In [1]:
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv")
Plot the data frame
Sources:
In [2]:
%matplotlib inline
In [3]:
df.plot()
Out[3]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fa5a1918c50>
In [4]:
df.style
Out[4]:
School
Women
Men
gap
0
MIT
94
152
58
1
Stanford
96
151
55
2
Harvard
112
165
53
3
U.Penn
92
141
49
4
Princeton
90
137
47
5
Chicago
78
118
40
6
Georgetown
94
131
37
7
Tufts
76
112
36
8
Yale
79
114
35
9
Columbia
86
119
33
10
Duke
93
124
31
11
Dartmouth
84
114
30
12
NYU
67
94
27
13
Notre Dame
73
100
27
14
Cornell
80
107
27
15
Michigan
62
84
22
16
Brown
72
92
20
17
Berkeley
71
88
17
18
Emory
68
82
14
19
UCLA
64
78
14
20
SoCal
72
81
9
In [19]:
df.sort_values(by=["Women"], ascending= 0)
Out[19]:
School
Women
Men
gap
2
Harvard
112
165
53
1
Stanford
96
151
55
0
MIT
94
152
58
6
Georgetown
94
131
37
10
Duke
93
124
31
3
U.Penn
92
141
49
4
Princeton
90
137
47
9
Columbia
86
119
33
11
Dartmouth
84
114
30
14
Cornell
80
107
27
8
Yale
79
114
35
5
Chicago
78
118
40
7
Tufts
76
112
36
13
Notre Dame
73
100
27
16
Brown
72
92
20
20
SoCal
72
81
9
17
Berkeley
71
88
17
18
Emory
68
82
14
12
NYU
67
94
27
19
UCLA
64
78
14
15
Michigan
62
84
22
Content source: KDD-OpenSource/geox-young-academy
Similar notebooks: