XID+IR_SED_Analysis

This notebook takes the posterior of the XID+IR_SED run and examines outputs with some useful visualisation


In [1]:
from astropy.io import ascii, fits
import pylab as plt
%matplotlib inline
from astropy import wcs


import numpy as np
import xidplus
from xidplus import moc_routines
import pickle
import pandas as pd
import seaborn as sns

In [3]:
# load up run
priors,posterior=xidplus.load(filename='./test_SPM_mrr.pkl')

Plot maps

  1. The actual maps
  2. The posterior sample maps
  3. The Bayesian P value map

In [4]:
from xidplus import plots
orig_map=plots.plot_map(priors);
for i in range(0,priors[0].nsrc):
    orig_map[0][0].add_label(priors[0].sra[i], priors[0].sdec[i]+0.0005, np.arange(0,priors[0].nsrc)[i], relative=False)
for i in range(0,6):
    orig_map[0][i].show_markers(priors[0].sra, priors[0].sdec, edgecolor='black', facecolor='black',
                marker='o', s=50, alpha=0.5)


WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]

In [5]:
orig_map[0][0].show_markers(priors[0].sra, priors[0].sdec, edgecolor='black', facecolor='black',
                marker='o', s=50, alpha=0.5)

In [6]:
movie=plots.replicated_map_movie(priors,posterior, 5)


WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]

In [7]:
movie


Out[7]:

In [8]:
plots.plot_Bayes_pval_map(priors, posterior)


WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
WARNING: Cannot determine equinox. Assuming J2000. [aplpy.wcs_util]
Out[8]:
([<aplpy.core.FITSFigure at 0x1111a46d8>,
  <aplpy.core.FITSFigure at 0x119610f98>,
  <aplpy.core.FITSFigure at 0x119610c88>,
  <aplpy.core.FITSFigure at 0x11a8d07b8>,
  <aplpy.core.FITSFigure at 0x123712630>,
  <aplpy.core.FITSFigure at 0x110128588>],
 <matplotlib.figure.Figure at 0x119531518>)

2D marginalised plot for fluxes

Choose which source we want to look at


In [9]:
s1=138

In [10]:
df = pd.DataFrame(posterior.samples['src_f'][0:1500,:,s1],columns=[ '24','100', '160','250', '350', '500'])
g = sns.PairGrid(df,size=5)
g.map_diag(plt.hist, alpha=0.5)
g.map_lower(sns.kdeplot, cmap="Reds_d",alpha=0.5,n_levels=10,normed=True, shade=True,shade_lowest=False)


Out[10]:
<seaborn.axisgrid.PairGrid at 0x11c89e518>

Plot Posterior SED fit samples


In [33]:
from xidplus import sed
SEDs,df =sed.mrr_templates()


0.0001
0.0001
0.0001
0.0001

In [35]:
df['wave']


Out[35]:
0     1450.106836
1     1200.107086
2     1000.000000
3      831.955314
4      691.990289
5      575.042575
6      478.960832
7      398.015514
8      330.978665
9      274.979299
10     228.981291
11     190.989724
12     158.019251
13     132.010963
14     109.999320
15     100.000000
16      91.201084
17      75.892699
18      63.095734
19      60.006735
20      52.504920
21      43.701868
22      36.298610
23      30.200213
24      24.998273
25      20.897773
26      17.398027
27      14.501068
28      12.001071
29      11.601122
30      11.301081
31      10.999932
32      10.899084
33       9.709570
34       9.399397
35       8.990834
36       8.590135
37       8.390735
38       8.199738
39       7.689534
40       7.000032
41       6.609978
42       6.369422
43       6.190133
44       6.029760
45       5.850595
46       4.799544
47       3.400165
48       3.339566
49       3.299894
50       3.269565
51       3.160094
52       3.069729
53       2.690296
54       2.511886
55       1.258925
Name: wave, dtype: float64

In [15]:
sns.set_style("white")

plt.figure(figsize=(6,6))
from astropy.cosmology import Planck13

violin_parts=plt.violinplot(posterior.samples['src_f'][:,3:6,s1],[250,350,500], points=60, widths=100,
                      showmeans=True, showextrema=True, showmedians=True,bw_method=0.5)
# Make all the violin statistics marks red:
for partname in ('cbars','cmins','cmaxes','cmeans','cmedians'):
    vp = violin_parts[partname]
    vp.set_edgecolor('green')
    vp.set_linewidth(1)

for pc in violin_parts['bodies']:
    pc.set_facecolor('green')

violin_parts=plt.violinplot(posterior.samples['src_f'][:,0:3,s1],[24,100,160], points=60, widths=20,showmeans=True, showextrema=True, showmedians=True,bw_method=0.5)
# Make all the violin statistics marks red:
for partname in ('cbars','cmins','cmaxes','cmeans','cmedians'):
    vp = violin_parts[partname]
    vp.set_edgecolor('green')
    vp.set_linewidth(1)

for pc in violin_parts['bodies']:
    pc.set_facecolor('green')

import astropy.units as u

for s in range(0,1500,20):
    z= posterior.samples['z'][s,s1]
    div=(4.0*np.pi * np.square(Planck13.luminosity_distance(z).cgs))
    div=div.value
   
    plt.loglog((z+1.0)*df['wave'],np.power(10.0,posterior.samples['Nbb'][s,s1])*(1.0+z)*df[df.columns[np.arange(1,posterior.samples['p'].shape[2]+1)
                                        [np.random.multinomial(1, posterior.samples['p'][s,s1,:])==1]]]/div,alpha=0.05,c='b',zorder=0)
    
    #plt.plot([250,350,500, 24,100,160],posterior_IR.samples['src_f'][s,0:6,s1], 'ko', alpha=0.1, ms=10)
    #plt.plot([250,350,500],posterior.samples['src_f'][s,0:3,s1], 'ro', alpha=0.1, ms=10)
    


plt.ylim(10E-7,10E2)
plt.xlim(5,5E3)
#plt.plot([3.6,4.5,5.7,7.9],[2.91E-3,2.38E-3,2.12E-3,9.6E-3], 'ro')
plt.xlabel('Wavelength (microns)')
plt.ylabel('Flux (mJy)')


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-15-13722b4fee44> in <module>()
     33 
     34     plt.loglog((z+1.0)*df['wave'],np.power(10.0,posterior.samples['Nbb'][s,s1])*(1.0+z)*df[df.columns[np.arange(1,posterior.samples['p'].shape[2]+1)
---> 35                                         [np.random.multinomial(1, posterior.samples['p'][s,s1,:])==1]]]/div,alpha=0.05,c='b',zorder=0)
     36 
     37     #plt.plot([250,350,500, 24,100,160],posterior_IR.samples['src_f'][s,0:6,s1], 'ko', alpha=0.1, ms=10)

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/pyplot.py in loglog(*args, **kwargs)
   3176                       mplDeprecation)
   3177     try:
-> 3178         ret = ax.loglog(*args, **kwargs)
   3179     finally:
   3180         ax._hold = washold

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/axes/_axes.py in loglog(self, *args, **kwargs)
   1541         b = self._hold
   1542         self._hold = True  # we've already processed the hold
-> 1543         l = self.plot(*args, **kwargs)
   1544         self._hold = b  # restore the hold
   1545 

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/__init__.py in inner(ax, *args, **kwargs)
   1896                     warnings.warn(msg % (label_namer, func.__name__),
   1897                                   RuntimeWarning, stacklevel=2)
-> 1898             return func(ax, *args, **kwargs)
   1899         pre_doc = inner.__doc__
   1900         if pre_doc is None:

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/axes/_axes.py in plot(self, *args, **kwargs)
   1404         kwargs = cbook.normalize_kwargs(kwargs, _alias_map)
   1405 
-> 1406         for line in self._get_lines(*args, **kwargs):
   1407             self.add_line(line)
   1408             lines.append(line)

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/axes/_base.py in _grab_next_args(self, *args, **kwargs)
    405                 return
    406             if len(remaining) <= 3:
--> 407                 for seg in self._plot_args(remaining, kwargs):
    408                     yield seg
    409                 return

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/axes/_base.py in _plot_args(self, tup, kwargs)
    355         ret = []
    356         if len(tup) > 1 and is_string_like(tup[-1]):
--> 357             linestyle, marker, color = _process_plot_format(tup[-1])
    358             tup = tup[:-1]
    359         elif len(tup) == 3:

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/matplotlib/axes/_base.py in _process_plot_format(fmt)
     92     # handle the multi char special cases and strip them from the
     93     # string
---> 94     if fmt.find('--') >= 0:
     95         linestyle = '--'
     96         fmt = fmt.replace('--', '')

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/pandas/core/generic.py in __getattr__(self, name)
   3079             if name in self._info_axis:
   3080                 return self[name]
-> 3081             return object.__getattribute__(self, name)
   3082 
   3083     def __setattr__(self, name, value):

AttributeError: 'DataFrame' object has no attribute 'find'

Plot Table of probabilities for SED type


In [16]:
df=pd.DataFrame(np.log10(posterior.samples['p'][:,s1,:]),columns=df.columns.tolist()[1:])
f, ax = plt.subplots(figsize=(20, 20))
sns.heatmap(df,annot=False, ax=ax)
ax.set_yticklabels('None')
ax.set_ylabel('Iteration')


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-16-05692f6c1916> in <module>()
      1 df=pd.DataFrame(np.log10(posterior.samples['p'][:,s1,:]),columns=df.columns.tolist()[1:])
      2 f, ax = plt.subplots(figsize=(20, 20))
----> 3 sns.heatmap(df,annot=False, ax=ax)
      4 ax.set_yticklabels('None')
      5 ax.set_ylabel('Iteration')

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/seaborn/matrix.py in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, ax, xticklabels, yticklabels, mask, **kwargs)
    483     plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,
    484                           annot_kws, cbar, cbar_kws, xticklabels,
--> 485                           yticklabels, mask)
    486 
    487     # Add the pcolormesh kwargs here

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/seaborn/matrix.py in __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)
    165         # Determine good default values for the colormapping
    166         self._determine_cmap_params(plot_data, vmin, vmax,
--> 167                                     cmap, center, robust)
    168 
    169         # Sort out the annotations

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/seaborn/matrix.py in _determine_cmap_params(self, plot_data, vmin, vmax, cmap, center, robust)
    204         calc_data = plot_data.data[~np.isnan(plot_data.data)]
    205         if vmin is None:
--> 206             vmin = np.percentile(calc_data, 2) if robust else calc_data.min()
    207         if vmax is None:
    208             vmax = np.percentile(calc_data, 98) if robust else calc_data.max()

/Users/pdh21/anaconda3/envs/new/lib/python3.6/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims)
     27 
     28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29     return umr_minimum(a, axis, None, out, keepdims)
     30 
     31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):

ValueError: zero-size array to reduction operation minimum which has no identity

Plot Marginalised LIR


In [17]:
plt.figure(figsize=(6,6))
plt.hist(posterior.samples['Nbb'][:,s1], bins=np.arange(8,14,0.1),normed=True, alpha=0.4);
plt.xlabel(r'$\log_{10}L_{IR}\odot$')
plt.ylabel(r'p($L_{IR}$)')


Out[17]:
<matplotlib.text.Text at 0x1246686d8>

In [18]:
plt.figure(figsize=(6,6))
plt.hist(np.random.normal(priors[0].z_median[s1],priors[0].z_sig[s1],size=1000),bins=np.arange(0,7, 0.1),normed=True,color='red', alpha=0.5);
plt.hist(posterior.samples['z'][0:1500,s1],bins=np.arange(0,7, 0.1),normed=True, alpha=0.5, color='green');
plt.xlabel('redshift')
plt.ylabel('p(z)')


Out[18]:
<matplotlib.text.Text at 0x126bd4b38>

Appendix:

Examining chains

To check runs look sensible,we can look at the samples and see if there is any drastic change between each chain. The chains are concatenated, so plotting the sample for any parameter on its own will cycle through each chain.


In [25]:
plt.plot(posterior.samples['src_f'][:,0,s1])


Out[25]:
[<matplotlib.lines.Line2D at 0x126d24b00>]

In [67]:
plt.semilogy(np.abs(posterior.samples['lp__']))


Out[67]:
[<matplotlib.lines.Line2D at 0x128ee7198>]

In [26]:
posterior.n_eff


Out[26]:
{'Nbb': array([    2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,  2000.,     2.,     2.,     2.,
         2000.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,  2000.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,  2000.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,  2000.,     2.,     2.,     2.,     2.,     2.,
            2.,  2000.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,  2000.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.]),
 'bkg': array([    2.,     2.,  2000.,     2.,     2.,     2.]),
 'sigma_conf': array([ 2000.,  2000.,  2000.,  2000.,  2000.,  2000.]),
 'src_f': array([[ 2.,  2.,  2.,  2.,  2.,  2.],
        [ 2.,  2.,  2.,  2.,  2.,  2.],
        [ 2.,  2.,  2.,  2.,  2.,  2.],
        ..., 
        [ 2.,  2.,  2.,  2.,  2.,  2.],
        [ 2.,  2.,  2.,  2.,  2.,  2.],
        [ 2.,  2.,  2.,  2.,  2.,  2.]]),
 'z': array([    2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,  2000.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,  2000.,     2.,     2.,
            2.,     2.,     2.,     2.,  2000.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,  2000.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,  2000.,
            2.,     2.,  2000.,  2000.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,  2000.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,  2000.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,  2000.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,  2000.,     2.,     2.,  2000.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.,     2.,     2.,     2.,
            2.,     2.,     2.,     2.,     2.])}

In [55]:
red=np.arange(0,8,0.01)
red[0]=0.000001
plt.semilogy(red,SEDs[0,0,:]*np.power(10.0,12))
plt.semilogy(red,SEDs[0,1,:]*np.power(10.0,12),c='g')
plt.semilogy(red,SEDs[0,2,:]*np.power(10.0,12),c='r')
plt.semilogy(red,SEDs[0,3,:]*np.power(10.0,12),c='m')
plt.semilogy(red,SEDsb[0,0,:]*np.power(10.0,12),c='k')


Out[55]:
[<matplotlib.lines.Line2D at 0x125b72080>]

In [54]:
div_test=(4.0*np.pi * np.square(Planck13.luminosity_distance(0.1).cgs))
div_test=div_test.value
plt.loglog(df['wave'],np.power(10.0,8)*(1.0+0.1)*df['0']/div_test)
plt.loglog(dfb['wave'],np.power(10.0,8)*(1.0+0.1)*dfb['Blue_SF_glx.norm_LIR']/div_test)
plt.ylim(0.01,10)


Out[54]:
(0.01, 10)

In [48]:
dfb


Out[48]:
wave Blue_SF_glx.norm_LIR BroadFIR_SF_glx.norm_LIR Cold_glx.norm_LIR Elliptical.norm_LIR Ly_break.norm_LIR MIR_powlaw_SF_glx.norm_LIR MIRex_SF_glx.norm_LIR Mod_SF_glx.norm_LIR Obs_SF_glx.norm_LIR ... Si_break.norm_LIR Spiral.norm_LIR Torus.norm_LIR Type1_AGN_1.norm_LIR Type2_AGN_1.norm_LIR Type2_AGN_2.norm_LIR Warm_SF_glx.norm_LIR WeakPAH_SF_glx_1.norm_LIR WeakPAH_SF_glx_2.norm_LIR Young_SF_glx.norm_LIR
0 0.009100 1.302995e+31 2.205580e+31 6.456699e+33 1.477389e+35 1.539932e+36 1.079182e+32 1.613976e+31 1.009116e+32 5.289167e+31 ... 4.706273e+41 6.939039e+14 1.844869e+40 1.949440e+42 8.995525e+27 1.528648e+34 4.808136e+21 1.217179e+31 1.011173e+31 1.116179e+33
1 0.009400 2.410548e+31 4.137099e+31 1.067047e+34 2.347837e+35 2.714404e+36 8.497038e+31 2.938124e+31 1.959359e+32 1.055748e+32 ... 4.952793e+41 3.165719e+15 1.897311e+40 2.094512e+42 6.701925e+27 1.331927e+34 1.545787e+22 2.429558e+31 2.023013e+31 2.017934e+33
2 0.009600 3.617449e+31 6.265887e+31 1.497857e+34 3.205934e+35 3.944221e+36 7.253610e+31 4.358698e+31 3.015787e+32 1.655187e+32 ... 5.118431e+41 8.428669e+15 1.933860e+40 2.189624e+42 5.501565e+27 1.218336e+34 3.284252e+22 3.817807e+31 3.157077e+31 2.972991e+33
3 0.009800 5.499361e+31 9.416562e+31 2.120216e+34 4.353759e+35 5.832718e+36 6.172541e+31 6.550380e+31 4.734895e+32 2.634855e+32 ... 5.285019e+41 2.231870e+16 1.969404e+40 2.292341e+42 4.512279e+27 1.116033e+34 7.020147e+22 6.091494e+31 4.911283e+31 4.447371e+33
4 0.010000 8.051189e+31 1.365967e+32 2.890200e+34 5.733400e+35 8.383374e+36 5.260316e+31 9.501986e+31 7.175600e+32 4.067285e+32 ... 5.452485e+41 5.626219e+16 1.999322e+40 2.397878e+42 3.697804e+27 1.023823e+34 1.438448e+23 9.403113e+31 7.460069e+31 6.466231e+33
5 0.010200 1.150961e+32 1.908274e+32 3.811784e+34 7.372464e+35 1.171168e+37 4.499998e+31 1.342811e+32 1.059397e+33 6.088426e+32 ... 5.620758e+41 1.356491e+17 2.032746e+40 2.500504e+42 3.027919e+27 9.471641e+33 2.838537e+23 1.410822e+32 1.096335e+32 9.138010e+33
6 0.010400 1.485685e+32 2.520617e+32 4.591922e+34 8.942911e+35 1.477357e+37 4.046491e+31 1.721397e+32 1.405804e+33 8.248430e+32 ... 5.789767e+41 2.899234e+17 2.084248e+40 2.611522e+42 2.588276e+27 9.042562e+33 5.011419e+23 1.902560e+32 1.548137e+32 1.174135e+34
7 0.010600 1.970024e+32 3.388845e+32 5.708728e+34 1.104139e+36 1.909987e+37 3.644377e+31 2.261652e+32 1.907523e+33 1.134792e+33 ... 5.959446e+41 6.234880e+17 2.140396e+40 2.719184e+42 2.210830e+27 8.686330e+33 8.922890e+23 2.623513e+32 2.194595e+32 1.539085e+34
8 0.010800 2.658933e+32 4.542423e+32 7.190767e+34 1.368547e+36 2.519221e+37 3.310238e+31 3.031529e+32 2.640618e+33 1.592766e+33 ... 6.143867e+41 1.349162e+18 2.191442e+40 2.835793e+42 1.887084e+27 8.473682e+33 1.609687e+24 3.699295e+32 3.080280e+32 2.058252e+34
9 0.011000 4.232970e+32 6.969881e+32 1.093234e+35 1.964253e+36 3.751492e+37 3.067588e+31 4.803961e+32 4.155692e+33 2.512405e+33 ... 6.315090e+41 3.288530e+18 2.242166e+40 2.948575e+42 1.609641e+27 8.610135e+33 3.218690e+24 5.930029e+32 4.576442e+32 3.093402e+34
10 0.011400 6.849669e+32 1.167481e+33 1.583935e+35 2.845914e+36 5.717792e+37 2.715322e+31 7.684647e+32 6.928956e+33 4.306398e+33 ... 6.658923e+41 1.253217e+19 2.347969e+40 3.188869e+42 1.166147e+27 8.933762e+33 8.764025e+24 1.018782e+33 8.444081e+32 4.858036e+34
11 0.011800 1.036631e+33 1.854403e+33 2.161185e+35 3.919009e+36 8.169262e+37 2.522179e+31 1.147040e+33 1.078009e+34 6.871770e+33 ... 6.988089e+41 4.255795e+19 2.441444e+40 3.440259e+42 7.901469e+26 9.660260e+33 2.161016e+25 1.633186e+33 1.477430e+33 7.151798e+34
12 0.012100 4.221150e+33 4.168799e+33 6.974267e+35 8.413622e+36 3.349574e+38 5.402349e+31 4.585483e+33 4.835362e+34 3.005214e+34 ... 7.247116e+41 3.340315e+20 2.502957e+40 3.634108e+42 5.841368e+26 2.476256e+34 1.277806e+26 7.513502e+33 2.813932e+33 2.925647e+35
13 0.012500 6.035039e+33 6.445554e+33 9.327127e+35 1.151416e+37 4.448759e+38 7.670645e+31 6.495826e+33 6.929123e+34 4.416972e+34 ... 7.575555e+41 9.683596e+20 2.592404e+40 3.905234e+42 3.897300e+26 3.357723e+34 2.777884e+26 1.104312e+34 4.694214e+33 3.976227e+35
14 0.012700 7.022104e+33 7.925879e+33 1.055687e+36 1.333581e+37 4.954799e+38 9.091156e+31 7.540873e+33 7.988504e+34 5.139393e+34 ... 7.730395e+41 1.569726e+21 2.633237e+40 4.040493e+42 3.180908e+26 3.817966e+34 3.912923e+26 1.290859e+34 5.988942e+33 4.479798e+35
15 0.012800 7.678562e+33 8.787394e+33 1.135920e+36 1.438243e+37 5.319107e+38 1.010257e+32 8.226863e+33 8.755443e+34 5.658802e+34 ... 7.816536e+41 2.025986e+21 2.656456e+40 4.104374e+42 2.873186e+26 4.155705e+34 4.724044e+26 1.421319e+34 6.763363e+33 4.842516e+35
16 0.013100 9.405945e+33 1.177559e+34 1.350424e+36 1.769924e+37 6.137072e+38 1.313876e+32 1.005441e+34 1.062675e+35 6.995955e+34 ... 8.074894e+41 3.997229e+21 2.725368e+40 4.318863e+42 2.210478e+26 5.020734e+34 7.663664e+26 1.757171e+34 9.534222e+33 5.691066e+35
17 0.013200 1.135032e+34 1.347684e+34 1.574258e+36 1.974969e+37 7.388680e+38 1.633653e+32 1.207709e+34 1.303185e+35 8.618915e+34 ... 8.160982e+41 5.745987e+21 2.748089e+40 4.395164e+42 2.032787e+26 6.114667e+34 1.030486e+27 2.169800e+34 1.088656e+34 6.883340e+35
18 0.013400 1.288456e+34 1.620503e+34 1.750400e+36 2.247097e+37 8.046896e+38 1.932953e+32 1.370957e+34 1.465777e+35 9.783948e+34 ... 8.333050e+41 8.819139e+21 2.799576e+40 4.539799e+42 1.714563e+26 6.893414e+34 1.390284e+27 2.474464e+34 1.355041e+34 7.583344e+35
19 0.013700 1.783616e+34 2.192207e+34 2.266570e+36 2.830438e+37 1.068711e+39 2.893698e+32 1.880424e+34 2.047857e+35 1.382757e+35 ... 8.610647e+41 1.934898e+22 2.866316e+40 4.767255e+42 1.331635e+26 9.608734e+34 2.519622e+27 3.521381e+34 1.893146e+34 1.023511e+36
20 0.014000 2.148404e+34 2.849024e+34 2.655729e+36 3.409323e+37 1.212480e+39 3.726214e+32 2.259801e+34 2.438452e+35 1.665561e+35 ... 8.868503e+41 3.551997e+22 2.938587e+40 5.001301e+42 1.035618e+26 1.149425e+35 3.873914e+27 4.261157e+34 2.570388e+34 1.180068e+36
21 0.014300 5.643289e+34 4.416848e+34 5.605316e+36 5.001319e+37 3.492136e+39 1.179462e+33 5.800783e+34 7.337202e+35 5.104778e+35 ... 9.125711e+41 1.632634e+23 3.002997e+40 5.229972e+42 8.065218e+25 3.482548e+35 1.501642e+28 1.312030e+35 3.805530e+34 3.510132e+36
22 0.014700 1.283792e+35 6.935456e+34 1.141728e+37 7.211856e+37 8.831890e+39 3.602854e+33 1.286617e+35 1.859915e+36 1.431988e+36 ... 9.489192e+41 6.979936e+23 3.093980e+40 5.564958e+42 6.019752e+25 9.724328e+35 5.855027e+28 3.356653e+35 5.920763e+34 9.317212e+36
23 0.015100 1.580571e+35 9.427449e+34 1.364212e+37 8.981860e+37 1.003166e+40 4.763936e+33 1.580405e+35 2.242912e+36 1.738836e+36 ... 9.852546e+41 1.406600e+24 3.183001e+40 5.899037e+42 4.687031e+25 1.183529e+36 9.437307e+28 4.132622e+35 8.446890e+34 1.070546e+37
24 0.015500 1.952196e+35 1.270877e+35 1.639046e+37 1.114489e+38 1.148371e+40 6.319391e+33 1.947501e+35 2.719704e+36 2.127982e+36 ... 1.021546e+42 2.772554e+24 3.262467e+40 6.244397e+42 3.922900e+25 1.445068e+36 1.515505e+29 5.092547e+35 1.186878e+35 1.242552e+37
25 0.015900 2.396925e+35 1.691354e+35 1.966628e+37 1.371534e+38 1.318904e+40 8.390855e+33 2.385661e+35 3.293462e+36 2.612757e+36 ... 1.057764e+42 5.345779e+24 3.347165e+40 6.601178e+42 3.756109e+25 1.774268e+36 2.413729e+29 6.267091e+35 1.646407e+35 1.446923e+37
26 0.016200 2.772619e+35 2.077162e+35 2.238505e+37 1.593832e+38 1.450271e+40 1.023392e+34 2.753243e+35 3.748767e+36 3.008394e+36 ... 1.085487e+42 8.535851e+24 3.411245e+40 6.884260e+42 4.082950e+25 2.042937e+36 3.356791e+29 7.249396e+35 2.083402e+35 1.602070e+37
27 0.016600 3.381241e+35 2.708048e+35 2.667743e+37 1.930316e+38 1.662015e+40 1.340380e+34 3.349889e+35 4.519333e+36 3.668771e+36 ... 1.124114e+42 1.582824e+25 3.492197e+40 7.245080e+42 5.434504e+25 2.491385e+36 5.213269e+29 8.861102e+35 2.811635e+35 1.865809e+37
28 0.017000 4.052826e+35 3.478069e+35 3.110468e+37 2.319050e+38 1.859160e+40 1.701805e+34 4.006013e+35 5.305865e+36 4.337131e+36 ... 1.165447e+42 2.819127e+25 3.570925e+40 7.633523e+42 8.050851e+25 2.945254e+36 7.794568e+29 1.057230e+36 3.738013e+35 2.111296e+37
29 0.017300 4.644644e+35 4.183431e+35 3.507682e+37 2.651579e+38 2.039441e+40 2.042228e+34 4.580435e+35 6.011054e+36 4.959033e+36 ... 1.195878e+42 4.318262e+25 3.630572e+40 7.941809e+42 1.119531e+26 3.367574e+36 1.051929e+30 1.211613e+36 4.600820e+35 2.332081e+37
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
10975 1658.999475 4.814515e+43 7.588094e+43 2.689183e+44 2.972383e+44 6.041035e+43 1.912953e+43 3.780131e+43 8.502580e+43 1.093949e+43 ... 3.692215e+43 3.220395e+43 2.267646e+43 3.868295e+43 4.673436e+43 6.207508e+43 2.205904e+43 5.833970e+43 5.526311e+43 1.154366e+44
10976 1669.000456 4.707312e+43 7.419132e+43 2.629304e+44 2.906198e+44 5.906521e+43 1.870358e+43 3.695960e+43 8.313256e+43 1.069590e+43 ... 3.618323e+43 3.148687e+43 2.217153e+43 3.773462e+43 4.569374e+43 6.083279e+43 2.156786e+43 5.704066e+43 5.403259e+43 1.131264e+44
10977 1679.000889 4.602162e+43 7.270128e+43 2.570572e+44 2.841280e+44 5.774584e+43 1.828579e+43 3.613401e+43 8.146294e+43 1.048109e+43 ... 3.545653e+43 3.078354e+43 2.172624e+43 3.697677e+43 4.467306e+43 5.961104e+43 2.108608e+43 5.576652e+43 5.282563e+43 1.108544e+44
10978 1689.000047 4.499035e+43 7.107216e+43 2.518762e+44 2.777612e+44 5.658198e+43 1.791724e+43 3.532431e+43 7.963749e+43 1.024623e+43 ... 3.466201e+43 3.009373e+43 2.123939e+43 3.614818e+43 4.367201e+43 5.840959e+43 2.061358e+43 5.464255e+43 5.176094e+43 1.086202e+44
10979 1699.000924 4.397919e+43 6.963498e+43 2.462153e+44 2.721445e+44 5.531031e+43 1.751455e+43 3.453040e+43 7.802710e+43 1.003903e+43 ... 3.396109e+43 2.941737e+43 2.076204e+43 3.541721e+43 4.269048e+43 5.736039e+43 2.019674e+43 5.341446e+43 5.059762e+43 1.066691e+44
10980 1708.999095 4.308675e+43 6.806501e+43 2.412190e+44 2.660087e+44 5.406330e+43 1.715914e+43 3.382969e+43 7.644373e+43 9.835315e+42 ... 3.327194e+43 2.875414e+43 2.029394e+43 3.461870e+43 4.172799e+43 5.619640e+43 1.974139e+43 5.233055e+43 4.957087e+43 1.045045e+44
10981 1718.999480 4.211255e+43 6.667940e+43 2.357650e+44 2.599943e+44 5.296273e+43 1.680983e+43 3.306480e+43 7.488757e+43 9.635097e+42 ... 3.259462e+43 2.816879e+43 1.988082e+43 3.391397e+43 4.078452e+43 5.505241e+43 1.933951e+43 5.114735e+43 4.845006e+43 1.023771e+44
10982 1728.999534 4.125245e+43 6.531756e+43 2.309498e+44 2.546842e+44 5.176171e+43 1.642864e+43 3.238949e+43 7.335809e+43 9.438312e+42 ... 3.200252e+43 2.753001e+43 1.947478e+43 3.314491e+43 3.995155e+43 5.405235e+43 1.894453e+43 5.010273e+43 4.746053e+43 1.005173e+44
10983 1739.000479 4.031433e+43 6.383217e+43 2.262180e+44 2.488924e+44 5.070120e+43 1.609205e+43 3.165292e+43 7.185511e+43 9.244938e+42 ... 3.134685e+43 2.696597e+43 1.903190e+43 3.246583e+43 3.904301e+43 5.294491e+43 1.851371e+43 4.907621e+43 4.648815e+43 9.845791e+43
10984 1748.999742 3.948567e+43 6.252010e+43 2.215682e+44 2.437764e+44 4.954483e+43 1.576128e+43 3.100230e+43 7.037813e+43 9.054909e+42 ... 3.070251e+43 2.641169e+43 1.864070e+43 3.179850e+43 3.824048e+43 5.197618e+43 1.813316e+43 4.806746e+43 4.553259e+43 9.665642e+43
10985 1759.000491 3.867158e+43 6.123111e+43 2.170000e+44 2.387504e+44 4.852335e+43 1.543632e+43 3.036311e+43 6.892712e+43 8.868221e+42 ... 3.006951e+43 2.580766e+43 1.825638e+43 3.107127e+43 3.745206e+43 5.102191e+43 1.775931e+43 4.707644e+43 4.459383e+43 9.488185e+43
10986 1769.000155 3.787179e+43 5.996474e+43 2.125121e+44 2.338126e+44 4.751980e+43 1.511707e+43 2.973515e+43 6.750158e+43 8.704831e+42 ... 2.951550e+43 2.527391e+43 1.787880e+43 3.042866e+43 3.659313e+43 4.996669e+43 1.739201e+43 4.610281e+43 4.367155e+43 9.313372e+43
10987 1779.000020 3.708617e+43 5.885619e+43 2.081037e+44 2.289624e+44 4.653404e+43 1.480348e+43 2.911832e+43 6.625370e+43 8.524256e+42 ... 2.890323e+43 2.474962e+43 1.750792e+43 2.979744e+43 3.583404e+43 4.904297e+43 1.703123e+43 4.514645e+43 4.276562e+43 9.120174e+43
10988 1788.999448 3.631453e+43 5.763159e+43 2.037738e+44 2.241985e+44 4.556583e+43 1.449547e+43 2.851247e+43 6.487519e+43 8.346896e+42 ... 2.836709e+43 2.423467e+43 1.714364e+43 2.917746e+43 3.508846e+43 4.813325e+43 1.667687e+43 4.420710e+43 4.187581e+43 8.951001e+43
10989 1798.999774 3.555677e+43 5.642901e+43 1.995217e+44 2.195202e+44 4.461502e+43 1.419300e+43 2.791750e+43 6.366789e+43 8.191564e+42 ... 2.783919e+43 2.372897e+43 1.678591e+43 2.863448e+43 3.435627e+43 4.723751e+43 1.636652e+43 4.328465e+43 4.100200e+43 8.784427e+43
10990 1809.000387 3.481267e+43 5.524812e+43 1.957966e+44 2.149263e+44 4.368136e+43 1.392801e+43 2.733328e+43 6.233552e+43 8.020139e+42 ... 2.725660e+43 2.323239e+43 1.643463e+43 2.803525e+43 3.363730e+43 4.635559e+43 1.602402e+43 4.247652e+43 4.023650e+43 8.640294e+43
10991 1819.000670 3.408205e+43 5.421331e+43 1.916874e+44 2.104156e+44 4.276461e+43 1.363570e+43 2.675963e+43 6.116795e+43 7.869920e+42 ... 2.674608e+43 2.279724e+43 1.612681e+43 2.744687e+43 3.293135e+43 4.548734e+43 1.568772e+43 4.158506e+43 3.939205e+43 8.478459e+43
10992 1829.000006 3.336472e+43 5.307227e+43 1.880855e+44 2.059869e+44 4.186453e+43 1.337948e+43 2.619641e+43 6.001857e+43 7.722039e+42 ... 2.624351e+43 2.231742e+43 1.578738e+43 2.686919e+43 3.231255e+43 4.463260e+43 1.539294e+43 4.080365e+43 3.865185e+43 8.319143e+43
10993 1838.999793 3.273583e+43 5.207192e+43 1.841159e+44 2.021043e+44 4.107544e+43 1.309710e+43 2.570264e+43 5.888729e+43 7.576488e+42 ... 2.574885e+43 2.184641e+43 1.545418e+43 2.636273e+43 3.163058e+43 4.389229e+43 1.506806e+43 3.994248e+43 3.783609e+43 8.162338e+43
10994 1848.999437 3.204303e+43 5.108740e+43 1.806348e+44 1.978271e+44 4.020614e+43 1.284948e+43 2.515868e+43 5.777391e+43 7.433240e+42 ... 2.526202e+43 2.143336e+43 1.516199e+43 2.580481e+43 3.096117e+43 4.306241e+43 1.478317e+43 3.918729e+43 3.712072e+43 8.008013e+43
10995 1859.000386 3.143540e+43 5.000336e+43 1.768018e+44 1.936294e+44 3.935300e+43 1.260581e+43 2.468160e+43 5.654799e+43 7.292284e+42 ... 2.478297e+43 2.097856e+43 1.487448e+43 2.531547e+43 3.037406e+43 4.234321e+43 1.446948e+43 3.835576e+43 3.633305e+43 7.874268e+43
10996 1869.000021 3.076654e+43 4.905224e+43 1.734389e+44 1.899463e+44 3.860446e+43 1.236603e+43 2.415644e+43 5.560026e+43 7.153576e+42 ... 2.436762e+43 2.057952e+43 1.459155e+43 2.483394e+43 2.972778e+43 4.153779e+43 1.419426e+43 3.762619e+43 3.564195e+43 7.724490e+43
10997 1878.999805 3.017960e+43 4.811646e+43 1.701302e+44 1.863227e+44 3.786799e+43 1.210223e+43 2.369561e+43 5.453957e+43 7.017107e+42 ... 2.390275e+43 2.014049e+43 1.428026e+43 2.430416e+43 2.916066e+43 4.083930e+43 1.392347e+43 3.690839e+43 3.496200e+43 7.594596e+43
10998 1888.999164 2.960217e+43 4.719584e+43 1.668750e+44 1.823374e+44 3.705803e+43 1.187067e+43 2.324224e+43 5.349606e+43 6.882847e+42 ... 2.344542e+43 1.975514e+43 1.400704e+43 2.383914e+43 2.853694e+43 4.005792e+43 1.365707e+43 3.620222e+43 3.429307e+43 7.449288e+43
10999 1898.999610 2.903420e+43 4.629030e+43 1.636732e+44 1.788389e+44 3.634700e+43 1.164291e+43 2.274386e+43 5.246963e+43 6.766348e+42 ... 2.299557e+43 1.937610e+43 1.373828e+43 2.338174e+43 2.798940e+43 3.937990e+43 1.339503e+43 3.550761e+43 3.363509e+43 7.323201e+43
11000 1909.000599 2.847555e+43 4.539963e+43 1.605240e+44 1.753979e+44 3.564766e+43 1.141889e+43 2.230625e+43 5.146007e+43 6.636158e+42 ... 2.260511e+43 1.900329e+43 1.347395e+43 2.293186e+43 2.745086e+43 3.871123e+43 1.313730e+43 3.482441e+43 3.298792e+43 7.198854e+43
11001 1918.999474 2.792607e+43 4.452356e+43 1.574264e+44 1.720133e+44 3.495977e+43 1.119854e+43 2.187581e+43 5.058339e+43 6.508101e+42 ... 2.216890e+43 1.863659e+43 1.321394e+43 2.248934e+43 2.692115e+43 3.796422e+43 1.288379e+43 3.415241e+43 3.235136e+43 7.076214e+43
11002 1928.999890 2.738574e+43 4.366210e+43 1.543804e+44 1.686851e+44 3.428335e+43 1.100718e+43 2.145254e+43 4.960468e+43 6.396892e+42 ... 2.179008e+43 1.827600e+43 1.295827e+43 2.205421e+43 2.640026e+43 3.731550e+43 1.263451e+43 3.349161e+43 3.172541e+43 6.955296e+43
11003 1938.999196 2.685439e+43 4.291365e+43 1.513851e+44 1.654122e+44 3.361817e+43 1.079362e+43 2.103631e+43 4.864223e+43 6.272777e+42 ... 2.141656e+43 1.792140e+43 1.270685e+43 2.162631e+43 2.588804e+43 3.667584e+43 1.238937e+43 3.284180e+43 3.118158e+43 6.836070e+43
11004 1948.998977 2.633197e+43 4.207881e+43 1.484400e+44 1.621943e+44 3.296416e+43 1.058364e+43 2.062707e+43 4.780590e+43 6.164925e+42 ... 2.099992e+43 1.757276e+43 1.248838e+43 2.120559e+43 2.538441e+43 3.604525e+43 1.214835e+43 3.227713e+43 3.057497e+43 6.718532e+43

11005 rows × 33 columns


In [44]:
SEDs


Out[44]:
array([[[  1.08510874e+00,   1.06459148e-08,   2.61169972e-09, ...,
           1.63365948e-17,   1.62167322e-17,   1.60974837e-17],
        [  3.93440774e+01,   3.86333356e-07,   9.48589185e-08, ...,
           7.45085594e-14,   7.04240490e-14,   6.63626272e-14],
        [  3.82574507e+01,   3.84410443e-07,   9.64401676e-08, ...,
           2.00136215e-14,   1.99571217e-14,   1.99008562e-14],
        [  1.87573040e+01,   1.90571477e-07,   4.83699909e-08, ...,
           3.59535413e-14,   3.58260940e-14,   3.56992167e-14],
        [  8.07471570e+00,   8.22522598e-08,   2.09280667e-08, ...,
           6.87298149e-14,   6.84194576e-14,   6.81105724e-14],
        [  2.75951266e+00,   2.81450781e-08,   7.16963998e-09, ...,
           2.20674796e-13,   2.19325749e-13,   2.17983451e-13]],

       [[  1.31541958e+00,   1.26371034e-08,   3.03383362e-09, ...,
           7.66583650e-17,   7.64802913e-17,   7.63028955e-17],
        [  3.33053134e+01,   3.31370685e-07,   8.24342220e-08, ...,
           3.40600489e-15,   3.25773226e-15,   3.11029463e-15],
        [  2.11539626e+01,   2.13360285e-07,   5.39725478e-08, ...,
           1.18441339e-14,   1.17767085e-14,   1.17096167e-14],
        [  8.59539110e+00,   8.75571457e-08,   2.22780861e-08, ...,
           6.07021755e-14,   6.03648994e-14,   6.00292857e-14],
        [  3.40443946e+00,   3.47208291e-08,   8.84425141e-09, ...,
           1.89544244e-13,   1.88516863e-13,   1.87494525e-13],
        [  1.10564503e+00,   1.12832087e-08,   2.87579439e-09, ...,
           4.97278128e-13,   4.95216168e-13,   4.93163807e-13]],

       [[  3.64186771e+00,   3.53647809e-08,   8.58551891e-09, ...,
           2.21902480e-16,   2.19802008e-16,   2.17712589e-16],
        [  1.86728636e+01,   1.87220247e-07,   4.69241155e-08, ...,
           2.99085591e-14,   2.87241445e-14,   2.75463879e-14],
        [  9.34058201e+00,   9.44250151e-08,   2.40079518e-08, ...,
           4.51860556e-14,   4.49738946e-14,   4.47627479e-14],
        [  3.32577051e+00,   3.39504358e-08,   8.65560677e-09, ...,
           1.39160761e-13,   1.38544535e-13,   1.37931220e-13],
        [  1.22613822e+00,   1.25186952e-08,   3.19207623e-09, ...,
           2.92531037e-13,   2.91397615e-13,   2.90269382e-13],
        [  3.78283029e-01,   3.86300986e-09,   9.85197311e-10, ...,
           4.86918514e-13,   4.85582727e-13,   4.84252419e-13]],

       [[  9.19925611e+00,   9.14980729e-08,   2.27544771e-08, ...,
           1.09451264e-14,   1.08896409e-14,   1.08344246e-14],
        [  2.51743087e-03,   2.88704978e-11,   8.11416510e-12, ...,
           1.51265413e-13,   1.50734148e-13,   1.50205252e-13],
        [  1.03906425e-04,   1.07502244e-12,   3.19101074e-13, ...,
           2.01869337e-13,   2.01228053e-13,   2.00589543e-13],
        [  4.13321818e-06,   4.92121955e-14,   1.42144229e-14, ...,
           2.14104823e-13,   2.14026566e-13,   2.13947800e-13],
        [  4.28645511e-07,   4.49202524e-15,   1.17286602e-15, ...,
           2.82886303e-14,   2.86199670e-14,   2.89492769e-14],
        [  1.92066574e-08,   2.34952828e-16,   6.91407191e-17, ...,
           2.27108806e-15,   2.27765302e-15,   2.28417016e-15]]])

In [42]:
plt.loglog(df['wave'],df['0'])


Out[42]:
[<matplotlib.lines.Line2D at 0x124a415c0>]

In [ ]: