In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta $$Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.
In [127]:
def integrate_polar(f, rmax):
"""Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
f1 = lambda r,t: f(r,t)*r
tmin = 0.0
tmax = 2*np.pi
rmin = lambda c:0
rmaxx = lambda c:rmax
return integrate.dblquad(f1,tmin, tmax, rmin, rmaxx)[0]
In [128]:
assert np.allclose(integrate_polar(lambda r,t: 1.0, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)
In [126]:
integrate_polar(lambda r,t: 1.0, 1.0)[0]
Out[126]:
In [ ]: