In [16]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
from pyxrf.model.command_tools import fit_pixel_data_and_save
from pyxrf.api import *
Users need to have .json file ready in order to do batch mode fitting.
In [24]:
# Define working directory and json file
working_dir = '/data/users/2016Q3/Gill_2016Q3/'
In [22]:
# Define a list of h5 files which should stay in the working directory.
datalist = np.arange(16715, 16808)
filelist = ['scan2D_'+str(n)+'.h5' for n in datalist]
In [8]:
# Parameter file to fit all the data.
param_file = 'parameter_data.json'
In [ ]:
# Pixel fitting for all the files. If ic_name is given,
# data will be also normalized based on ion chamber value.
for fname in filelist:
fit_pixel_data_and_save(working_dir, fname,
param_file_name=param_file,
save_txt=True, ic_name='sclr1_ch4')
In [32]:
element_list = ['Cu_K','Fe_K']
d3 = combine_data_to_recon(element_list, datalist, working_dir)
In [33]:
d3.keys()
Out[33]:
In [35]:
# create movie for Fe
create_movie(d3['Fe_K'], 'data3d_Fe.mp4')
In [36]:
# create movie for Cu
create_movie(d3['Cu_K'], 'data3d_Cu.mp4')
In [ ]:
In [ ]:
In [ ]: