019560345, 0.0017630258]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410813, 1.0, 0.0, 0.001429672, 0.002304998, 0.0014295696, 0.002305027]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0326781, 1.0, 0.0, 0.002033514, 0.00093724864, 0.0020333135, 0.0009370903]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0358224, 1.0, 0.0, 0.0016336867, 0.0016229231, 0.0016334015, 0.0016228305]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.031121, 1.0, 0.0, 0.0017527302, 0.0010764343, 0.0017530076, 0.0010763272]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0566133, 1.0, 0.0, 0.0027093438, 0.0024373876, 0.0027087023, 0.0024374058]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0335428, 1.0, 0.0, 0.001446899, 0.0016024804, 0.0014463795, 0.0016024947]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0316643, 1.0, 0.0, 0.0013263879, 0.0015521895, 0.0013265723, 0.0015520167]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358915, 1.0, 0.0, 0.0010259323, 0.0022369719, 0.0010257002, 0.002236786]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0272925, 1.0, 0.0, 0.0012048194, 0.0012764261, 0.0012041843, 0.0012758686]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0306011, 1.0, 0.0, 0.0013457295, 0.0014362234, 0.0013457149, 0.0014359311]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374415, 1.0, 0.0, 0.0016213044, 0.0017825009, 0.0016212126, 0.0017821261]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0259141, 1.0, 0.0, 0.0011742333, 0.0011816826, 0.0011731993, 0.0011816404]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0284768, 1.0, 0.0, 0.0015975316, 0.0009913233, 0.0015973295, 0.0009909461]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.024229, 1.0, 0.0, 0.0015504411, 0.00065219146, 0.0015505101, 0.00065218005]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0298705, 1.0, 0.0, 0.002155386, 0.0005600909, 0.0021556094, 0.0005600919]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569229, 1.0, 0.0, 0.0017473876, 0.0034275511, 0.0017458316, 0.0034276322]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0597758, 1.0, 0.0, 0.002941207, 0.0024929717, 0.002941109, 0.0024928525]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0518705, 1.0, 0.0, 0.0015551514, 0.0031603468, 0.0015549235, 0.0031605063]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0417713, 1.0, 0.0, 0.0009995138, 0.0027978322, 0.0009999605, 0.0027979086]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0253062, 1.0, 0.0, 0.0010921138, 0.0012085491, 0.0010919985, 0.0012077328]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0309616, 1.0, 0.0, 0.0012600508, 0.0015546355, 0.0012602569, 0.0015545187]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.041291, 1.0, 0.0, 0.0022995947, 0.0014541537, 0.0022994117, 0.001454067]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0315752, 1.0, 0.0, 0.00095887063, 0.0019116391, 0.00095843687, 0.0019116122]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0415097, 1.0, 0.0, 0.0017029422, 0.0020707685, 0.0017023488, 0.002070287]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0262756, 1.0, 0.0, 0.0008229684, 0.0015657507, 0.0008226086, 0.0015656468]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0235784, 1.0, 0.0, 0.000682601, 0.0014609195, 0.0006827185, 0.0014604782]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382894, 1.0, 0.0, 0.0017168878, 0.0017640162, 0.001716596, 0.00176387]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0427378, 1.0, 0.0, 0.0013854185, 0.0024998419, 0.0013855391, 0.0024996903]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.040233, 1.0, 0.0, 0.0018046264, 0.0018529267, 0.001805089, 0.0018524171]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0334593, 1.0, 0.0, 0.0019134735, 0.0011282099, 0.0019145019, 0.0011279462]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399574, 1.0, 0.0, 0.0016319221, 0.0020006062, 0.0016316194, 0.0020004897]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.034768, 1.0, 0.0, 0.001360541, 0.0018002046, 0.0013606391, 0.0017998959]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0374539, 1.0, 0.0, 0.0017105525, 0.0016944048, 0.0017099064, 0.0016942676]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318531, 1.0, 0.0, 0.0016761692, 0.0012195853, 0.0016761343, 0.0012194732]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.034414, 1.0, 0.0, 0.0016630896, 0.001465556, 0.0016622434, 0.0014653462]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0340511, 1.0, 0.0, 0.0017669974, 0.0013285559, 0.0017673124, 0.0013283059]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0317298, 1.0, 0.0, 0.0013836864, 0.0015007814, 0.0013843745, 0.0015007278]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0435661, 1.0, 0.0, 0.001634778, 0.0023258622, 0.0016347748, 0.0023250857]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.042214, 1.0, 0.0, 0.0016776777, 0.0021600248, 0.0016771611, 0.0021598677]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417039, 1.0, 0.0, 0.0018698524, 0.0019215628, 0.0018691416, 0.0019206428]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0474712, 1.0, 0.0, 0.0018936143, 0.0024220678, 0.001892179, 0.00242208]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0312817, 1.0, 0.0, 0.0014175243, 0.001426345, 0.0014178848, 0.0014251182]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319883, 1.0, 0.0, 0.0010175579, 0.0018905151, 0.00101711, 0.0018903806]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0484838, 1.0, 0.0, 0.0030504018, 0.0013571897, 0.0030509795, 0.0013571312]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0425621, 1.0, 0.0, 0.0014082321, 0.0024611456, 0.0014075115, 0.0024607892]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.03926, 1.0, 0.0, 0.002037727, 0.0015313738, 0.0020379683, 0.0015310573]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0683494, 1.0, 0.0, 0.0034024464, 0.0028112833, 0.003400669, 0.0028112882]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272623, 1.0, 0.0, 0.0011798672, 0.0012985431, 0.0011797426, 0.001298513]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0340416, 1.0, 0.0, 0.0010940381, 0.0020007088, 0.0010935449, 0.0020006201]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328313, 1.0, 0.0, 0.0015003355, 0.0014844985, 0.0014984198, 0.0014844683]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.038636, 1.0, 0.0, 0.001811973, 0.0017006611, 0.0018114763, 0.0016981725]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0528849, 1.0, 0.0, 0.001903228, 0.002904528, 0.00190219, 0.0029051974]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0322953, 1.0, 0.0, 0.0018006512, 0.0011353905, 0.0017996645, 0.001135197]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288444, 1.0, 0.0, 0.0012300375, 0.0013922228, 0.0012296364, 0.0013920907]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.027758, 1.0, 0.0, 0.0008652839, 0.0016581805, 0.00086519116, 0.0016582285]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0372492, 1.0, 0.0, 0.0017613695, 0.0016249233, 0.0017615211, 0.0016248429]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0509759, 1.0, 0.0, 0.0022135763, 0.0024206846, 0.0022129256, 0.00242037]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0294646, 1.0, 0.0, 0.001198534, 0.0014801512, 0.0011976811, 0.0014800845]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0350418, 1.0, 0.0, 0.0016745438, 0.0015110956, 0.0016747345, 0.0015106619]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0368776, 1.0, 0.0, 0.0009781838, 0.0023743433, 0.0009782021, 0.0023742258]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0352231, 1.0, 0.0, 0.0013677287, 0.0018345721, 0.0013661124, 0.0018340768]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0335068, 1.0, 0.0, 0.0013789295, 0.0016672924, 0.0013775916, 0.0016669282]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0341179, 1.0, 0.0, 0.0015540568, 0.0015476989, 0.0015526518, 0.0015476686]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0252823, 1.0, 0.0, 0.00083422265, 0.0014641717, 0.0008342577, 0.0014640513]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.03005, 1.0, 0.0, 0.0015275832, 0.0012042255, 0.001527867, 0.0012040716]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0371375, 1.0, 0.0, 0.0017270342, 0.0016492356, 0.0017263114, 0.0016485965]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0416023, 1.0, 0.0, 0.0022923674, 0.0014896742, 0.002292798, 0.0014890996]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0373869, 1.0, 0.0, 0.0014350277, 0.0019639141, 0.0014336278, 0.001963883]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0417595, 1.0, 0.0, 0.0010383471, 0.0027580038, 0.0010378265, 0.0027581241]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0250608, 1.0, 0.0, 0.0012928926, 0.000985452, 0.0012918604, 0.000985343]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0523542, 1.0, 0.0, 0.00231014, 0.0024495197, 0.0023091151, 0.0024484596]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0323541, 1.0, 0.0, 0.0015425652, 0.001398714, 0.0015425542, 0.001398742]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.034355, 1.0, 0.0, 0.0012955798, 0.0018276466, 0.0012953061, 0.001827504]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0419888, 1.0, 0.0, 0.001535327, 0.0022819238, 0.0015341378, 0.0022821983]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283725, 1.0, 0.0, 0.0010389958, 0.0015404199, 0.0010385235, 0.0015397782]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0316861, 1.0, 0.0, 0.0018602409, 0.0010203253, 0.0018602669, 0.0010201945]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0367851, 1.0, 0.0, 0.0018779915, 0.0014661481, 0.0018774958, 0.001466218]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339707, 1.0, 0.0, 0.0016359965, 0.0014522359, 0.0016364236, 0.0014520857]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0423354, 1.0, 0.0, 0.0016153587, 0.0022332608, 0.0016159413, 0.002233216]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410258, 1.0, 0.0, 0.0011792379, 0.002550433, 0.0011790241, 0.0025500641]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0328817, 1.0, 0.0, 0.0018029255, 0.0011863941, 0.0018024001, 0.0011861181]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.039009, 1.0, 0.0, 0.0014390845, 0.002107235, 0.001438627, 0.0021071625]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.037209, 1.0, 0.0, 0.0020228415, 0.0013598904, 0.0020221034, 0.0013595307]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0395385, 1.0, 0.0, 0.0012245374, 0.0023698895, 0.0012243905, 0.0023697456]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350375, 1.0, 0.0, 0.0017387934, 0.0014464897, 0.0017384512, 0.0014462601]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0310601, 1.0, 0.0, 0.0012274496, 0.0015962038, 0.0012277239, 0.0015959099]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0411966, 1.0, 0.0, 0.0020040213, 0.0017411639, 0.0020043047, 0.001740428]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0275632, 1.0, 0.0, 0.0010835263, 0.0014222576, 0.0010832337, 0.0014220958]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0278192, 1.0, 0.0, 0.0014005401, 0.0011286817, 0.0013987165, 0.0011281833]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0267563, 1.0, 0.0, 0.0011529232, 0.0012795336, 0.001152373, 0.0012793423]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0275848, 1.0, 0.0, 0.0015231551, 0.0009845505, 0.0015232235, 0.0009844124]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0342716, 1.0, 0.0, 0.0018167517, 0.0012987795, 0.0018175539, 0.0012986907]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394759, 1.0, 0.0, 0.0024325345, 0.0011562018, 0.0024325252, 0.0011560996]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551493, 1.0, 0.0, 0.0018021881, 0.0032113134, 0.0018029931, 0.0032113255]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0627463, 1.0, 0.0, 0.0035425974, 0.0021614376, 0.0035444736, 0.0021614174]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396508, 1.0, 0.0, 0.0017361005, 0.0018685054, 0.0017363448, 0.0018682521]
Epoch: 14
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0321941, 1.0, 0.0, 0.0011154518, 0.0018113153, 0.0011157116, 0.0018107973]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0504589, 1.0, 0.0, 0.0018478418, 0.0027392842, 0.0018480584, 0.0027395035]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0315194, 1.0, 0.0, 0.0016787895, 0.0011867145, 0.0016777454, 0.0011866204]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0516967, 1.0, 0.0, 0.0029052906, 0.0017943373, 0.0029063318, 0.0017940906]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0256425, 1.0, 0.0, 0.0011511268, 0.0011799891, 0.0011513287, 0.0011798785]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0415194, 1.0, 0.0, 0.0009868672, 0.0027876408, 0.000986706, 0.0027877032]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0620079, 1.0, 0.0, 0.00120189, 0.0044351975, 0.001201868, 0.0044351975]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0338774, 1.0, 0.0, 0.0010846349, 0.0019951942, 0.0010839341, 0.001995084]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0356749, 1.0, 0.0, 0.0019175031, 0.0013258271, 0.001916075, 0.0013255522]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0324038, 1.0, 0.0, 0.001185385, 0.0017604819, 0.0011852297, 0.0017600536]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0459859, 1.0, 0.0, 0.0016388424, 0.002541892, 0.0016368452, 0.002541833]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0408955, 1.0, 0.0, 0.0019727377, 0.0017450843, 0.0019723377, 0.0017450248]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0399653, 1.0, 0.0, 0.0012319426, 0.0024012965, 0.0012319157, 0.002401032]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0304161, 1.0, 0.0, 0.0019447922, 0.00082030054, 0.0019450164, 0.00082012836]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0282258, 1.0, 0.0, 0.001352097, 0.0012139226, 0.0013517786, 0.0012137671]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0256166, 1.0, 0.0, 0.0013497601, 0.0009790945, 0.0013490701, 0.0009790097]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0288881, 1.0, 0.0, 0.0013792767, 0.0012468677, 0.0013797639, 0.0012469853]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390751, 1.0, 0.0, 0.0012674171, 0.0022848956, 0.0012671346, 0.0022848714]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0355015, 1.0, 0.0, 0.0014071601, 0.0018203151, 0.0014069357, 0.0018198633]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0540836, 1.0, 0.0, 0.0016372106, 0.0032795062, 0.0016371417, 0.003279321]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0409471, 1.0, 0.0, 0.0016014157, 0.002121044, 0.0016014843, 0.002121061]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343494, 1.0, 0.0, 0.0015640662, 0.0015587357, 0.0015629958, 0.001558485]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030642, 1.0, 0.0, 0.0014325852, 0.0013531687, 0.001431487, 0.0013530541]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0307329, 1.0, 0.0, 0.0009537543, 0.0018401348, 0.00095406384, 0.0018398681]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0408357, 1.0, 0.0, 0.0019558128, 0.0017566211, 0.0019548568, 0.0017565533]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410458, 1.0, 0.0, 0.0014219478, 0.0023095028, 0.0014218306, 0.0023094954]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0326861, 1.0, 0.0, 0.0020288483, 0.0009426602, 0.0020286436, 0.00094244786]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0359038, 1.0, 0.0, 0.0016372708, 0.0016267411, 0.0016370424, 0.0016266274]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0311649, 1.0, 0.0, 0.0017563603, 0.001076796, 0.0017566661, 0.0010766583]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0567633, 1.0, 0.0, 0.002721131, 0.0024392088, 0.0027205655, 0.0024392358]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0336275, 1.0, 0.0, 0.0014542799, 0.0016028124, 0.0014537502, 0.0016028206]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0317172, 1.0, 0.0, 0.0013279675, 0.0015554249, 0.0013281686, 0.0015552402]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0359098, 1.0, 0.0, 0.0010293822, 0.0022351749, 0.0010291503, 0.0022349982]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0273068, 1.0, 0.0, 0.0012010864, 0.0012814513, 0.0012005207, 0.0012808591]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305074, 1.0, 0.0, 0.0013469012, 0.001426535, 0.0013468931, 0.0014262106]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374471, 1.0, 0.0, 0.0016187595, 0.0017855717, 0.0016186455, 0.0017851567]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0259395, 1.0, 0.0, 0.0011814398, 0.0011767963, 0.0011803987, 0.0011767504]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0285219, 1.0, 0.0, 0.0016041294, 0.0009888241, 0.0016039929, 0.0009884068]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0241101, 1.0, 0.0, 0.0015425193, 0.00064929534, 0.001542582, 0.00064928073]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.029822, 1.0, 0.0, 0.0021507852, 0.0005602867, 0.0021510562, 0.0005602853]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.056893, 1.0, 0.0, 0.0017429416, 0.0034292608, 0.0017414857, 0.003429354]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0598004, 1.0, 0.0, 0.0029444047, 0.0024920157, 0.002944346, 0.0024918811]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0516697, 1.0, 0.0, 0.0015421066, 0.003155143, 0.0015418672, 0.003155341]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0415622, 1.0, 0.0, 0.0009905125, 0.0027878173, 0.0009909933, 0.0027878957]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0253597, 1.0, 0.0, 0.001106085, 0.0011994451, 0.0011059566, 0.0011985671]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0311402, 1.0, 0.0, 0.0012554808, 0.0015754405, 0.001255639, 0.0015753246]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0413263, 1.0, 0.0, 0.0023073843, 0.0014495817, 0.002307124, 0.0014495079]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.031644, 1.0, 0.0, 0.00096378266, 0.0019129888, 0.00096334453, 0.0019129718]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0415134, 1.0, 0.0, 0.001701926, 0.0020721233, 0.0017013925, 0.002071606]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0262552, 1.0, 0.0, 0.0008225811, 0.0015643036, 0.0008222528, 0.0015641942]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.023455, 1.0, 0.0, 0.0006739165, 0.0014583962, 0.00067399465, 0.0014579298]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382532, 1.0, 0.0, 0.0017177596, 0.001759844, 0.0017175166, 0.0017596796]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0427517, 1.0, 0.0, 0.0013815191, 0.00250501, 0.0013816252, 0.0025048587]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0404121, 1.0, 0.0, 0.0018222916, 0.001851543, 0.0018227354, 0.0018509605]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.033382, 1.0, 0.0, 0.001911517, 0.0011231531, 0.0019125007, 0.0011228571]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399693, 1.0, 0.0, 0.0016364419, 0.0019971752, 0.0016361093, 0.0019970366]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0347961, 1.0, 0.0, 0.0013620902, 0.0018012152, 0.001362227, 0.001800904]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0375121, 1.0, 0.0, 0.001713551, 0.0016967079, 0.0017129527, 0.001696558]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318407, 1.0, 0.0, 0.0016752654, 0.0012193505, 0.0016752728, 0.0012192391]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0344243, 1.0, 0.0, 0.0016647691, 0.0014647933, 0.0016640013, 0.0014645668]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0341355, 1.0, 0.0, 0.0017776062, 0.0013256238, 0.0017778757, 0.0013253171]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0318376, 1.0, 0.0, 0.0013912464, 0.0015030191, 0.0013920036, 0.0015029573]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0436383, 1.0, 0.0, 0.0016393438, 0.002327852, 0.0016393138, 0.0023270324]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0421277, 1.0, 0.0, 0.0016683224, 0.0021615275, 0.0016678004, 0.0021613466]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417315, 1.0, 0.0, 0.0018776925, 0.0019162366, 0.0018769004, 0.0019152733]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0474566, 1.0, 0.0, 0.0018841674, 0.002430209, 0.0018827186, 0.0024301922]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0313245, 1.0, 0.0, 0.0014227796, 0.0014250011, 0.0014230434, 0.001423714]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319793, 1.0, 0.0, 0.0010161339, 0.001891138, 0.0010157152, 0.0018909895]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0484813, 1.0, 0.0, 0.0030495455, 0.001357803, 0.0030501229, 0.0013577428]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0426188, 1.0, 0.0, 0.0014138416, 0.002460695, 0.0014130056, 0.0024603214]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0392888, 1.0, 0.0, 0.0020408207, 0.0015308938, 0.0020410535, 0.0015305553]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0683606, 1.0, 0.0, 0.003402547, 0.0028122084, 0.0034009144, 0.002812206]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272409, 1.0, 0.0, 0.0011764176, 0.001300052, 0.0011762695, 0.0013000038]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0340078, 1.0, 0.0, 0.001093207, 0.0019984627, 0.0010926748, 0.0019983698]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328449, 1.0, 0.0, 0.0014993288, 0.0014867561, 0.0014973076, 0.0014867403]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0385256, 1.0, 0.0, 0.0018065916, 0.0016960076, 0.00180608, 0.0016935667]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0524541, 1.0, 0.0, 0.00189416, 0.002874431, 0.0018931864, 0.002875025]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323309, 1.0, 0.0, 0.0018078589, 0.0011314137, 0.0018068292, 0.0011312519]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288769, 1.0, 0.0, 0.0012411175, 0.0013840911, 0.0012407954, 0.0013839696]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0277851, 1.0, 0.0, 0.0008638017, 0.0016621188, 0.0008637256, 0.0016621815]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0371921, 1.0, 0.0, 0.0017558008, 0.0016252941, 0.0017558602, 0.0016252666]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.051241, 1.0, 0.0, 0.002240918, 0.0024174477, 0.00224025, 0.002417129]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0293753, 1.0, 0.0, 0.0011989676, 0.001471604, 0.0011980942, 0.0014715332]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0350755, 1.0, 0.0, 0.0016783655, 0.0015103382, 0.0016786125, 0.0015098837]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0367017, 1.0, 0.0, 0.00098079, 0.0023557367, 0.0009807636, 0.0023556137]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0354683, 1.0, 0.0, 0.0013680798, 0.0018564917, 0.001366501, 0.001856047]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0335257, 1.0, 0.0, 0.0013782718, 0.0016696773, 0.0013768851, 0.0016692962]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0341101, 1.0, 0.0, 0.0015559128, 0.0015451435, 0.0015544707, 0.0015451077]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.025357, 1.0, 0.0, 0.00083267083, 0.001472532, 0.0008326998, 0.0014724063]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0301471, 1.0, 0.0, 0.0015291966, 0.001211446, 0.0015294394, 0.0012112751]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0373045, 1.0, 0.0, 0.0017380947, 0.0016533462, 0.0017373157, 0.0016527105]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0416715, 1.0, 0.0, 0.00230046, 0.001487874, 0.0023008916, 0.0014872679]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0374838, 1.0, 0.0, 0.0014436181, 0.0019641393, 0.0014421954, 0.0019641006]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0417907, 1.0, 0.0, 0.001039807, 0.0027593877, 0.0010392576, 0.0027595172]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0251021, 1.0, 0.0, 0.0012935551, 0.0009885646, 0.0012925256, 0.00098845]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0524006, 1.0, 0.0, 0.00231059, 0.0024533162, 0.0023094718, 0.0024521616]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0324022, 1.0, 0.0, 0.0015441374, 0.0014015073, 0.0015441357, 0.0014015323]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343385, 1.0, 0.0, 0.0012935752, 0.001828151, 0.0012933013, 0.0018279986]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0421493, 1.0, 0.0, 0.0015452025, 0.0022866372, 0.0015440286, 0.0022869091]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283502, 1.0, 0.0, 0.0010388321, 0.0015385638, 0.0010383509, 0.0015378792]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0317321, 1.0, 0.0, 0.0018609263, 0.0010238303, 0.001860911, 0.0010236972]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0367506, 1.0, 0.0, 0.0018796672, 0.0014613332, 0.00187908, 0.0014613818]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340155, 1.0, 0.0, 0.0016355976, 0.0014566984, 0.0016359864, 0.0014565377]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0423952, 1.0, 0.0, 0.001616639, 0.0022374294, 0.0016171363, 0.0022373733]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410026, 1.0, 0.0, 0.0011775792, 0.0025499985, 0.0011773615, 0.0025496096]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0328197, 1.0, 0.0, 0.0017993189, 0.0011843849, 0.0017986735, 0.0011840854]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0391572, 1.0, 0.0, 0.0014456464, 0.00211414, 0.0014451514, 0.0021140552]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0371921, 1.0, 0.0, 0.0020237118, 0.0013575063, 0.002022922, 0.0013571166]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0396427, 1.0, 0.0, 0.0012245784, 0.002379337, 0.0012244305, 0.0023791865]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350951, 1.0, 0.0, 0.0017441437, 0.0014463828, 0.0017438518, 0.0014461161]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.030945, 1.0, 0.0, 0.001215697, 0.001597487, 0.0012159126, 0.0015971949]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0410798, 1.0, 0.0, 0.001996106, 0.0017384791, 0.0019963318, 0.00173764]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.027598, 1.0, 0.0, 0.0010877275, 0.0014212416, 0.0010873436, 0.0014210386]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0277313, 1.0, 0.0, 0.0013923242, 0.0011289215, 0.00139047, 0.0011283662]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0266224, 1.0, 0.0, 0.0011457098, 0.0012745885, 0.0011451793, 0.0012743887]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0275905, 1.0, 0.0, 0.0015245726, 0.0009836694, 0.0015246366, 0.000983515]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.034297, 1.0, 0.0, 0.001818096, 0.0012997504, 0.0018188849, 0.0012996495]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394534, 1.0, 0.0, 0.0024308646, 0.0011558004, 0.0024308693, 0.0011556867]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551454, 1.0, 0.0, 0.0017987301, 0.0032144214, 0.0017994577, 0.0032144429]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0628722, 1.0, 0.0, 0.0035545512, 0.0021609385, 0.0035563488, 0.0021609287]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396048, 1.0, 0.0, 0.0017352393, 0.0018652051, 0.0017354846, 0.0018649391]
Epoch: 15
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0321105, 1.0, 0.0, 0.0011119596, 0.0018072056, 0.0011122173, 0.0018066311]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0505114, 1.0, 0.0, 0.0018476234, 0.0027442677, 0.0018480232, 0.0027444917]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0315822, 1.0, 0.0, 0.0016828037, 0.001188418, 0.00168172, 0.0011883292]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0515862, 1.0, 0.0, 0.0028948144, 0.0017947687, 0.0028958223, 0.0017945023]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0256658, 1.0, 0.0, 0.0011592447, 0.0011739924, 0.0011595606, 0.0011738762]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0416638, 1.0, 0.0, 0.0009916401, 0.0027959803, 0.000991463, 0.0027960557]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0621234, 1.0, 0.0, 0.0012045322, 0.004443058, 0.0012044631, 0.0044430625]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0338895, 1.0, 0.0, 0.0010812117, 0.0019997284, 0.00108049, 0.0019996082]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0357839, 1.0, 0.0, 0.0019244745, 0.0013287368, 0.0019231825, 0.0013284483]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0323385, 1.0, 0.0, 0.0011836065, 0.0017563093, 0.0011834905, 0.0017558606]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0460453, 1.0, 0.0, 0.0016391017, 0.0025470098, 0.0016371738, 0.0025469463]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0408942, 1.0, 0.0, 0.0019753268, 0.0017423588, 0.0019749394, 0.001742311]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0399625, 1.0, 0.0, 0.001228485, 0.0024044984, 0.0012284718, 0.002404264]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0303572, 1.0, 0.0, 0.0019435752, 0.000816163, 0.0019438129, 0.0008160005]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0283579, 1.0, 0.0, 0.0013620465, 0.001215983, 0.0013617272, 0.0012158179]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0256333, 1.0, 0.0, 0.0013496222, 0.0009807389, 0.0013490744, 0.0009806589]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0288258, 1.0, 0.0, 0.0013768724, 0.0012436064, 0.0013773247, 0.0012437365]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390619, 1.0, 0.0, 0.0012702872, 0.002280817, 0.0012700089, 0.0022808085]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0354236, 1.0, 0.0, 0.0014080596, 0.0018123421, 0.0014078021, 0.0018119016]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0543147, 1.0, 0.0, 0.0016352437, 0.003302477, 0.0016352166, 0.0033023143]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0409731, 1.0, 0.0, 0.001599923, 0.0021249007, 0.0015999675, 0.0021249047]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343469, 1.0, 0.0, 0.0015648251, 0.0015577488, 0.001563797, 0.0015574906]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0306653, 1.0, 0.0, 0.0014352524, 0.0013526096, 0.0014341439, 0.0013525188]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0308838, 1.0, 0.0, 0.000961989, 0.0018456338, 0.00096227066, 0.0018453858]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0406921, 1.0, 0.0, 0.0019499601, 0.0017494026, 0.0019490713, 0.0017493328]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410033, 1.0, 0.0, 0.0014230121, 0.002304579, 0.0014228644, 0.002304574]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0327151, 1.0, 0.0, 0.0020334176, 0.00094072754, 0.0020331857, 0.00094049517]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0359598, 1.0, 0.0, 0.0016364097, 0.0016327044, 0.0016361398, 0.0016325797]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0311878, 1.0, 0.0, 0.001758028, 0.0010772126, 0.0017583314, 0.0010770678]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.056915, 1.0, 0.0, 0.0027277672, 0.002446378, 0.002727136, 0.0024464044]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0336794, 1.0, 0.0, 0.0014580116, 0.0016037868, 0.0014575282, 0.0016037992]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0318006, 1.0, 0.0, 0.0013281924, 0.001562776, 0.0013283516, 0.0015625751]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358474, 1.0, 0.0, 0.0010319899, 0.0022268961, 0.001031783, 0.0022267024]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0272716, 1.0, 0.0, 0.0011995842, 0.0012797768, 0.0011990566, 0.0012791713]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305403, 1.0, 0.0, 0.0013484546, 0.0014279671, 0.0013484256, 0.001427662]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374359, 1.0, 0.0, 0.0016211044, 0.0017821968, 0.0016210052, 0.0017818243]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0259702, 1.0, 0.0, 0.0011820183, 0.0011790087, 0.0011809599, 0.0011789625]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0285364, 1.0, 0.0, 0.0016050846, 0.0009891693, 0.0016049854, 0.000988793]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0241029, 1.0, 0.0, 0.0015465587, 0.00064460956, 0.0015465966, 0.00064458005]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0298817, 1.0, 0.0, 0.002146333, 0.0005701719, 0.0021465844, 0.0005701955]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569273, 1.0, 0.0, 0.0017435276, 0.0034318056, 0.0017419518, 0.0034319146]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0598687, 1.0, 0.0, 0.0029518758, 0.0024907575, 0.002951786, 0.0024906227]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0513604, 1.0, 0.0, 0.001533364, 0.0031357775, 0.0015330762, 0.0031359517]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0412374, 1.0, 0.0, 0.0009902938, 0.002758503, 0.000990776, 0.0027585772]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0252799, 1.0, 0.0, 0.0011129617, 0.0011852948, 0.0011128187, 0.0011844565]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0315347, 1.0, 0.0, 0.0012488745, 0.0016179248, 0.0012489939, 0.0016177977]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0415133, 1.0, 0.0, 0.0023240477, 0.0014499181, 0.0023238994, 0.0014498687]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0318522, 1.0, 0.0, 0.00097622303, 0.0019194664, 0.00097572664, 0.0019194728]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0415076, 1.0, 0.0, 0.0016873401, 0.00208619, 0.0016867118, 0.002085711]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0262692, 1.0, 0.0, 0.00082295726, 0.0015651839, 0.0008226108, 0.001565093]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0234455, 1.0, 0.0, 0.0006791913, 0.001452245, 0.00067923113, 0.0014518799]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0383859, 1.0, 0.0, 0.001721714, 0.0017679404, 0.0017214646, 0.0017677798]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0426496, 1.0, 0.0, 0.0013792919, 0.0024979617, 0.0013793893, 0.002497783]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0407475, 1.0, 0.0, 0.0018409856, 0.0018633399, 0.0018415143, 0.0018627888]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0332874, 1.0, 0.0, 0.0019067836, 0.0011192627, 0.0019078103, 0.0011190306]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399991, 1.0, 0.0, 0.0016421893, 0.0019941353, 0.001641866, 0.0019940138]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0348173, 1.0, 0.0, 0.001359974, 0.0018052536, 0.0013600485, 0.0018049891]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0375323, 1.0, 0.0, 0.0017178457, 0.0016942575, 0.0017171785, 0.0016941405]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0316842, 1.0, 0.0, 0.0016602259, 0.001220157, 0.0016602196, 0.001220051]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.034479, 1.0, 0.0, 0.0016705729, 0.001463957, 0.001669891, 0.0014637612]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0343252, 1.0, 0.0, 0.0017918362, 0.0013286436, 0.0017920726, 0.0013284059]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0318933, 1.0, 0.0, 0.0013959003, 0.00150341, 0.0013967501, 0.0015033606]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0436451, 1.0, 0.0, 0.0016385037, 0.0023293132, 0.0016383128, 0.0023285756]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0422807, 1.0, 0.0, 0.0016788611, 0.0021648959, 0.0016782912, 0.002164752]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417755, 1.0, 0.0, 0.0018869485, 0.0019109778, 0.0018860631, 0.0019101566]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0474229, 1.0, 0.0, 0.0018736387, 0.0024376728, 0.0018720897, 0.0024376593]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0314587, 1.0, 0.0, 0.0014376929, 0.0014222573, 0.0014380892, 0.0014210811]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319887, 1.0, 0.0, 0.0010145032, 0.001893616, 0.0010140431, 0.0018934997]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0485437, 1.0, 0.0, 0.0030529257, 0.0013600981, 0.0030534824, 0.0013600462]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0426966, 1.0, 0.0, 0.0014235962, 0.0024580234, 0.0014227, 0.0024576923]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0393574, 1.0, 0.0, 0.0020440875, 0.0015338702, 0.0020442922, 0.0015335832]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0684727, 1.0, 0.0, 0.0034104679, 0.00281451, 0.0034084732, 0.0028145025]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273523, 1.0, 0.0, 0.0011867617, 0.0012998234, 0.0011866366, 0.0012997993]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.03398, 1.0, 0.0, 0.0010936371, 0.0019955065, 0.0010931098, 0.0019954257]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328245, 1.0, 0.0, 0.0014983467, 0.0014858937, 0.00149634, 0.0014858829]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0385778, 1.0, 0.0, 0.0018105576, 0.0016967907, 0.0018099999, 0.0016943542]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0525404, 1.0, 0.0, 0.001897804, 0.002878646, 0.001896662, 0.0028793598]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0322778, 1.0, 0.0, 0.0018068786, 0.0011275825, 0.0018059224, 0.0011273943]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288397, 1.0, 0.0, 0.0012460476, 0.0013757927, 0.0012455675, 0.0013756542]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0279009, 1.0, 0.0, 0.0008706496, 0.001665802, 0.00087055133, 0.001665869]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0370742, 1.0, 0.0, 0.0017429565, 0.0016274157, 0.0017430678, 0.0016273828]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0516614, 1.0, 0.0, 0.0022773948, 0.0024191702, 0.0022767805, 0.0024188352]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0293264, 1.0, 0.0, 0.001197653, 0.0014684789, 0.0011966927, 0.0014684121]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0351497, 1.0, 0.0, 0.0016867649, 0.0015086944, 0.0016868737, 0.0015082434]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0366232, 1.0, 0.0, 0.0009887025, 0.0023406988, 0.0009887299, 0.0023405587]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0357728, 1.0, 0.0, 0.0013677466, 0.0018845471, 0.0013657061, 0.0018841646]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0334896, 1.0, 0.0, 0.0013785028, 0.0016661852, 0.0013768142, 0.0016658584]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340744, 1.0, 0.0, 0.0015573886, 0.0015404292, 0.0015557858, 0.0015403938]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0255069, 1.0, 0.0, 0.00084030733, 0.0014785017, 0.0008403225, 0.0014784001]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0301735, 1.0, 0.0, 0.0015302895, 0.001212735, 0.0015306394, 0.0012125679]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0373696, 1.0, 0.0, 0.0017423745, 0.0016549989, 0.001741587, 0.0016543751]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0416274, 1.0, 0.0, 0.0023011933, 0.0014831161, 0.0023018122, 0.0014825059]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0374575, 1.0, 0.0, 0.0014395776, 0.001965826, 0.001437668, 0.0019658096]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0418748, 1.0, 0.0, 0.0010430674, 0.0027637747, 0.0010424443, 0.0027639172]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.024959, 1.0, 0.0, 0.0012779087, 0.0009911996, 0.0012767834, 0.0009910983]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.052469, 1.0, 0.0, 0.0023146789, 0.0024554203, 0.00231366, 0.002454395]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0323102, 1.0, 0.0, 0.0015347127, 0.0014025832, 0.0015346957, 0.0014026101]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0342975, 1.0, 0.0, 0.0012884373, 0.0018295627, 0.001288097, 0.001829423]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0422207, 1.0, 0.0, 0.0015512294, 0.0022871078, 0.0015498581, 0.0022873806]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283511, 1.0, 0.0, 0.0010424796, 0.0015349945, 0.0010419233, 0.0015343353]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0319082, 1.0, 0.0, 0.0018755768, 0.0010251722, 0.0018755388, 0.0010250432]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0363747, 1.0, 0.0, 0.0018472408, 0.0014595571, 0.0018470869, 0.0014596251]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339193, 1.0, 0.0, 0.00162538, 0.0014581545, 0.0016258515, 0.0014579997]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.042565, 1.0, 0.0, 0.001629618, 0.0022398809, 0.0016302136, 0.0022398275]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410097, 1.0, 0.0, 0.0011748625, 0.0025533282, 0.0011747106, 0.0025529554]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0326881, 1.0, 0.0, 0.0017928708, 0.0011788585, 0.0017921899, 0.0011785734]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0394245, 1.0, 0.0, 0.0014558991, 0.0021282332, 0.0014550674, 0.0021281524]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.037189, 1.0, 0.0, 0.0020221127, 0.001358832, 0.002021219, 0.0013584362]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0396377, 1.0, 0.0, 0.0012249382, 0.0023785294, 0.0012247596, 0.0023783832]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.035007, 1.0, 0.0, 0.001740407, 0.0014420887, 0.0017401674, 0.0014418494]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0307498, 1.0, 0.0, 0.0012106701, 0.0015847669, 0.0012109153, 0.0015844969]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.041106, 1.0, 0.0, 0.001991646, 0.0017453157, 0.001991812, 0.0017445676]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0276883, 1.0, 0.0, 0.0010928249, 0.0014243405, 0.0010924025, 0.0014241742]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.027635, 1.0, 0.0, 0.0013845407, 0.0011279299, 0.0013827733, 0.0011274003]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0265123, 1.0, 0.0, 0.001136425, 0.0012738425, 0.0011359528, 0.001273659]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276031, 1.0, 0.0, 0.0015296523, 0.000979736, 0.0015296962, 0.000979602]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.03442, 1.0, 0.0, 0.0018257865, 0.0013032465, 0.0018265033, 0.0013031552]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0395067, 1.0, 0.0, 0.002437087, 0.0011544509, 0.0024370428, 0.0011543476]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551809, 1.0, 0.0, 0.0018018524, 0.0032145216, 0.0018025436, 0.003214539]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0628972, 1.0, 0.0, 0.0035551856, 0.0021626, 0.00355674, 0.002162586]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396178, 1.0, 0.0, 0.0017359763, 0.0018656491, 0.0017361789, 0.0018653949]
Epoch: 16
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0321045, 1.0, 0.0, 0.0011080045, 0.0018106141, 0.0011082822, 0.0018100918]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0505351, 1.0, 0.0, 0.0018522465, 0.002741808, 0.0018523575, 0.00274204]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0316536, 1.0, 0.0, 0.001688923, 0.0011887896, 0.0016878038, 0.0011887224]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0513704, 1.0, 0.0, 0.0028775209, 0.0017924644, 0.002878311, 0.0017922278]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0258101, 1.0, 0.0, 0.0011709151, 0.0011754531, 0.0011712204, 0.0011753237]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0417725, 1.0, 0.0, 0.0009992861, 0.0027982164, 0.0009991808, 0.0027983]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.062231, 1.0, 0.0, 0.0012081937, 0.00444918, 0.0012081118, 0.0044491845]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0339745, 1.0, 0.0, 0.0010812026, 0.002007464, 0.0010805532, 0.002007353]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0357419, 1.0, 0.0, 0.0019327112, 0.0013166913, 0.0019314142, 0.0013164021]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.032321, 1.0, 0.0, 0.0011823425, 0.0017559837, 0.0011820386, 0.0017555576]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0459328, 1.0, 0.0, 0.0016385303, 0.0025373714, 0.0016365381, 0.0025372957]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0411211, 1.0, 0.0, 0.0019789166, 0.0017594111, 0.0019783678, 0.0017593619]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0399508, 1.0, 0.0, 0.0012262927, 0.0024056202, 0.0012262687, 0.002405399]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.030262, 1.0, 0.0, 0.0019408579, 0.00081023434, 0.0019410679, 0.0008100786]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0285676, 1.0, 0.0, 0.0013791751, 0.0012179196, 0.0013788751, 0.0012177571]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0256301, 1.0, 0.0, 0.0013518147, 0.0009782664, 0.001351106, 0.0009781912]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0286977, 1.0, 0.0, 0.001365795, 0.0012430478, 0.0013662336, 0.0012431692]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0391254, 1.0, 0.0, 0.0012751699, 0.0022817252, 0.0012748505, 0.0022817166]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0354698, 1.0, 0.0, 0.001409523, 0.0018150837, 0.0014090459, 0.0018146891]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0542681, 1.0, 0.0, 0.0016339675, 0.0032995134, 0.0016339547, 0.0032993082]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0409756, 1.0, 0.0, 0.0015991939, 0.002125857, 0.001599147, 0.0021258933]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0342709, 1.0, 0.0, 0.0015630621, 0.0015525882, 0.0015620261, 0.0015523492]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0307039, 1.0, 0.0, 0.0014386242, 0.0013527365, 0.0014374899, 0.0013526627]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0309328, 1.0, 0.0, 0.00097085454, 0.0018412056, 0.0009711764, 0.0018409655]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0405333, 1.0, 0.0, 0.0019407793, 0.0017441503, 0.0019400439, 0.0017440912]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410907, 1.0, 0.0, 0.0014236874, 0.0023118476, 0.001423501, 0.002311844]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.032775, 1.0, 0.0, 0.0020320476, 0.00094755006, 0.0020318076, 0.00094733795]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0360931, 1.0, 0.0, 0.0016422378, 0.0016390022, 0.001641928, 0.0016389079]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0312802, 1.0, 0.0, 0.0017627499, 0.001080883, 0.0017630529, 0.0010807619]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0571489, 1.0, 0.0, 0.002741011, 0.0024544247, 0.0027401908, 0.002454444]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0338159, 1.0, 0.0, 0.0014663108, 0.0016079019, 0.0014658493, 0.0016079145]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0318881, 1.0, 0.0, 0.0013293158, 0.0015696, 0.0013295426, 0.0015694153]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.035794, 1.0, 0.0, 0.0010351858, 0.0022188504, 0.0010349003, 0.0022186702]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.027247, 1.0, 0.0, 0.001195957, 0.0012811462, 0.0011953178, 0.0012806172]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305998, 1.0, 0.0, 0.0013530164, 0.0014288286, 0.0013529605, 0.0014285236]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.037438, 1.0, 0.0, 0.0016216254, 0.0017818724, 0.0016215462, 0.0017815114]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.026056, 1.0, 0.0, 0.0011887719, 0.0011800674, 0.001187722, 0.001180025]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0286373, 1.0, 0.0, 0.0016151635, 0.0009882733, 0.0016150137, 0.0009879037]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0240753, 1.0, 0.0, 0.0015424078, 0.0006462496, 0.001542466, 0.0006462333]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0297109, 1.0, 0.0, 0.0021406896, 0.00056028366, 0.0021409225, 0.0005602945]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0568984, 1.0, 0.0, 0.0017396961, 0.0034330236, 0.001738091, 0.003433114]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0599221, 1.0, 0.0, 0.0029541035, 0.00249338, 0.0029540136, 0.0024932579]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0515748, 1.0, 0.0, 0.001534604, 0.0031540268, 0.0015343345, 0.0031542098]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0413836, 1.0, 0.0, 0.0009785523, 0.0027835378, 0.0009790357, 0.0027836056]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0255886, 1.0, 0.0, 0.0011298773, 0.0011964547, 0.001129681, 0.0011956498]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0310818, 1.0, 0.0, 0.0012408702, 0.0015847416, 0.0012409717, 0.0015846415]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0417554, 1.0, 0.0, 0.0023420297, 0.0014539349, 0.0023418684, 0.0014538954]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0320075, 1.0, 0.0, 0.0009960074, 0.0019138097, 0.0009955121, 0.0019138106]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0412405, 1.0, 0.0, 0.0016765827, 0.0020726384, 0.0016759699, 0.002072177]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0261549, 1.0, 0.0, 0.0008198054, 0.0015579574, 0.0008194827, 0.0015578703]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0236062, 1.0, 0.0, 0.0006932921, 0.0014527467, 0.0006932983, 0.0014523971]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0384576, 1.0, 0.0, 0.0017347431, 0.0017614213, 0.0017345608, 0.0017612946]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0429014, 1.0, 0.0, 0.0013879789, 0.0025121612, 0.0013880673, 0.0025119893]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0404948, 1.0, 0.0, 0.0018405959, 0.0018407556, 0.0018410732, 0.0018402598]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0331293, 1.0, 0.0, 0.0019038878, 0.001107801, 0.0019048629, 0.0011075502]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399855, 1.0, 0.0, 0.0016475635, 0.001987532, 0.0016471953, 0.00198739]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0348045, 1.0, 0.0, 0.0013603305, 0.001803722, 0.0013604864, 0.0018034453]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0377414, 1.0, 0.0, 0.0017200413, 0.0017110619, 0.0017194257, 0.001710933]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0317658, 1.0, 0.0, 0.0016706527, 0.0012171653, 0.0016706602, 0.0012170499]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0346653, 1.0, 0.0, 0.0016784354, 0.0014730302, 0.0016778415, 0.0014728281]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0343183, 1.0, 0.0, 0.0018063751, 0.0013134746, 0.0018065905, 0.0013132174]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0319371, 1.0, 0.0, 0.0013901838, 0.001513117, 0.0013910036, 0.001513075]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0436426, 1.0, 0.0, 0.0016293549, 0.0023382404, 0.0016292164, 0.0023374374]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0425824, 1.0, 0.0, 0.0017012218, 0.0021699518, 0.0017007107, 0.0021697949]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0417755, 1.0, 0.0, 0.0018944587, 0.0019034588, 0.0018936603, 0.001902638]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0473398, 1.0, 0.0, 0.0018617315, 0.0024420447, 0.0018600646, 0.0024420512]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0318031, 1.0, 0.0, 0.0014700146, 0.0014212527, 0.0014704842, 0.0014200658]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319952, 1.0, 0.0, 0.0010211058, 0.0018875722, 0.0010209465, 0.001887447]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0486326, 1.0, 0.0, 0.0030532149, 0.0013678835, 0.0030538714, 0.0013678384]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0428225, 1.0, 0.0, 0.0014339993, 0.0024590762, 0.001433047, 0.0024587442]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0392206, 1.0, 0.0, 0.002033296, 0.0015322135, 0.002033556, 0.001531926]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0687588, 1.0, 0.0, 0.0034371242, 0.0028138394, 0.003435342, 0.0028138254]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273746, 1.0, 0.0, 0.0011904789, 0.0012981449, 0.0011903506, 0.0012981249]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0339189, 1.0, 0.0, 0.001095365, 0.001988221, 0.0010948029, 0.0019881427]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0329188, 1.0, 0.0, 0.0015014219, 0.0014913804, 0.0014994765, 0.0014913649]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.038626, 1.0, 0.0, 0.0018075919, 0.0017041278, 0.0018070567, 0.0017016346]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0525653, 1.0, 0.0, 0.0018916915, 0.00288699, 0.0018907494, 0.0028877417]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0323546, 1.0, 0.0, 0.0018187515, 0.0011226701, 0.0018179301, 0.0011224343]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288678, 1.0, 0.0, 0.0012568128, 0.0013675928, 0.0012563297, 0.0013674633]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0280018, 1.0, 0.0, 0.0008792699, 0.0016663382, 0.0008791919, 0.0016663892]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0368389, 1.0, 0.0, 0.0017239447, 0.001625046, 0.0017240461, 0.0016249928]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0523343, 1.0, 0.0, 0.0023387899, 0.0024189637, 0.002338206, 0.002418638]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0293224, 1.0, 0.0, 0.0011994242, 0.0014663283, 0.0011985357, 0.0014662608]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0353159, 1.0, 0.0, 0.0016992951, 0.0015112769, 0.0016993715, 0.0015108166]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0366561, 1.0, 0.0, 0.0009992784, 0.002333106, 0.000999274, 0.0023329402]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0361807, 1.0, 0.0, 0.0013707367, 0.0019185946, 0.0013691956, 0.0019182554]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0334332, 1.0, 0.0, 0.0013816804, 0.0016578378, 0.0013804093, 0.0016574861]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340623, 1.0, 0.0, 0.0015654196, 0.0015312661, 0.0015640927, 0.0015312276]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0255892, 1.0, 0.0, 0.00084275485, 0.0014835474, 0.00084278354, 0.0014834569]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0302137, 1.0, 0.0, 0.0015305113, 0.0012161671, 0.001530828, 0.0012160083]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0374767, 1.0, 0.0, 0.0017466822, 0.0016604206, 0.0017459397, 0.0016597712]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.041652, 1.0, 0.0, 0.00230604, 0.0014805228, 0.0023064115, 0.0014799044]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0374342, 1.0, 0.0, 0.001436522, 0.0019666988, 0.0014352314, 0.001966674]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0419765, 1.0, 0.0, 0.0010455396, 0.0027705478, 0.0010449325, 0.0027706933]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0248631, 1.0, 0.0, 0.001265079, 0.0009953023, 0.0012641484, 0.0009951988]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.052609, 1.0, 0.0, 0.0023192582, 0.002463552, 0.002318354, 0.0024624972]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0322745, 1.0, 0.0, 0.0015283035, 0.0014057414, 0.0015283674, 0.0014057632]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343153, 1.0, 0.0, 0.001287149, 0.0018324587, 0.0012869184, 0.001832319]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0422724, 1.0, 0.0, 0.0015513279, 0.002291706, 0.00155006, 0.0022919858]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0284101, 1.0, 0.0, 0.001048113, 0.00153472, 0.0010476179, 0.0015340952]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0320156, 1.0, 0.0, 0.0018834756, 0.0010270459, 0.0018835155, 0.0010269224]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0362804, 1.0, 0.0, 0.0018401353, 0.0014581049, 0.001839744, 0.0014581587]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339266, 1.0, 0.0, 0.0016232242, 0.0014609941, 0.0016235973, 0.001460839]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0426607, 1.0, 0.0, 0.0016345555, 0.0022436534, 0.0016351214, 0.002243608]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0410124, 1.0, 0.0, 0.0011741526, 0.0025542842, 0.0011740436, 0.0025539394]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0325772, 1.0, 0.0, 0.0017871892, 0.0011744371, 0.0017866851, 0.0011741814]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0396025, 1.0, 0.0, 0.0014546381, 0.0021456515, 0.0014541321, 0.002145561]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0371774, 1.0, 0.0, 0.0020262138, 0.0013536515, 0.0020254774, 0.0013532847]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0396798, 1.0, 0.0, 0.0012182005, 0.0023890734, 0.0012181061, 0.0023889085]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350256, 1.0, 0.0, 0.0017392971, 0.0014448719, 0.001739104, 0.001444658]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0306765, 1.0, 0.0, 0.0012101829, 0.0015785911, 0.001210388, 0.0015783018]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0409403, 1.0, 0.0, 0.001983792, 0.0017380959, 0.0019840524, 0.0017373405]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0277758, 1.0, 0.0, 0.001096759, 0.00142837, 0.0010963731, 0.0014281766]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0275115, 1.0, 0.0, 0.0013693538, 0.0011318763, 0.0013676821, 0.0011313681]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0264326, 1.0, 0.0, 0.0011322272, 0.0012708006, 0.0011317672, 0.0012706183]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276093, 1.0, 0.0, 0.0015306463, 0.0009793034, 0.0015306945, 0.0009791702]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0344521, 1.0, 0.0, 0.0018273649, 0.0013045941, 0.0018280538, 0.0013044996]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394742, 1.0, 0.0, 0.002435152, 0.0011534289, 0.0024351277, 0.001153327]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0551043, 1.0, 0.0, 0.0017922693, 0.0032171507, 0.0017929622, 0.0032171672]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0631325, 1.0, 0.0, 0.0035761124, 0.0021630675, 0.0035777264, 0.0021630595]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0396211, 1.0, 0.0, 0.0017374007, 0.0018645115, 0.001737558, 0.0018642741]
Epoch: 17
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0319678, 1.0, 0.0, 0.0010994493, 0.0018067341, 0.0010997134, 0.0018062199]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0505881, 1.0, 0.0, 0.0018511339, 0.0027477462, 0.0018514422, 0.0027479453]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0316738, 1.0, 0.0, 0.0016891282, 0.0011904249, 0.0016880229, 0.0011903543]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.05134, 1.0, 0.0, 0.002875187, 0.0017920241, 0.00287609, 0.0017917812]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0257584, 1.0, 0.0, 0.0011718641, 0.0011697852, 0.0011721752, 0.0011696611]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0417845, 1.0, 0.0, 0.000997947, 0.0028006602, 0.0009978215, 0.0028007422]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0622171, 1.0, 0.0, 0.0012104914, 0.004445618, 0.0012104483, 0.0044456227]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0338589, 1.0, 0.0, 0.0010799554, 0.0019982005, 0.0010793395, 0.0019980785]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.036109, 1.0, 0.0, 0.0019376971, 0.0013450796, 0.0019364604, 0.001344789]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0322671, 1.0, 0.0, 0.0011820269, 0.001751398, 0.0011818178, 0.0017509644]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0461838, 1.0, 0.0, 0.0016439595, 0.0025547557, 0.0016421324, 0.002554678]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0407703, 1.0, 0.0, 0.001979964, 0.0017264811, 0.0019795222, 0.0017264353]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0401174, 1.0, 0.0, 0.0012279983, 0.002419058, 0.0012279716, 0.0024188533]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0302156, 1.0, 0.0, 0.0019410113, 0.0008058533, 0.0019411711, 0.00080569857]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0287144, 1.0, 0.0, 0.0013874301, 0.0012229986, 0.0013871812, 0.0012228407]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.025689, 1.0, 0.0, 0.0013524974, 0.000982931, 0.001351849, 0.0009828593]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0286931, 1.0, 0.0, 0.0013689116, 0.0012395047, 0.0013692603, 0.0012396346]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0390944, 1.0, 0.0, 0.0012783939, 0.0022756676, 0.0012781131, 0.002275663]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.035331, 1.0, 0.0, 0.0014119982, 0.0017999881, 0.0014116069, 0.0017996152]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0547673, 1.0, 0.0, 0.0016321638, 0.003346686, 0.0016321898, 0.0033465466]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0411955, 1.0, 0.0, 0.0015980122, 0.0021470473, 0.0015978974, 0.0021471034]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343556, 1.0, 0.0, 0.0015628305, 0.0015605199, 0.0015618947, 0.0015602686]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0305954, 1.0, 0.0, 0.0014380789, 0.0013434199, 0.0014370619, 0.0013433706]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0311371, 1.0, 0.0, 0.0009756249, 0.0018550216, 0.00097593677, 0.0018548148]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0403543, 1.0, 0.0, 0.0019307567, 0.0017378709, 0.0019301055, 0.0017378093]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0410408, 1.0, 0.0, 0.0014230148, 0.002307978, 0.0014228595, 0.0023079868]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0328019, 1.0, 0.0, 0.0020347415, 0.00094729644, 0.002034456, 0.0009470942]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0362226, 1.0, 0.0, 0.0016452703, 0.0016477378, 0.00164501, 0.00164765]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0312712, 1.0, 0.0, 0.0017610742, 0.0010817419, 0.0017613684, 0.0010816667]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0572159, 1.0, 0.0, 0.0027441047, 0.0024574106, 0.002743327, 0.0024574334]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0337828, 1.0, 0.0, 0.0014674838, 0.0016037312, 0.0014670244, 0.0016037474]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0319271, 1.0, 0.0, 0.0013300984, 0.0015723644, 0.0013302541, 0.001572215]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358392, 1.0, 0.0, 0.0010368833, 0.0022212567, 0.0010366887, 0.0022210884]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0272408, 1.0, 0.0, 0.0011928943, 0.00128365, 0.0011922516, 0.0012832207]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305601, 1.0, 0.0, 0.0013521214, 0.0014261103, 0.0013519931, 0.001425847]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374378, 1.0, 0.0, 0.0016231723, 0.0017802906, 0.0016230937, 0.0017799821]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0260738, 1.0, 0.0, 0.0011917099, 0.0011787345, 0.0011906091, 0.0011786971]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0286542, 1.0, 0.0, 0.0016176174, 0.0009873491, 0.001617381, 0.0009870253]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0240453, 1.0, 0.0, 0.0015438016, 0.0006421495, 0.0015437927, 0.00064212433]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0296826, 1.0, 0.0, 0.002133179, 0.0005652244, 0.0021334135, 0.0005652504]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569079, 1.0, 0.0, 0.0017397493, 0.003433812, 0.00173827, 0.003433906]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0599815, 1.0, 0.0, 0.002959847, 0.0024930367, 0.002959704, 0.0024929242]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0514562, 1.0, 0.0, 0.0015338059, 0.0031440523, 0.0015334899, 0.0031442007]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.041215, 1.0, 0.0, 0.0009799656, 0.0027668094, 0.000980401, 0.0027668725]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0255545, 1.0, 0.0, 0.0011380806, 0.0011851385, 0.0011379605, 0.0011843906]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0314062, 1.0, 0.0, 0.0012377133, 0.0016173981, 0.0012377813, 0.0016173071]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0418365, 1.0, 0.0, 0.0023529746, 0.001450358, 0.0023528715, 0.0014503365]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0321012, 1.0, 0.0, 0.0010006258, 0.0019176936, 0.0010001108, 0.0019177052]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0412824, 1.0, 0.0, 0.0016758414, 0.0020772133, 0.0016751684, 0.0020767935]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0262052, 1.0, 0.0, 0.0008231022, 0.0015592177, 0.0008227924, 0.0015591244]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0234561, 1.0, 0.0, 0.0006820342, 0.0014503605, 0.0006820909, 0.0014500283]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0383, 1.0, 0.0, 0.0017242297, 0.001757622, 0.001723947, 0.0017574851]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.042785, 1.0, 0.0, 0.0013792128, 0.0025103358, 0.0013793232, 0.0025101728]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0407915, 1.0, 0.0, 0.0018612079, 0.0018471086, 0.0018617505, 0.001846633]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0331432, 1.0, 0.0, 0.0019051465, 0.0011078168, 0.0019060903, 0.0011075917]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399984, 1.0, 0.0, 0.0016461154, 0.0019901502, 0.0016457256, 0.001990045]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0348611, 1.0, 0.0, 0.0013673325, 0.0018018757, 0.0013674973, 0.001801654]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0377561, 1.0, 0.0, 0.0017234888, 0.0017089462, 0.0017227913, 0.0017088513]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0317665, 1.0, 0.0, 0.0016715066, 0.0012163691, 0.0016715007, 0.0012162849]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0346446, 1.0, 0.0, 0.0016812724, 0.0014683242, 0.0016805511, 0.001468142]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.034309, 1.0, 0.0, 0.0018052536, 0.0013137443, 0.0018054747, 0.00131354]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0319976, 1.0, 0.0, 0.0014019585, 0.0015068407, 0.0014027175, 0.0015068005]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0437635, 1.0, 0.0, 0.0016414303, 0.0023371454, 0.0016413461, 0.0023364406]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0424886, 1.0, 0.0, 0.001689372, 0.0021732815, 0.0016888579, 0.0021731502]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0418235, 1.0, 0.0, 0.0019037188, 0.001898536, 0.0019029597, 0.0018978959]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0472612, 1.0, 0.0, 0.0018512334, 0.002445381, 0.0018498199, 0.0024453788]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0316609, 1.0, 0.0, 0.0014584156, 0.0014199119, 0.0014587189, 0.0014188136]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319213, 1.0, 0.0, 0.0010145877, 0.0018873983, 0.0010141718, 0.0018872946]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0487407, 1.0, 0.0, 0.003056896, 0.0013740427, 0.0030574037, 0.0013739918]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0427573, 1.0, 0.0, 0.0014336344, 0.0024534978, 0.0014327994, 0.0024532028]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0393082, 1.0, 0.0, 0.0020379035, 0.0015355533, 0.0020382067, 0.0015352926]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0688326, 1.0, 0.0, 0.003443348, 0.0028143595, 0.0034412388, 0.002814331]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273402, 1.0, 0.0, 0.0011894018, 0.0012960779, 0.0011892915, 0.0012960574]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0338719, 1.0, 0.0, 0.0010971496, 0.001982163, 0.0010965831, 0.0019820838]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328274, 1.0, 0.0, 0.001497425, 0.0014870543, 0.001495634, 0.0014870465]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0386374, 1.0, 0.0, 0.001809758, 0.0017030053, 0.0018091915, 0.0017005152]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0519937, 1.0, 0.0, 0.0018909717, 0.0028357725, 0.0018897911, 0.0028364758]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.032161, 1.0, 0.0, 0.0018059029, 0.0011179124, 0.0018051715, 0.0011176529]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0288684, 1.0, 0.0, 0.0012668355, 0.0013576238, 0.0012663117, 0.0013574881]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0279363, 1.0, 0.0, 0.000871602, 0.0016680737, 0.0008715396, 0.0016681298]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0368413, 1.0, 0.0, 0.0017261014, 0.0016231079, 0.0017261928, 0.0016230587]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0525274, 1.0, 0.0, 0.002358548, 0.0024167625, 0.0023579614, 0.0024164019]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0292487, 1.0, 0.0, 0.0012002053, 0.0014588637, 0.0011993013, 0.0014587907]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0353519, 1.0, 0.0, 0.0017026616, 0.0015111784, 0.0017026758, 0.001510716]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0364939, 1.0, 0.0, 0.000999579, 0.002318055, 0.0009995973, 0.0023178859]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0365114, 1.0, 0.0, 0.0013737597, 0.0019456379, 0.0013720519, 0.001945344]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0334039, 1.0, 0.0, 0.0013833416, 0.0016535267, 0.0013819607, 0.001653183]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340935, 1.0, 0.0, 0.0015698344, 0.0015297016, 0.0015684688, 0.0015296672]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0256252, 1.0, 0.0, 0.0008366441, 0.0014929349, 0.00083664904, 0.0014928548]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0303087, 1.0, 0.0, 0.001534198, 0.0012211234, 0.0015345286, 0.0012209686]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0375866, 1.0, 0.0, 0.0017551224, 0.0016619605, 0.0017543877, 0.001661361]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0417577, 1.0, 0.0, 0.002314624, 0.001481543, 0.002315021, 0.0014809659]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.037492, 1.0, 0.0, 0.0014423644, 0.0019661388, 0.0014408331, 0.001966119]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0420737, 1.0, 0.0, 0.0010481076, 0.0027768132, 0.0010474556, 0.0027769636]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0248911, 1.0, 0.0, 0.0012654357, 0.0009975008, 0.001264433, 0.0009974035]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0526189, 1.0, 0.0, 0.0023176826, 0.0024660279, 0.0023168433, 0.00246504]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.032279, 1.0, 0.0, 0.0015281612, 0.0014062938, 0.001528214, 0.0014063135]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343465, 1.0, 0.0, 0.0012891704, 0.0018332839, 0.0012888624, 0.0018331398]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0423863, 1.0, 0.0, 0.0015584555, 0.0022949306, 0.0015571434, 0.0022952012]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0284159, 1.0, 0.0, 0.0010500506, 0.0015333141, 0.0010495293, 0.0015327209]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0320216, 1.0, 0.0, 0.0018838055, 0.0010272709, 0.0018837574, 0.0010271466]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0363623, 1.0, 0.0, 0.0018461613, 0.0014595173, 0.0018459437, 0.0014595778]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339724, 1.0, 0.0, 0.0016259524, 0.0014624218, 0.0016263798, 0.0014622605]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0427084, 1.0, 0.0, 0.0016356503, 0.0022468823, 0.0016362518, 0.0022468297]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409982, 1.0, 0.0, 0.0011730208, 0.0025541377, 0.0011727645, 0.0025537838]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0324454, 1.0, 0.0, 0.0017807491, 0.0011689243, 0.0017800133, 0.0011686704]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0398415, 1.0, 0.0, 0.0014651293, 0.0021569019, 0.0014644682, 0.0021567936]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372083, 1.0, 0.0, 0.0020272091, 0.0013554636, 0.0020264264, 0.001355109]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0398219, 1.0, 0.0, 0.0012233867, 0.0023968194, 0.0012231452, 0.0023966627]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350337, 1.0, 0.0, 0.0017416999, 0.0014432326, 0.0017414228, 0.0014430229]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0306069, 1.0, 0.0, 0.001205801, 0.0015766339, 0.0012059875, 0.0015763713]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0408835, 1.0, 0.0, 0.0019809084, 0.0017358239, 0.00198107, 0.0017351641]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0278369, 1.0, 0.0, 0.001100089, 0.0014306012, 0.0010996341, 0.0014304393]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0274612, 1.0, 0.0, 0.0013641962, 0.0011324682, 0.0013625429, 0.0011319651]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0263036, 1.0, 0.0, 0.001122818, 0.0012684842, 0.0011223531, 0.0012683158]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276532, 1.0, 0.0, 0.0015369091, 0.0009770311, 0.0015369483, 0.0009769036]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0345618, 1.0, 0.0, 0.0018334502, 0.0013084777, 0.0018341308, 0.0013083804]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394483, 1.0, 0.0, 0.0024356479, 0.001150568, 0.0024355897, 0.0011504688]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0550654, 1.0, 0.0, 0.0017860603, 0.0032198157, 0.0017866637, 0.0032198327]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0634062, 1.0, 0.0, 0.003598898, 0.0021651702, 0.0036004107, 0.002165168]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395598, 1.0, 0.0, 0.001731419, 0.0018649481, 0.0017315714, 0.0018647196]
Epoch: 18
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0318947, 1.0, 0.0, 0.001095463, 0.0018040763, 0.0010957618, 0.001803568]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.050767, 1.0, 0.0, 0.0018651758, 0.0027499744, 0.0018653055, 0.0027502002]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0317898, 1.0, 0.0, 0.0016962786, 0.0011938208, 0.0016950497, 0.001193766]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0513055, 1.0, 0.0, 0.0028714538, 0.0017926467, 0.002872161, 0.0017923926]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0258228, 1.0, 0.0, 0.001184451, 0.0011630572, 0.0011847918, 0.0011629193]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0419563, 1.0, 0.0, 0.0010087932, 0.002805408, 0.0010087113, 0.0028054977]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0622308, 1.0, 0.0, 0.001209696, 0.004447656, 0.0012095866, 0.004447667]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0337361, 1.0, 0.0, 0.0010684382, 0.0019985517, 0.0010677543, 0.0019984292]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0364512, 1.0, 0.0, 0.0019551665, 0.0013587164, 0.0019540957, 0.0013584454]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0322332, 1.0, 0.0, 0.0011803166, 0.0017500583, 0.0011799667, 0.0017495444]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0461711, 1.0, 0.0, 0.0016392863, 0.0025582616, 0.0016373743, 0.0025581983]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0407697, 1.0, 0.0, 0.001986374, 0.0017200225, 0.0019857748, 0.001719974]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0401379, 1.0, 0.0, 0.0012235779, 0.0024253335, 0.0012235362, 0.0024251384]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0301453, 1.0, 0.0, 0.0019400464, 0.00080044224, 0.001940181, 0.0008002825]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0289197, 1.0, 0.0, 0.0014027711, 0.0012263241, 0.0014025037, 0.0012261721]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0257171, 1.0, 0.0, 0.0013532536, 0.0009847453, 0.0013525838, 0.0009846706]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.028619, 1.0, 0.0, 0.0013652216, 0.0012364634, 0.0013656246, 0.0012365961]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0391228, 1.0, 0.0, 0.0012809967, 0.0022756527, 0.0012806818, 0.0022756457]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0353131, 1.0, 0.0, 0.0014129765, 0.0017973887, 0.0014124789, 0.0017970081]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0550103, 1.0, 0.0, 0.0016301224, 0.0033708194, 0.0016302043, 0.003370685]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.04131, 1.0, 0.0, 0.0015963734, 0.002159073, 0.001596281, 0.002159128]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343416, 1.0, 0.0, 0.0015626935, 0.0015593809, 0.0015617202, 0.0015591471]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0306039, 1.0, 0.0, 0.0014401749, 0.0013420944, 0.0014391323, 0.0013420118]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.031268, 1.0, 0.0, 0.0009835975, 0.0018589337, 0.00098393, 0.0018587245]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0401427, 1.0, 0.0, 0.001920064, 0.0017293289, 0.0019193883, 0.0017292685]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0411425, 1.0, 0.0, 0.0014275594, 0.002312689, 0.0014273871, 0.0023126835]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.03295, 1.0, 0.0, 0.0020424156, 0.00095310685, 0.0020421024, 0.0009528968]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0362915, 1.0, 0.0, 0.0016433434, 0.0016559153, 0.0016430521, 0.0016557991]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0313008, 1.0, 0.0, 0.0017616409, 0.0010838689, 0.0017619581, 0.0010837719]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0573884, 1.0, 0.0, 0.0027533157, 0.002463887, 0.0027524163, 0.002463914]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0338184, 1.0, 0.0, 0.0014709709, 0.0016034778, 0.0014705062, 0.0016034963]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0320106, 1.0, 0.0, 0.0013293126, 0.0015807266, 0.001329486, 0.0015805503]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358104, 1.0, 0.0, 0.0010413495, 0.002214182, 0.0010410874, 0.0022140052]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0272694, 1.0, 0.0, 0.0011898926, 0.001289255, 0.0011891476, 0.0012887825]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305436, 1.0, 0.0, 0.0013575638, 0.0014191607, 0.0013574467, 0.0014188776]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374428, 1.0, 0.0, 0.0016235843, 0.0017803456, 0.0016235063, 0.0017800058]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0261053, 1.0, 0.0, 0.001197125, 0.0011761858, 0.0011959788, 0.0011761538]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0286684, 1.0, 0.0, 0.0016209141, 0.0009853777, 0.0016205467, 0.0009850466]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.024023, 1.0, 0.0, 0.0015417028, 0.0006422108, 0.0015417086, 0.00064219296]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.02964, 1.0, 0.0, 0.0021339166, 0.0005605982, 0.0021341871, 0.00056061754]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569824, 1.0, 0.0, 0.001742685, 0.003437664, 0.001741139, 0.0034377708]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.060047, 1.0, 0.0, 0.0029645504, 0.0024942933, 0.002964424, 0.0024941792]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.051634, 1.0, 0.0, 0.0015360648, 0.0031579551, 0.0015357868, 0.0031581158]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0413692, 1.0, 0.0, 0.0009774615, 0.00278334, 0.0009779304, 0.002783401]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0257277, 1.0, 0.0, 0.0011470162, 0.0011919619, 0.0011468458, 0.0011911736]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0311955, 1.0, 0.0, 0.0012327349, 0.0016032375, 0.0012327088, 0.0016031275]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0419439, 1.0, 0.0, 0.0023589479, 0.0014541371, 0.0023589313, 0.0014541289]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0320544, 1.0, 0.0, 0.0009998567, 0.0019142326, 0.0009992956, 0.0019142498]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0412049, 1.0, 0.0, 0.0016806822, 0.0020653163, 0.0016800631, 0.0020648856]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.026094, 1.0, 0.0, 0.0008167697, 0.0015554419, 0.0008164296, 0.0015553598]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.023472, 1.0, 0.0, 0.00068219507, 0.0014516376, 0.0006822323, 0.0014513425]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0382715, 1.0, 0.0, 0.0017314991, 0.0017477719, 0.0017311472, 0.0017476288]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.043007, 1.0, 0.0, 0.0013830741, 0.0025266525, 0.001383173, 0.0025264695]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0406485, 1.0, 0.0, 0.0018674035, 0.0018279036, 0.0018679667, 0.0018274174]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0330137, 1.0, 0.0, 0.0019044485, 0.0010967427, 0.0019053065, 0.0010965464]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399745, 1.0, 0.0, 0.0016486573, 0.0019854265, 0.001648276, 0.0019853415]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.034822, 1.0, 0.0, 0.0013681003, 0.0017975371, 0.0013682551, 0.001797323]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0379761, 1.0, 0.0, 0.0017241698, 0.00172828, 0.0017234454, 0.0017281924]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318189, 1.0, 0.0, 0.0016787383, 0.0012138991, 0.0016787136, 0.0012138106]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0346988, 1.0, 0.0, 0.0016793415, 0.0014751835, 0.0016787269, 0.0014749765]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0343051, 1.0, 0.0, 0.0018213685, 0.0012972706, 0.0018215859, 0.0012970658]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0321639, 1.0, 0.0, 0.0014106156, 0.001513317, 0.0014113691, 0.0015132846]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0439, 1.0, 0.0, 0.0016465825, 0.0023444134, 0.0016464419, 0.0023436693]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0427029, 1.0, 0.0, 0.0017058443, 0.0021762948, 0.0017053441, 0.002176166]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0418092, 1.0, 0.0, 0.0019084226, 0.0018925531, 0.0019075967, 0.0018918394]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0472615, 1.0, 0.0, 0.0018439649, 0.002452673, 0.001842506, 0.002452657]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0317653, 1.0, 0.0, 0.0014685441, 0.0014193037, 0.0014688305, 0.0014181717]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.0319438, 1.0, 0.0, 0.0010120864, 0.0018919387, 0.001011683, 0.0018918093]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0488039, 1.0, 0.0, 0.003060603, 0.001376084, 0.0030610473, 0.0013760271]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0428203, 1.0, 0.0, 0.001438838, 0.0024540257, 0.0014379935, 0.0024537058]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.03934, 1.0, 0.0, 0.0020411226, 0.0015352535, 0.0020413965, 0.0015349742]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0688527, 1.0, 0.0, 0.0034439843, 0.002815554, 0.0034417715, 0.00281553]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273645, 1.0, 0.0, 0.0011908091, 0.0012968843, 0.0011906859, 0.0012968595]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.033829, 1.0, 0.0, 0.001094724, 0.0019807029, 0.0010941434, 0.001980608]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328282, 1.0, 0.0, 0.0014930879, 0.0014914747, 0.0014911765, 0.0014914547]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0386897, 1.0, 0.0, 0.0018121649, 0.00170537, 0.0018115608, 0.0017028904]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0518726, 1.0, 0.0, 0.001889889, 0.0028258604, 0.0018886569, 0.002826522]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0322162, 1.0, 0.0, 0.0018140483, 0.0011147815, 0.0018133449, 0.0011145722]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0289061, 1.0, 0.0, 0.0012767576, 0.0013511303, 0.0012762529, 0.0013509917]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0280606, 1.0, 0.0, 0.00087989424, 0.0016710735, 0.0008798222, 0.0016711303]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0368222, 1.0, 0.0, 0.0017238259, 0.0016236384, 0.0017239265, 0.0016236012]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0528055, 1.0, 0.0, 0.002385019, 0.0024155676, 0.002384545, 0.0024152112]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0291982, 1.0, 0.0, 0.0012007279, 0.0014537573, 0.00119978, 0.0014536869]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0354236, 1.0, 0.0, 0.0017068075, 0.0015135792, 0.0017067498, 0.0015131538]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0363675, 1.0, 0.0, 0.0009958835, 0.0023102658, 0.0009958881, 0.0023101]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0367398, 1.0, 0.0, 0.0013765515, 0.0019635893, 0.0013749257, 0.0019633546]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.033397, 1.0, 0.0, 0.0013846392, 0.0016515965, 0.0013833463, 0.0016512787]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0339407, 1.0, 0.0, 0.0015623919, 0.0015232414, 0.001561021, 0.0015232014]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0256573, 1.0, 0.0, 0.0008354353, 0.0014970526, 0.0008354257, 0.0014969965]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0303434, 1.0, 0.0, 0.0015361203, 0.001222348, 0.0015364853, 0.0012222053]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0377693, 1.0, 0.0, 0.001767524, 0.0016661682, 0.0017668221, 0.0016656221]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0417615, 1.0, 0.0, 0.0023162481, 0.0014802578, 0.0023166817, 0.0014797181]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0374981, 1.0, 0.0, 0.00144961, 0.001959458, 0.0014479985, 0.001959443]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.042114, 1.0, 0.0, 0.0010450617, 0.002783533, 0.0010444243, 0.0027836778]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0249454, 1.0, 0.0, 0.0012665107, 0.0010013478, 0.0012655637, 0.0010012581]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0526872, 1.0, 0.0, 0.002316961, 0.0024729199, 0.0023161848, 0.002472023]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.032259, 1.0, 0.0, 0.0015257637, 0.0014068646, 0.0015258486, 0.0014068829]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0343701, 1.0, 0.0, 0.0012887685, 0.0018358197, 0.0012884259, 0.0018356937]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0424525, 1.0, 0.0, 0.0015618589, 0.0022975542, 0.0015605849, 0.0022978138]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0284005, 1.0, 0.0, 0.0010512784, 0.0015306685, 0.0010508031, 0.0015301185]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0320855, 1.0, 0.0, 0.0018872073, 0.001029681, 0.001887066, 0.0010295644]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0363346, 1.0, 0.0, 0.0018462136, 0.0014569251, 0.0018461758, 0.0014569662]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0339959, 1.0, 0.0, 0.0016254836, 0.0014650378, 0.0016259078, 0.0014648853]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0427468, 1.0, 0.0, 0.0016354017, 0.0022506479, 0.0016358295, 0.0022505994]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409881, 1.0, 0.0, 0.0011712483, 0.0025550034, 0.0011710068, 0.0025546728]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0323738, 1.0, 0.0, 0.001777595, 0.001165574, 0.0017768269, 0.0011653372]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0399871, 1.0, 0.0, 0.0014721986, 0.002163082, 0.0014714526, 0.0021629771]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372127, 1.0, 0.0, 0.0020284264, 0.0013546494, 0.0020276802, 0.0013543355]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0399207, 1.0, 0.0, 0.0012263273, 0.0024028686, 0.0012260764, 0.0024027182]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350485, 1.0, 0.0, 0.001744489, 0.0014417813, 0.0017442604, 0.0014415667]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0304478, 1.0, 0.0, 0.0012012653, 0.0015667297, 0.001201425, 0.0015664762]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0408415, 1.0, 0.0, 0.0019813038, 0.0017315946, 0.001981479, 0.001730963]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0279135, 1.0, 0.0, 0.0011013695, 0.0014362729, 0.0011008838, 0.0014361048]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0274482, 1.0, 0.0, 0.0013589117, 0.0011365694, 0.0013573179, 0.0011360825]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0261818, 1.0, 0.0, 0.001118226, 0.001261988, 0.0011178027, 0.0012618101]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276749, 1.0, 0.0, 0.0015398192, 0.0009760987, 0.0015398504, 0.0009759794]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0346293, 1.0, 0.0, 0.0018380086, 0.0013100761, 0.0018385855, 0.0013099817]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394907, 1.0, 0.0, 0.0024387268, 0.0011513554, 0.0024386607, 0.0011512511]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0550693, 1.0, 0.0, 0.0017853237, 0.0032209158, 0.0017859532, 0.0032209405]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0635571, 1.0, 0.0, 0.0036137057, 0.0021640847, 0.0036150175, 0.0021641045]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395579, 1.0, 0.0, 0.0017350784, 0.0018611073, 0.0017351714, 0.001860877]
Epoch: 19
