2c. Refactoring to add batching and feature-creation

In this notebook, we continue reading the same small dataset, but refactor our ML pipeline in two small, but significant, ways:

  1. Refactor the input to read data in batches.
  2. Refactor the feature creation so that it is not one-to-one with inputs. </ol> The Pandas function in the previous notebook also batched, only after it had read the whole data into memory -- on a large dataset, this won't be an option.
  3. 
    
    In [ ]:
    import tensorflow.compat.v1 as tf
    import numpy as np
    import shutil
    print(tf.__version__)
    

    1. Refactor the input

    Read data created in Lab1a, but this time make it more general and performant. Instead of using Pandas, we will use TensorFlow's Dataset API.

    
    
    In [ ]:
    CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key']
    LABEL_COLUMN = 'fare_amount'
    DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']]
    
    def read_dataset(filename, mode, batch_size = 512):
      def _input_fn():
        def decode_csv(value_column):
          columns = tf.decode_csv(value_column, record_defaults = DEFAULTS)
          features = dict(zip(CSV_COLUMNS, columns))
          label = features.pop(LABEL_COLUMN)
          return features, label
    
        # Create list of files that match pattern
        file_list = tf.gfile.Glob(filename)
    
        # Create dataset from file list
        dataset = tf.data.TextLineDataset(file_list).map(decode_csv)
        if mode == tf.estimator.ModeKeys.TRAIN:
            num_epochs = None # indefinitely
            dataset = dataset.shuffle(buffer_size = 10 * batch_size)
        else:
            num_epochs = 1 # end-of-input after this
    
        dataset = dataset.repeat(num_epochs).batch(batch_size)
        return dataset.make_one_shot_iterator().get_next()
      return _input_fn
        
    
    def get_train():
      return read_dataset('./taxi-train.csv', mode = tf.estimator.ModeKeys.TRAIN)
    
    def get_valid():
      return read_dataset('./taxi-valid.csv', mode = tf.estimator.ModeKeys.EVAL)
    
    def get_test():
      return read_dataset('./taxi-test.csv', mode = tf.estimator.ModeKeys.EVAL)
    

    2. Refactor the way features are created.

    For now, pass these through (same as previous lab). However, refactoring this way will enable us to break the one-to-one relationship between inputs and features.

    
    
    In [ ]:
    INPUT_COLUMNS = [
        tf.feature_column.numeric_column('pickuplon'),
        tf.feature_column.numeric_column('pickuplat'),
        tf.feature_column.numeric_column('dropofflat'),
        tf.feature_column.numeric_column('dropofflon'),
        tf.feature_column.numeric_column('passengers'),
    ]
    
    def add_more_features(feats):
      # Nothing to add (yet!)
      return feats
    
    feature_cols = add_more_features(INPUT_COLUMNS)
    

    Create and train the model

    Note that we train for num_steps * batch_size examples.

    
    
    In [ ]:
    tf.logging.set_verbosity(tf.logging.INFO)
    OUTDIR = 'taxi_trained'
    shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time
    model = tf.estimator.LinearRegressor(
          feature_columns = feature_cols, model_dir = OUTDIR)
    model.train(input_fn = get_train(), steps = 100);
    

    Evaluate model

    As before, evaluate on the validation data. We'll do the third refactoring (to move the evaluation into the training loop) in the next lab.

    
    
    In [ ]:
    def print_rmse(model, name, input_fn):
      metrics = model.evaluate(input_fn = input_fn, steps = 1)
      print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss'])))
    print_rmse(model, 'validation', get_valid())
    

    Copyright 2020 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License