This is a one time use notebook to count an process result data to make nice graphs of my results
In [1]:
test_imgs ={'BENTHOCODON': 286,
'CYSTECHINUS_LOVENI': 40,
'ECHINOCREPIS': 26,
'ELPIDIA': 13,
'FUNGIACYATHUS_MARENZELLERI': 13,
'LONG_WHITE': 3,
'ONEIROPHANTA_MUTABILIS_COMPLEX': 3,
'PENIAGONE_PAPILLATA': 10,
'PENIAGONE_SP_1': 2,
'PENIAGONE_SP_2': 1,
'PENIAGONE_SP_A': 453,
'PENIAGONE_VITRAE': 93,
'SCOTOPLANES_GLOBOSA': 63,
'SYNALLACTIDAE': 5,
'TJALFIELLA': 66,
'bg': 0}
In [2]:
train_imgs = {'BENTHOCODON': 569,
'CYSTECHINUS_LOVENI': 174,
'ECHINOCREPIS': 82,
'ELPIDIA': 493,
'FISH': 8,
'FUNGIACYATHUS_MARENZELLERI': 64,
'LONG_WHITE': 8,
'ONEIROPHANTA_MUTABILIS_COMPLEX': 6,
'PENIAGONE_PAPILLATA': 14,
'PENIAGONE_SP_1': 111,
'PENIAGONE_SP_2': 12,
'PENIAGONE_SP_A': 1108,
'PENIAGONE_VITRAE': 360,
'SCOTOPLANES_GLOBOSA': 365,
'SYNALLACTIDAE': 30,
'TJALFIELLA': 230,
'bg': 0}
In [13]:
sum([train_imgs[key] for key in train_imgs.keys()])
Out[13]:
In [3]:
imagenet_ap = {'BENTHOCODON': 0.805137016516,
'ONEIROPHANTA_MUTABILIS_COMPLEX': 0.458815192744,
'SCOTOPLANES_GLOBOSA': 0.899604662246,
'PENIAGONE_PAPILLATA': 0.7725,
'PENIAGONE_SP_1': 0.0206598918637,
'ELPIDIA': 0.0442176870748,
'ECHINOCREPIS': 0.42133689736,
'LONG_WHITE': 0.2,
'CYSTECHINUS_LOVENI': 0.590778912159,
'TJALFIELLA': 0.494639502854,
'PENIAGONE_VITRAE': 0.292665667963,
'PENIAGONE_SP_2': 0.166666666667,
'SYNALLACTIDAE': 0.821111111111,
'PENIAGONE_SP_A': 0.978279800281,
'FUNGIACYATHUS_MARENZELLERI': 0.386287047543}
In [4]:
most_epoch_ap = {'CYSTECHINUS_LOVENI': 0.643499906799,
'ONEIROPHANTA_MUTABILIS_COMPLEX': 0.248599910394,
'SCOTOPLANES_GLOBOSA': 0.948805921186,
'PENIAGONE_PAPILLATA': 1.0,
'PENIAGONE_SP_1': 0.0500641025641,
'ELPIDIA': 0.102745995423,
'ECHINOCREPIS': 0.786982162631,
'LONG_WHITE': 0.183501683502,
'BENTHOCODON': 0.757451612353,
'TJALFIELLA': 0.389716451493,
'FUNGIACYATHUS_MARENZELLERI': 0.424597600764,
'PENIAGONE_SP_2': 0.166666666667,
'SYNALLACTIDAE': 0.627380952381,
'PENIAGONE_SP_A': 0.987186066252,
'PENIAGONE_VITRAE': 0.376280487988}
In [5]:
keys = set(most_epoch_ap.keys()) & set(imagenet_ap.keys()) & set(test_imgs.keys()) & set(train_imgs.keys())
In [6]:
print(" ,Number of Training Images, Number of Testing Images, Imagenet AP, Most Epoch AP")
for key in keys:
num_train = train_imgs[key]
num_test = test_imgs[key]
imgnet_ap = imagenet_ap[key]
max_epch_ap = most_epoch_ap[key]
print("{},{},{},{},{}".format(key, num_train, num_test, imgnet_ap, max_epch_ap))
In [7]:
all_keys = set(most_epoch_ap.keys()) | set(imagenet_ap.keys()) | set(test_imgs.keys()) | set(train_imgs.keys())
In [8]:
all_keys.remove('bg')
In [9]:
list(all_keys)
Out[9]:
In [ ]: