By Lilian Besson, Sept.2017.
With inline math $\sin(x)^2 + \cos(x)^2 = 1$ and equations: $$\sin(x)^2 + \cos(x)^2 = \left(\frac{\mathrm{e}^{ix} - \mathrm{e}^{-ix}}{2i}\right)^2 + \left(\frac{\mathrm{e}^{ix} + \mathrm{e}^{-ix}}{2}\right)^2 = \frac{-\mathrm{e}^{2ix}-\mathrm{e}^{-2ix}+2 \; ++\mathrm{e}^{2ix}+\mathrm{e}^{-2ix}+2}{4} = 1.$$
In [1]:
Sys.command "ocaml -version";;
Out[1]:
In [6]:
#thread ;;
#require "jupyter.notebook" ;;
(* https://akabe.github.io/ocaml-jupyter/notebook/JupyterNotebook.html *)
let youtube_video url = JupyterNotebook.display "text/html"
(Printf.sprintf "<iframe width=560 height=315 src='%s'></iframe>" url)
;;
Out[6]:
In [7]:
youtube_video "https://www.youtube.com/embed/FNg5_2UUCNU";;
Out[7]: