In [2]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [3]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
peaks = np.array([],np.dtype('int'))
search = np.array([entry for entry in a])
if search[0] > search[1]:
peaks = np.append(peaks,np.array(0))
for i in range(1,len(search)-1):
if search[i] > search[i+1] and search[i] > search[i-1]:
peaks = np.append(peaks,i)
if search[-1] > search[-2]:
peaks = np.append(peaks,np.array(len(search)-1))
return peaks
In [4]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [5]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [6]:
ints = [int(a) for a in pi_digits_str]
In [7]:
diff = np.diff(find_peaks(ints))
In [10]:
plt.hist(diff,np.arange(0,15));
plt.xlim(2,15);
plt.xlabel('Number of digits between maxima');
plt.ylabel('Occurence');
plt.title('Occurences of Maxima spacing for 10,000 digits of Pi');
In [ ]:
assert True # use this for grading the pi digits histogram
In [ ]: