In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
from scipy.integrate import dblquad
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta $$Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.
In [61]:
def integrate_polar(f, rmax):
from scipy.integrate import dblquad
#NOTE: the order of arguments matters - inner to outer
integrand = lambda x,y: x
ymin = 0
ymax = 2*np.pi
#The callable functions for the x limits are just constants in this case:
xmin = lambda y : 0
xmax = lambda y : rmax
#See the help for correct order of limits
I, err = dblquad(integrand, ymin, ymax, xmin, xmax)
return(I)
In [63]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)
In [ ]:
In [ ]:
In [ ]:
In [ ]: