In [ ]:
from __future__ import graduation

Welcome

Development of a Modular Application for Analyzing Observer-Based Control Systems for NASA's Spin-Stabilized MMS Mission Spacecraft

UNH Mechanical Engineering - MS Thesis Defense

Daniel R. Couture

Prof. May-Win Thein

May 1st, 2014

Kingsbury Hall, W290

Thank You

  • Prof. Thein
  • Prof. Fussell, Prof. Hatcher
  • Heather

 

  • Tracey Harvey
  • NASA Goddard MMS ADCS team
  • NH Space Grant Consortium
  • Dyn Inc
  • Newmarket School District
  • Former (and future) Students
  • Coffee

Lesson Plan

  • What is MMS?
  • The Question
  • My Work
    • "Cool" Things Learned
  • Questions
    • (No hard questions, please)

What is MMS?

Magnetospheric Multiscale Mission - Magnetic Reconnection

Neil Mushaweh (2005 UNH ME)

  • Simulated Boom Dynamics
  • Marc Mentat
    • Excellent FEA modeling
    • Limited $< 90$ degree rotations
  • MATLAB/Simulink
    • Goto for control systems
    • Don't have a model for the boom dynamics

The Question

UNH NASA MMS TableSat IA

  • TableSat/MMS
    • Limited 3-DOF Motion
    • 4 Spin-plane Double Probe (SDP) Booms
    • 1 Axial Double Probe (SDP) Booms
  • Sensors
    • Single Axis Gyro
    • Accelerometers
    • Coarse Sun Sensor
    • Three-Axis Magnetometer
  • Actuators
    • 2 Rotational Fans (1 CW, 1 CCW)
    • 2 Nutation Fans (1 Mx, 1 My)

Thesis Goals

Experimental Results

  • $\omega_z = 3$ rpm
  • Nutation Control
  • Boom Dynamics Analysis

Supporting Goals

  • ADCS $f(\boldsymbol{V}_{\text{sensors}}) = \boldsymbol{V}_{\text{actuators}}$

Thesis Goals - Results Assessments

Experimental Goals

  • $\omega_z = 3$ rpm
    A
  • Nutation Control
    C
  • Boom Dynamics Analysis
    F

Supporting Goals

  • ADCS $f(\boldsymbol{V}_{\text{sensors}}) = \boldsymbol{V}_{\text{actuators}}$
    A

Experimental Goal: $\omega_z = 3$ rpm

$$M_z(k) = K_p \omega_{e}(k) + K_i \sum^k_0 \omega_{e}(k) + K_d [\omega_{e}(k) - \omega_{e}(k-1) ] \\ \omega_{e} = \omega_{z} - \omega_{zd}$$

Rate Control Proof (8/15/2008)

Voltages to State - CSS

$$\begin{align} V_{css\_x} &= \sum\limits_{i=1}^6 (V_{css\_i} - V_{css\_base}) \cos \left( \frac{2\pi}{6} (i-1)\right) \\ V_{css\_y} &= \sum\limits_{i=1}^6 (V_{css\_i} - V_{css\_base}) \sin \left( \frac{2\pi}{6} (i-1)\right) \\ \psi &= \tan^{-1} \frac{V_{css\_y}}{V_{css\_x}} \end{align}$$

Voltages to State - Three-Axis Magnetometer

Measure Nutation from the TAM
 
 
 

  • Nutation Control
    C
  • Boom Dynamics Analysis
    F
    • </div>

    2008 to Now?

    $f(\boldsymbol{V}_{\text{sensors}}) = \boldsymbol{V}_{\text{actuators}}$