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0318385, 1.0, 0.0, 0.0010897419, 0.001804684, 0.0010900272, 0.0018041921]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0508302, 1.0, 0.0, 0.0018620009, 0.002758901, 0.0018621212, 0.0027591048]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0317793, 1.0, 0.0, 0.0016994614, 0.0011896822, 0.0016983104, 0.0011896298]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0510561, 1.0, 0.0, 0.002849409, 0.0017920245, 0.0028499763, 0.00179179]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0259076, 1.0, 0.0, 0.0011916442, 0.0011635729, 0.001191968, 0.001163447]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0419377, 1.0, 0.0, 0.001009073, 0.0028034416, 0.0010090154, 0.002803526]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0621397, 1.0, 0.0, 0.0012135615, 0.004435513, 0.0012134714, 0.0044355197]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0335401, 1.0, 0.0, 0.0010685282, 0.0019806377, 0.0010679052, 0.0019805275]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0369731, 1.0, 0.0, 0.0019649877, 0.0013963172, 0.0019639295, 0.0013961089]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0321571, 1.0, 0.0, 0.0011804507, 0.0017430116, 0.0011800486, 0.0017425264]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0463659, 1.0, 0.0, 0.001639259, 0.0025759968, 0.001637294, 0.0025759689]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.040453, 1.0, 0.0, 0.0019926245, 0.0016849742, 0.00199205, 0.0016849309]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0402582, 1.0, 0.0, 0.0012244795, 0.0024353797, 0.0012244425, 0.0024352577]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0301019, 1.0, 0.0, 0.0019382918, 0.0007982353, 0.0019384259, 0.0007981092]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0291728, 1.0, 0.0, 0.0014221186, 0.0012299777, 0.0014218717, 0.0012298396]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0258007, 1.0, 0.0, 0.0013554629, 0.0009901271, 0.0013548164, 0.0009900702]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.0285751, 1.0, 0.0, 0.0013621884, 0.001235506, 0.0013624893, 0.0012356339]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0392092, 1.0, 0.0, 0.0012873316, 0.0022771745, 0.0012870643, 0.002277191]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0353719, 1.0, 0.0, 0.0014161513, 0.0017995544, 0.0014156508, 0.001799206]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.0550205, 1.0, 0.0, 0.0016291074, 0.0033727693, 0.0016291449, 0.0033726767]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.0413754, 1.0, 0.0, 0.0015977346, 0.0021636575, 0.0015976084, 0.0021637315]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.0343106, 1.0, 0.0, 0.0015598332, 0.0015594289, 0.0015588484, 0.001559193]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.0306336, 1.0, 0.0, 0.001440465, 0.0013444987, 0.0014394242, 0.001344478]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0313318, 1.0, 0.0, 0.0009947311, 0.0018535967, 0.0009950458, 0.0018534386]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0399609, 1.0, 0.0, 0.0019091995, 0.0017236697, 0.0019085605, 0.0017236102]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0413322, 1.0, 0.0, 0.0014338645, 0.0023236298, 0.0014336967, 0.0023236468]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0330472, 1.0, 0.0, 0.0020458046, 0.00095852546, 0.0020454833, 0.0009583463]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.036425, 1.0, 0.0, 0.0016511742, 0.0016602206, 0.001650891, 0.00166012]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0313706, 1.0, 0.0, 0.0017655774, 0.0010862877, 0.0017659022, 0.0010862414]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.0575547, 1.0, 0.0, 0.0027654022, 0.002466926, 0.0027644713, 0.0024669701]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0338637, 1.0, 0.0, 0.0014772522, 0.0016013071, 0.0014767858, 0.0016013244]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0320781, 1.0, 0.0, 0.0013310028, 0.0015851798, 0.0013311524, 0.001585026]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0358428, 1.0, 0.0, 0.0010455251, 0.0022129589, 0.0010452566, 0.0022127964]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.0273069, 1.0, 0.0, 0.0011904195, 0.0012921196, 0.0011896682, 0.0012917486]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0305833, 1.0, 0.0, 0.0013621014, 0.0014182309, 0.0013619425, 0.001417996]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.03744, 1.0, 0.0, 0.0016247341, 0.0017789318, 0.001624633, 0.0017786289]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0261997, 1.0, 0.0, 0.0012042455, 0.001177662, 0.0012030478, 0.0011776357]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0287533, 1.0, 0.0, 0.0016282147, 0.0009857729, 0.0016277718, 0.0009854715]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0239335, 1.0, 0.0, 0.0015353491, 0.00064042624, 0.0015353861, 0.00064040936]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0296584, 1.0, 0.0, 0.002134035, 0.0005621583, 0.002134269, 0.0005621884]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569702, 1.0, 0.0, 0.0017403602, 0.003438891, 0.0017388084, 0.0034389931]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.0600908, 1.0, 0.0, 0.002967944, 0.002494888, 0.002967767, 0.0024947913]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.051657, 1.0, 0.0, 0.0015421791, 0.0031539341, 0.0015418633, 0.0031540818]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0412598, 1.0, 0.0, 0.0009755549, 0.0027752952, 0.0009760118, 0.0027753506]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0257581, 1.0, 0.0, 0.0011532649, 0.0011884612, 0.0011531196, 0.0011877924]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0312546, 1.0, 0.0, 0.0012307179, 0.0016106216, 0.001230716, 0.0016105436]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0420976, 1.0, 0.0, 0.0023685228, 0.0014585427, 0.0023684432, 0.0014585705]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0321789, 1.0, 0.0, 0.0010074221, 0.0019179846, 0.001006871, 0.0019180109]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.0412714, 1.0, 0.0, 0.0016784344, 0.002073607, 0.0016777909, 0.0020732423]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0260857, 1.0, 0.0, 0.000816847, 0.0015546201, 0.00081648293, 0.0015545555]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.023402, 1.0, 0.0, 0.00068306876, 0.0014444139, 0.000683089, 0.0014441486]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0383986, 1.0, 0.0, 0.0017395013, 0.0017513233, 0.0017391806, 0.0017511894]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.0429139, 1.0, 0.0, 0.0013861856, 0.002515075, 0.0013862341, 0.0025148992]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0408016, 1.0, 0.0, 0.0018699076, 0.0018393237, 0.001870493, 0.0018388563]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0329745, 1.0, 0.0, 0.0019041451, 0.0010934835, 0.001904908, 0.0010932907]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0399957, 1.0, 0.0, 0.0016523916, 0.001983614, 0.0016519837, 0.0019835255]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0349094, 1.0, 0.0, 0.0013692292, 0.0018043492, 0.0013693736, 0.0018041797]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0379435, 1.0, 0.0, 0.0017261652, 0.0017233089, 0.0017254287, 0.0017232415]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318606, 1.0, 0.0, 0.0016860387, 0.0012103948, 0.0016859977, 0.0012103354]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.034659, 1.0, 0.0, 0.0016768423, 0.0014740509, 0.001676213, 0.0014739205]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0344186, 1.0, 0.0, 0.0018335907, 0.0012953687, 0.0018338086, 0.0012952463]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.032297, 1.0, 0.0, 0.0014189604, 0.0015170631, 0.0014197312, 0.0015170502]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0439934, 1.0, 0.0, 0.0016498185, 0.0023496514, 0.001649665, 0.0023490393]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.042894, 1.0, 0.0, 0.0017180943, 0.0021814222, 0.0017175989, 0.0021812925]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0418036, 1.0, 0.0, 0.0019152574, 0.0018851978, 0.0019145501, 0.0018845655]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0471005, 1.0, 0.0, 0.0018348198, 0.0024471763, 0.0018334279, 0.0024471814]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.031894, 1.0, 0.0, 0.0014759293, 0.0014235917, 0.0014762004, 0.0014225006]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.031833, 1.0, 0.0, 0.0010117708, 0.0018822053, 0.0010112962, 0.0018820837]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0491012, 1.0, 0.0, 0.0030694352, 0.0013942751, 0.0030699195, 0.0013942219]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0427762, 1.0, 0.0, 0.0014411721, 0.0024476815, 0.001440353, 0.002447376]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0392563, 1.0, 0.0, 0.002038894, 0.001529865, 0.0020392167, 0.0015296077]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.069081, 1.0, 0.0, 0.003462045, 0.0028182487, 0.0034598361, 0.0028182142]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0273151, 1.0, 0.0, 0.0011893915, 0.0012938101, 0.0011893054, 0.0012937768]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0337074, 1.0, 0.0, 0.0010954165, 0.0019689584, 0.0010948342, 0.0019688702]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.032811, 1.0, 0.0, 0.0014911201, 0.0014918621, 0.001489412, 0.0014918519]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0387789, 1.0, 0.0, 0.001813895, 0.0017117185, 0.0018132923, 0.0017094959]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0513315, 1.0, 0.0, 0.0018878744, 0.0027786861, 0.0018867726, 0.0027792563]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0321263, 1.0, 0.0, 0.0018099949, 0.0011106476, 0.0018093237, 0.0011104993]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.028979, 1.0, 0.0, 0.0012841204, 0.0013503863, 0.0012835228, 0.0013502812]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0280465, 1.0, 0.0, 0.0008808447, 0.0016688232, 0.00088077894, 0.001668887]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0367225, 1.0, 0.0, 0.0017189321, 0.0016194762, 0.0017190112, 0.0016194908]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0531421, 1.0, 0.0, 0.0024205884, 0.0024105741, 0.0024200133, 0.002410261]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0291182, 1.0, 0.0, 0.0011993006, 0.0014478927, 0.0011983785, 0.0014478343]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0355629, 1.0, 0.0, 0.0017163986, 0.0015166237, 0.0017163602, 0.0015162457]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0363404, 1.0, 0.0, 0.0009996224, 0.002304066, 0.0009996201, 0.002303937]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0369235, 1.0, 0.0, 0.0013799137, 0.0019769336, 0.0013783318, 0.001976736]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.033359, 1.0, 0.0, 0.0013858003, 0.0016469767, 0.0013845741, 0.0016467671]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340291, 1.0, 0.0, 0.0015692483, 0.0015244394, 0.0015678776, 0.0015244024]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.0257351, 1.0, 0.0, 0.00083820015, 0.0015013694, 0.0008381904, 0.0015013332]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0303749, 1.0, 0.0, 0.0015377299, 0.0012236172, 0.0015380911, 0.0012234717]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0378717, 1.0, 0.0, 0.0017734267, 0.0016695748, 0.0017726923, 0.0016691075]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.04182, 1.0, 0.0, 0.0023205634, 0.0014812546, 0.002320948, 0.0014807689]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0375712, 1.0, 0.0, 0.0014592179, 0.0019564943, 0.0014575839, 0.001956488]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0420605, 1.0, 0.0, 0.0010354125, 0.0027883183, 0.0010347669, 0.0027884645]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0251015, 1.0, 0.0, 0.0012777119, 0.0010043501, 0.0012767611, 0.0010042635]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0527214, 1.0, 0.0, 0.0023170263, 0.0024759618, 0.002316249, 0.0024752137]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0323392, 1.0, 0.0, 0.0015323975, 0.0014075116, 0.001532496, 0.0014075313]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0344214, 1.0, 0.0, 0.0012912744, 0.0018379972, 0.0012909111, 0.0018378972]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0424843, 1.0, 0.0, 0.0015667406, 0.0022955541, 0.0015654429, 0.0022958065]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283796, 1.0, 0.0, 0.0010509407, 0.0015291069, 0.0010504379, 0.0015286345]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0320435, 1.0, 0.0, 0.0018828256, 0.0010302484, 0.0018826405, 0.0010301338]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0364894, 1.0, 0.0, 0.0018598347, 0.0014573863, 0.0018597497, 0.001457426]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340015, 1.0, 0.0, 0.0016266447, 0.0014643706, 0.0016270573, 0.0014642264]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0427376, 1.0, 0.0, 0.0016328357, 0.0022523487, 0.0016333519, 0.0022522956]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409694, 1.0, 0.0, 0.0011677783, 0.0025567617, 0.0011675118, 0.0025564888]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0322565, 1.0, 0.0, 0.0017738406, 0.0011586539, 0.001773052, 0.0011584433]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.040207, 1.0, 0.0, 0.0014771768, 0.002178084, 0.0014764335, 0.002177987]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372719, 1.0, 0.0, 0.002027642, 0.0013607936, 0.0020268736, 0.0013605072]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.040071, 1.0, 0.0, 0.0012322166, 0.002410624, 0.0012320087, 0.0024105024]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.035018, 1.0, 0.0, 0.0017471248, 0.0014363634, 0.0017469116, 0.0014361825]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0303859, 1.0, 0.0, 0.0011951553, 0.0015671938, 0.0011952803, 0.0015669514]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0408843, 1.0, 0.0, 0.0019779315, 0.0017388549, 0.0019781305, 0.0017382132]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.0279738, 1.0, 0.0, 0.0011063645, 0.0014367747, 0.0011058392, 0.0014366029]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0272906, 1.0, 0.0, 0.0013486953, 0.0011324561, 0.0013470582, 0.0011319726]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0260751, 1.0, 0.0, 0.0011111599, 0.0012593607, 0.0011107177, 0.0012591775]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276756, 1.0, 0.0, 0.0015434861, 0.0009724869, 0.0015435154, 0.0009723659]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0346832, 1.0, 0.0, 0.0018395422, 0.0013134403, 0.0018400996, 0.0013133466]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0394084, 1.0, 0.0, 0.0024343927, 0.001148195, 0.0024343275, 0.0011480905]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0549958, 1.0, 0.0, 0.0017752645, 0.003224296, 0.0017758005, 0.0032243198]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.063851, 1.0, 0.0, 0.0036375537, 0.0021669534, 0.003638952, 0.0021669741]
Batch: 120
D_Loss: [0.5 0.5]
G_Loss: [1.0395254, 1.0, 0.0, 0.0017311296, 0.0018620959, 0.0017312134, 0.0018618777]
Epoch: 20
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.031762, 1.0, 0.0, 0.0010857059, 0.0018017681, 0.0010859935, 0.0018013049]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0509679, 1.0, 0.0, 0.0018750399, 0.0027583633, 0.0018752528, 0.0027585758]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0319538, 1.0, 0.0, 0.0017110899, 0.0011939346, 0.0017097273, 0.0011939113]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0510447, 1.0, 0.0, 0.0028514396, 0.0017889555, 0.0028520552, 0.0017887389]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0260189, 1.0, 0.0, 0.0012021405, 0.0011632015, 0.0012024658, 0.001163062]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0420821, 1.0, 0.0, 0.0010185931, 0.0028070416, 0.0010184897, 0.0028071366]
Batch: 6
D_Loss: [0.5 0.5]
G_Loss: [1.0621687, 1.0, 0.0, 0.0012110521, 0.004440671, 0.001210931, 0.004440679]
Batch: 7
D_Loss: [0.5 0.5]
G_Loss: [1.0335295, 1.0, 0.0, 0.0010604453, 0.0019877553, 0.001059826, 0.001987652]
Batch: 8
D_Loss: [0.5 0.5]
G_Loss: [1.0370389, 1.0, 0.0, 0.001973149, 0.0013941401, 0.0019720206, 0.0013939454]
Batch: 9
D_Loss: [0.5 0.5]
G_Loss: [1.0321226, 1.0, 0.0, 0.0011819066, 0.0017384002, 0.0011815382, 0.0017379057]
Batch: 10
D_Loss: [0.5 0.5]
G_Loss: [1.0462992, 1.0, 0.0, 0.0016359723, 0.0025732215, 0.0016340713, 0.0025731921]
Batch: 11
D_Loss: [0.5 0.5]
G_Loss: [1.0405555, 1.0, 0.0, 0.0019933921, 0.0016935196, 0.0019928087, 0.0016934823]
Batch: 12
D_Loss: [0.5 0.5]
G_Loss: [1.0402775, 1.0, 0.0, 0.0012229466, 0.0024386588, 0.0012229021, 0.0024385427]
Batch: 13
D_Loss: [0.5 0.5]
G_Loss: [1.0300137, 1.0, 0.0, 0.0019340577, 0.00079445646, 0.0019342041, 0.0007943441]
Batch: 14
D_Loss: [0.5 0.5]
G_Loss: [1.0293646, 1.0, 0.0, 0.0014370914, 0.0012324471, 0.0014368416, 0.001232326]
Batch: 15
D_Loss: [0.5 0.5]
G_Loss: [1.0258054, 1.0, 0.0, 0.0013564338, 0.0009895694, 0.0013557759, 0.0009895267]
Batch: 16
D_Loss: [0.5 0.5]
G_Loss: [1.02848, 1.0, 0.0, 0.0013558274, 0.0012332343, 0.0013561301, 0.0012333589]
Batch: 17
D_Loss: [0.5 0.5]
G_Loss: [1.0392098, 1.0, 0.0, 0.0012894671, 0.002275081, 0.0012892147, 0.0022751226]
Batch: 18
D_Loss: [0.5 0.5]
G_Loss: [1.0352863, 1.0, 0.0, 0.0014165564, 0.0017913694, 0.0014160194, 0.0017910709]
Batch: 19
D_Loss: [0.5 0.5]
G_Loss: [1.055467, 1.0, 0.0, 0.0016287086, 0.003413749, 0.0016287975, 0.0034137082]
Batch: 20
D_Loss: [0.5 0.5]
G_Loss: [1.041546, 1.0, 0.0, 0.0015972555, 0.0021796497, 0.0015971186, 0.002179734]
Batch: 21
D_Loss: [0.5 0.5]
G_Loss: [1.03433, 1.0, 0.0, 0.001559102, 0.0015619257, 0.0015580619, 0.0015616847]
Batch: 22
D_Loss: [0.5 0.5]
G_Loss: [1.030588, 1.0, 0.0, 0.0014417511, 0.0013390755, 0.0014406508, 0.0013390263]
Batch: 23
D_Loss: [0.5 0.5]
G_Loss: [1.0315473, 1.0, 0.0, 0.0010021295, 0.0018657951, 0.0010023986, 0.0018656636]
Batch: 24
D_Loss: [0.5 0.5]
G_Loss: [1.0399143, 1.0, 0.0, 0.0019097237, 0.0017189134, 0.0019090471, 0.0017188545]
Batch: 25
D_Loss: [0.5 0.5]
G_Loss: [1.0411891, 1.0, 0.0, 0.0014259114, 0.002318562, 0.0014257275, 0.0023185844]
Batch: 26
D_Loss: [0.5 0.5]
G_Loss: [1.0330373, 1.0, 0.0, 0.0020442149, 0.00095922855, 0.0020438428, 0.0009590448]
Batch: 27
D_Loss: [0.5 0.5]
G_Loss: [1.0365442, 1.0, 0.0, 0.0016541538, 0.0016680865, 0.001653871, 0.001667995]
Batch: 28
D_Loss: [0.5 0.5]
G_Loss: [1.0314324, 1.0, 0.0, 0.0017692724, 0.0010881893, 0.0017696342, 0.0010881711]
Batch: 29
D_Loss: [0.5 0.5]
G_Loss: [1.057723, 1.0, 0.0, 0.0027728586, 0.0024747842, 0.0027719026, 0.0024748177]
Batch: 30
D_Loss: [0.5 0.5]
G_Loss: [1.0339209, 1.0, 0.0, 0.001482028, 0.00160173, 0.0014815673, 0.0016017521]
Batch: 31
D_Loss: [0.5 0.5]
G_Loss: [1.0320717, 1.0, 0.0, 0.0013316341, 0.0015839749, 0.0013317859, 0.0015838271]
Batch: 32
D_Loss: [0.5 0.5]
G_Loss: [1.0360016, 1.0, 0.0, 0.0010485788, 0.0022243224, 0.0010482881, 0.002224153]
Batch: 33
D_Loss: [0.5 0.5]
G_Loss: [1.027247, 1.0, 0.0, 0.001185141, 0.0012919588, 0.0011843897, 0.0012915932]
Batch: 34
D_Loss: [0.5 0.5]
G_Loss: [1.0306399, 1.0, 0.0, 0.0013650595, 0.0014204273, 0.0013648896, 0.0014201938]
Batch: 35
D_Loss: [0.5 0.5]
G_Loss: [1.0374326, 1.0, 0.0, 0.0016240941, 0.001778899, 0.0016240051, 0.0017786245]
Batch: 36
D_Loss: [0.5 0.5]
G_Loss: [1.0262914, 1.0, 0.0, 0.0012122078, 0.0011780352, 0.0012109522, 0.0011780094]
Batch: 37
D_Loss: [0.5 0.5]
G_Loss: [1.0287861, 1.0, 0.0, 0.0016337103, 0.0009832574, 0.0016332341, 0.0009829766]
Batch: 38
D_Loss: [0.5 0.5]
G_Loss: [1.0239105, 1.0, 0.0, 0.0015337104, 0.00063997856, 0.0015337075, 0.00063996523]
Batch: 39
D_Loss: [0.5 0.5]
G_Loss: [1.0295863, 1.0, 0.0, 0.0021298989, 0.00055973814, 0.0021301247, 0.00055976014]
Batch: 40
D_Loss: [0.5 0.5]
G_Loss: [1.0569739, 1.0, 0.0, 0.0017407136, 0.0034388648, 0.0017391775, 0.0034389556]
Batch: 41
D_Loss: [0.5 0.5]
G_Loss: [1.060181, 1.0, 0.0, 0.0029747665, 0.0024962542, 0.0029745803, 0.0024961575]
Batch: 42
D_Loss: [0.5 0.5]
G_Loss: [1.0515972, 1.0, 0.0, 0.0015301753, 0.0031605058, 0.0015298761, 0.0031606539]
Batch: 43
D_Loss: [0.5 0.5]
G_Loss: [1.0412954, 1.0, 0.0, 0.0009700396, 0.0027840342, 0.0009705226, 0.0027840827]
Batch: 44
D_Loss: [0.5 0.5]
G_Loss: [1.0258994, 1.0, 0.0, 0.0011617623, 0.0011927957, 0.0011616095, 0.0011921976]
Batch: 45
D_Loss: [0.5 0.5]
G_Loss: [1.0310634, 1.0, 0.0, 0.0012231991, 0.0016007638, 0.0012231154, 0.0016006841]
Batch: 46
D_Loss: [0.5 0.5]
G_Loss: [1.0422815, 1.0, 0.0, 0.0023827879, 0.0014609806, 0.0023827425, 0.0014610023]
Batch: 47
D_Loss: [0.5 0.5]
G_Loss: [1.0322785, 1.0, 0.0, 0.0010188838, 0.0019155806, 0.0010183232, 0.0019156062]
Batch: 48
D_Loss: [0.5 0.5]
G_Loss: [1.041182, 1.0, 0.0, 0.0016750928, 0.002068827, 0.0016743432, 0.002068471]
Batch: 49
D_Loss: [0.5 0.5]
G_Loss: [1.0260246, 1.0, 0.0, 0.00081514916, 0.0015507606, 0.00081478816, 0.0015506956]
Batch: 50
D_Loss: [0.5 0.5]
G_Loss: [1.0234177, 1.0, 0.0, 0.000687354, 0.001441552, 0.0006873333, 0.0014413211]
Batch: 51
D_Loss: [0.5 0.5]
G_Loss: [1.0383681, 1.0, 0.0, 0.0017385986, 0.0017494524, 0.0017382716, 0.001749322]
Batch: 52
D_Loss: [0.5 0.5]
G_Loss: [1.042916, 1.0, 0.0, 0.0013809557, 0.0025205088, 0.0013810284, 0.0025203442]
Batch: 53
D_Loss: [0.5 0.5]
G_Loss: [1.0409602, 1.0, 0.0, 0.0018903227, 0.0018333147, 0.0018909121, 0.0018328668]
Batch: 54
D_Loss: [0.5 0.5]
G_Loss: [1.0328778, 1.0, 0.0, 0.0019032598, 0.0010855824, 0.0019039657, 0.001085365]
Batch: 55
D_Loss: [0.5 0.5]
G_Loss: [1.0400084, 1.0, 0.0, 0.0016553912, 0.0019817872, 0.001655021, 0.0019816873]
Batch: 56
D_Loss: [0.5 0.5]
G_Loss: [1.0349036, 1.0, 0.0, 0.0013705832, 0.0018024824, 0.0013707189, 0.0018023615]
Batch: 57
D_Loss: [0.5 0.5]
G_Loss: [1.0380063, 1.0, 0.0, 0.0017284066, 0.001726777, 0.0017277147, 0.0017267361]
Batch: 58
D_Loss: [0.5 0.5]
G_Loss: [1.0318496, 1.0, 0.0, 0.0016862033, 0.0012092271, 0.0016861574, 0.0012091603]
Batch: 59
D_Loss: [0.5 0.5]
G_Loss: [1.0346175, 1.0, 0.0, 0.0016729087, 0.0014742131, 0.0016722241, 0.0014740685]
Batch: 60
D_Loss: [0.5 0.5]
G_Loss: [1.0345839, 1.0, 0.0, 0.0018567576, 0.0012872231, 0.0018570155, 0.0012871261]
Batch: 61
D_Loss: [0.5 0.5]
G_Loss: [1.0323975, 1.0, 0.0, 0.00142484, 0.0015203131, 0.0014256935, 0.0015203113]
Batch: 62
D_Loss: [0.5 0.5]
G_Loss: [1.0439736, 1.0, 0.0, 0.001642341, 0.0023553243, 0.0016420998, 0.0023547397]
Batch: 63
D_Loss: [0.5 0.5]
G_Loss: [1.0433083, 1.0, 0.0, 0.0017498626, 0.0021873156, 0.0017492762, 0.0021872222]
Batch: 64
D_Loss: [0.5 0.5]
G_Loss: [1.0418314, 1.0, 0.0, 0.0019244165, 0.0018785759, 0.001923477, 0.0018780254]
Batch: 65
D_Loss: [0.5 0.5]
G_Loss: [1.0469831, 1.0, 0.0, 0.0018237126, 0.0024476247, 0.0018221162, 0.0024476335]
Batch: 66
D_Loss: [0.5 0.5]
G_Loss: [1.0321903, 1.0, 0.0, 0.0014991667, 0.0014273042, 0.0014993725, 0.0014262553]
Batch: 67
D_Loss: [0.5 0.5]
G_Loss: [1.031825, 1.0, 0.0, 0.0010129234, 0.0018803156, 0.0010124478, 0.001880195]
Batch: 68
D_Loss: [0.5 0.5]
G_Loss: [1.0492519, 1.0, 0.0, 0.0030741869, 0.0014032396, 0.003074552, 0.001403184]
Batch: 69
D_Loss: [0.5 0.5]
G_Loss: [1.0428371, 1.0, 0.0, 0.0014490404, 0.002445368, 0.0014479943, 0.002445083]
Batch: 70
D_Loss: [0.5 0.5]
G_Loss: [1.0391766, 1.0, 0.0, 0.0020331335, 0.0015283603, 0.0020334956, 0.001528116]
Batch: 71
D_Loss: [0.5 0.5]
G_Loss: [1.0694069, 1.0, 0.0, 0.0034906776, 0.002819276, 0.003488138, 0.002819233]
Batch: 72
D_Loss: [0.5 0.5]
G_Loss: [1.0272957, 1.0, 0.0, 0.0011886966, 0.0012927458, 0.0011886067, 0.0012927193]
Batch: 73
D_Loss: [0.5 0.5]
G_Loss: [1.0336707, 1.0, 0.0, 0.0010970236, 0.001964009, 0.0010963837, 0.001963919]
Batch: 74
D_Loss: [0.5 0.5]
G_Loss: [1.0328513, 1.0, 0.0, 0.0014914175, 0.0014952143, 0.0014897209, 0.0014952146]
Batch: 75
D_Loss: [0.5 0.5]
G_Loss: [1.0388095, 1.0, 0.0, 0.0018143298, 0.0017140484, 0.0018136665, 0.0017120275]
Batch: 76
D_Loss: [0.5 0.5]
G_Loss: [1.0510029, 1.0, 0.0, 0.0018853032, 0.0027513872, 0.001883969, 0.002751897]
Batch: 77
D_Loss: [0.5 0.5]
G_Loss: [1.0321256, 1.0, 0.0, 0.0018128918, 0.0011076981, 0.0018122431, 0.0011075722]
Batch: 78
D_Loss: [0.5 0.5]
G_Loss: [1.0289961, 1.0, 0.0, 0.0012927951, 0.0013432822, 0.0012921154, 0.0013431844]
Batch: 79
D_Loss: [0.5 0.5]
G_Loss: [1.0281091, 1.0, 0.0, 0.0008837995, 0.0016715818, 0.0008837378, 0.0016716465]
Batch: 80
D_Loss: [0.5 0.5]
G_Loss: [1.0366894, 1.0, 0.0, 0.0017149956, 0.0016204057, 0.0017150375, 0.0016204314]
Batch: 81
D_Loss: [0.5 0.5]
G_Loss: [1.0535716, 1.0, 0.0, 0.0024596488, 0.0024105788, 0.0024590655, 0.0024102516]
Batch: 82
D_Loss: [0.5 0.5]
G_Loss: [1.0290697, 1.0, 0.0, 0.0011983076, 0.0014444795, 0.0011973022, 0.0014444215]
Batch: 83
D_Loss: [0.5 0.5]
G_Loss: [1.0356461, 1.0, 0.0, 0.0017217182, 0.0015188815, 0.0017216485, 0.0015185147]
Batch: 84
D_Loss: [0.5 0.5]
G_Loss: [1.0362724, 1.0, 0.0, 0.0010005485, 0.0022969642, 0.0010005354, 0.0022968408]
Batch: 85
D_Loss: [0.5 0.5]
G_Loss: [1.0371575, 1.0, 0.0, 0.0013809197, 0.0019972194, 0.0013791265, 0.0019970436]
Batch: 86
D_Loss: [0.5 0.5]
G_Loss: [1.0334011, 1.0, 0.0, 0.0013879118, 0.0016487059, 0.0013864973, 0.0016485394]
Batch: 87
D_Loss: [0.5 0.5]
G_Loss: [1.0340297, 1.0, 0.0, 0.0015679987, 0.0015257497, 0.0015665668, 0.001525721]
Batch: 88
D_Loss: [0.5 0.5]
G_Loss: [1.025744, 1.0, 0.0, 0.0008372845, 0.0015030759, 0.0008372585, 0.0015030508]
Batch: 89
D_Loss: [0.5 0.5]
G_Loss: [1.0304021, 1.0, 0.0, 0.0015397856, 0.0012240161, 0.001540123, 0.0012238675]
Batch: 90
D_Loss: [0.5 0.5]
G_Loss: [1.0379899, 1.0, 0.0, 0.0017816279, 0.0016721019, 0.0017808506, 0.0016716582]
Batch: 91
D_Loss: [0.5 0.5]
G_Loss: [1.0418786, 1.0, 0.0, 0.0023264585, 0.0014806848, 0.002326909, 0.0014802254]
Batch: 92
D_Loss: [0.5 0.5]
G_Loss: [1.0375973, 1.0, 0.0, 0.0014620431, 0.001956052, 0.0014601757, 0.0019560591]
Batch: 93
D_Loss: [0.5 0.5]
G_Loss: [1.0421395, 1.0, 0.0, 0.001038446, 0.0027924725, 0.0010377064, 0.0027926276]
Batch: 94
D_Loss: [0.5 0.5]
G_Loss: [1.0250717, 1.0, 0.0, 0.0012722824, 0.0010070696, 0.001271293, 0.0010069769]
Batch: 95
D_Loss: [0.5 0.5]
G_Loss: [1.0527713, 1.0, 0.0, 0.0023167618, 0.0024807635, 0.0023160186, 0.0024799774]
Batch: 96
D_Loss: [0.5 0.5]
G_Loss: [1.0322775, 1.0, 0.0, 0.0015260859, 0.0014082303, 0.0015261426, 0.001408247]
Batch: 97
D_Loss: [0.5 0.5]
G_Loss: [1.0344924, 1.0, 0.0, 0.0012941902, 0.0018415228, 0.0012938122, 0.0018414212]
Batch: 98
D_Loss: [0.5 0.5]
G_Loss: [1.0425364, 1.0, 0.0, 0.001568997, 0.0022980485, 0.0015676646, 0.0022982932]
Batch: 99
D_Loss: [0.5 0.5]
G_Loss: [1.0283717, 1.0, 0.0, 0.001053901, 0.0015254244, 0.0010533975, 0.0015249705]
Batch: 100
D_Loss: [0.5 0.5]
G_Loss: [1.0320138, 1.0, 0.0, 0.0018789268, 0.0010314492, 0.0018786575, 0.0010313431]
Batch: 101
D_Loss: [0.5 0.5]
G_Loss: [1.0366875, 1.0, 0.0, 0.0018783172, 0.0014569024, 0.0018783044, 0.0014569508]
Batch: 102
D_Loss: [0.5 0.5]
G_Loss: [1.0340805, 1.0, 0.0, 0.0016309532, 0.0014672492, 0.0016313721, 0.0014671113]
Batch: 103
D_Loss: [0.5 0.5]
G_Loss: [1.0427271, 1.0, 0.0, 0.0016282676, 0.002255972, 0.0016288089, 0.0022559126]
Batch: 104
D_Loss: [0.5 0.5]
G_Loss: [1.0409677, 1.0, 0.0, 0.001166272, 0.0025581075, 0.00116597, 0.0025578653]
Batch: 105
D_Loss: [0.5 0.5]
G_Loss: [1.0321752, 1.0, 0.0, 0.0017714417, 0.0011536679, 0.0017705989, 0.0011534595]
Batch: 106
D_Loss: [0.5 0.5]
G_Loss: [1.0404569, 1.0, 0.0, 0.0014787556, 0.0021992102, 0.0014780327, 0.0021991208]
Batch: 107
D_Loss: [0.5 0.5]
G_Loss: [1.0372792, 1.0, 0.0, 0.0020286213, 0.0013605019, 0.002027859, 0.001360208]
Batch: 108
D_Loss: [0.5 0.5]
G_Loss: [1.0402292, 1.0, 0.0, 0.0012369014, 0.0024203353, 0.0012366995, 0.002420194]
Batch: 109
D_Loss: [0.5 0.5]
G_Loss: [1.0350393, 1.0, 0.0, 0.001748792, 0.0014366355, 0.0017485797, 0.0014364452]
Batch: 110
D_Loss: [0.5 0.5]
G_Loss: [1.0303367, 1.0, 0.0, 0.0011912576, 0.0015666328, 0.0011914144, 0.0015664395]
Batch: 111
D_Loss: [0.5 0.5]
G_Loss: [1.0408204, 1.0, 0.0, 0.0019766313, 0.0017343466, 0.0019767717, 0.0017338158]
Batch: 112
D_Loss: [0.5 0.5]
G_Loss: [1.028091, 1.0, 0.0, 0.0011102355, 0.0014435581, 0.0011096642, 0.001443421]
Batch: 113
D_Loss: [0.5 0.5]
G_Loss: [1.0270739, 1.0, 0.0, 0.0013245367, 0.0011369099, 0.0013229653, 0.0011364755]
Batch: 114
D_Loss: [0.5 0.5]
G_Loss: [1.0259445, 1.0, 0.0, 0.0011068482, 0.0012517942, 0.0011063777, 0.0012516417]
Batch: 115
D_Loss: [0.5 0.5]
G_Loss: [1.0276794, 1.0, 0.0, 0.0015456218, 0.0009706937, 0.0015456406, 0.000970599]
Batch: 116
D_Loss: [0.5 0.5]
G_Loss: [1.0347098, 1.0, 0.0, 0.0018385837, 0.0013168086, 0.0018391602, 0.0013167257]
Batch: 117
D_Loss: [0.5 0.5]
G_Loss: [1.0393384, 1.0, 0.0, 0.0024280108, 0.0011482252, 0.0024279084, 0.001148141]
Batch: 118
D_Loss: [0.5 0.5]
G_Loss: [1.0548131, 1.0, 0.0, 0.0017590927, 0.0032238779, 0.0017595916, 0.003223897]
Batch: 119
D_Loss: [0.5 0.5]
G_Loss: [1.0641576, 1.0, 0.0, 0.0036672824, 0.002165115, 0.0036686016, 0.002165122]
Batch: 120
D_Loss: [0.5 0.5]
W0822 13:12:00.810707 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:00.835649 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:00.855693 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
G_Loss: [1.039357, 1.0, 0.0, 0.0017186594, 0.0018592626, 0.0017186969, 0.0018590989]
W0822 13:12:00.874701 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:00.895823 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:00.913496 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:00.991259 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:01.010306 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:01.029375 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:01.048117 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:01.066426 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
W0822 13:12:01.084241 139716881598336 image.py:648] Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Epoch: 21
Number of batches: 121
Batch: 0
D_Loss: [0.5 0.5]
G_Loss: [1.0317351, 1.0, 0.0, 0.0010825285, 0.0018024929, 0.0010828323, 0.0018020737]
Batch: 1
D_Loss: [0.5 0.5]
G_Loss: [1.0511647, 1.0, 0.0, 0.0018909018, 0.0027604117, 0.0018909741, 0.002760621]
Batch: 2
D_Loss: [0.5 0.5]
G_Loss: [1.0320256, 1.0, 0.0, 0.0017160284, 0.0011955148, 0.0017146135, 0.0011955099]
Batch: 3
D_Loss: [0.5 0.5]
G_Loss: [1.0510559, 1.0, 0.0, 0.0028536946, 0.0017877315, 0.0028541593, 0.0017875144]
Batch: 4
D_Loss: [0.5 0.5]
G_Loss: [1.0260245, 1.0, 0.0, 0.0012029654, 0.0011628708, 0.0012032909, 0.0011627255]
Batch: 5
D_Loss: [0.5 0.5]
G_Loss: [1.0420709, 1.0, 0.0, 0.0010179211, 0.002806708, 0.0010178435, 0.0028068065]
Batch: 6
D_Loss: [0.5 0.5]
In [0]:
Content source: OpenGenus/cosmos
Similar notebooks: