http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits
In [5]:
    
import mnist_loader
    
In [6]:
    
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
    
In [9]:
    
import network
    
In [10]:
    
# 784 (28 x 28 pixel images) input neurons; 30 hidden neurons; 10 output neurons
net = network.Network([784, 30, 10])
    
In [12]:
    
# Use stochastic gradient descent over 30 epochs, with mini-batch size of 10, learning rate of 3.0
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
    
    
In [13]:
    
two_layer_net = network.Network([784, 10])
    
In [14]:
    
two_layer_net.SGD(training_data, 10, 10, 1.0, test_data=test_data)
    
    
In [15]:
    
two_layer_net.SGD(training_data, 10, 10, 2.0, test_data=test_data)
    
    
In [16]:
    
two_layer_net.SGD(training_data, 10, 10, 3.0, test_data=test_data)
    
    
In [17]:
    
two_layer_net.SGD(training_data, 10, 10, 4.0, test_data=test_data)
    
    
In [18]:
    
two_layer_net.SGD(training_data, 20, 10, 3.0, test_data=test_data)
    
    
In [ ]: