In [124]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [157]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
#empty list and make the parameter into an array
empty = []
f = np.array(a)
#Loop through the parameter and tell if it is a max
for i in range(len(f)):
if i == 0 and f[i] > f[i+1]:
empty.append(i)
if i == len(f)-1 and f[i]> f[i-1]:
empty.append(i)
if i > 0 and i < len(f)-1:
if f[i]>f[i-1] and f[i] > f[i+1]:
empty.append(i)
return empty
In [158]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [159]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [155]:
#iterate through pi_digits_str
f = [c for c in pi_digits_str]
#find peaks in f
x = find_peaks(f)
#graph
plt.hist(np.diff(x),10, align = 'left')
plt.xticks(range(0,11))
plt.title("Differences of Local Maxima for pi");
plt.xlabel("Difference");
plt.ylabel("Frequency");
In [ ]:
assert True # use this for grading the pi digits histogram