In [11]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [12]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
maxima = []
for x in range(0, len(a)):
if(x==len(a)-1 or a[x]>a[x+1]) and a[x]>a[x-1]:
maxima.append(x)
return np.array(maxima)
In [13]:
a = [1,3,6,4,5,1]
find_peaks(a)
Out[13]:
In [14]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [15]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [20]:
q = pi_digits_str
r = []
for p in q:
r.append(int(p))
a = np.array(r)
m = find_peaks(a)
m = find_peaks(a)
s = np.diff(m)
plt.hist(s,bins=50)
Out[20]:
In [35]:
?np.split
In [ ]:
assert True # use this for grading the pi digits histogram