MNIST Image Classification with TensorFlow

This notebook demonstrates how to implement a simple linear image models on MNIST using Estimator.


This companion notebook extends the basic harness of this notebook to a variety of models including DNN, CNN, dropout, pooling etc.


In [ ]:
import numpy as np
import shutil
import os
import tensorflow as tf
print(tf.__version__)

Exploring the data

Let's download MNIST data and examine the shape. We will need these numbers ...


In [ ]:
HEIGHT = 28
WIDTH = 28
NCLASSES = 10

In [ ]:
# Get mnist data
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Scale our features between 0 and 1
x_train, x_test = x_train / 255.0, x_test / 255.0 

# Convert labels to categorical one-hot encoding
y_train = tf.keras.utils.to_categorical(y = y_train, num_classes = NCLASSES)
y_test = tf.keras.utils.to_categorical(y = y_test, num_classes = NCLASSES)

print("x_train.shape = {}".format(x_train.shape))
print("y_train.shape = {}".format(y_train.shape))
print("x_test.shape = {}".format(x_test.shape))
print("y_test.shape = {}".format(y_test.shape))

In [ ]:
import matplotlib.pyplot as plt
IMGNO = 12
plt.imshow(x_test[IMGNO].reshape(HEIGHT, WIDTH));

Define the model.

Let's start with a very simple linear classifier. All our models will have this basic interface -- they will take an image and return probabilities.


In [ ]:
# Build Keras Model Using Keras Sequential API
def linear_model():
    model = tf.keras.models.Sequential()
    # TODO: Create linear model that takes the input features and outputs the normalized probabilities
    return model

Write Input Functions

As usual, we need to specify input functions for training, evaluation, and predicition.


In [ ]:
# Create training input function
train_input_fn = tf.estimator.inputs.numpy_input_fn(
    x = {"image": x_train},
    y = y_train,
    batch_size = 100,
    num_epochs = None,
    shuffle = True,
    queue_capacity = 5000
  )

# Create evaluation input function
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
    # TODO: Create eval input function. Hint: Be sure to change each of the parameters since training and evaluation are different
  )

# Create serving input function for inference
def serving_input_fn():
    placeholders = {"image": tf.placeholder(dtype = tf.float32, shape = [None, HEIGHT, WIDTH])}
    features = placeholders # as-is
    return tf.estimator.export.ServingInputReceiver(features = features, receiver_tensors = placeholders)

Create train_and_evaluate function

tf.estimator.train_and_evaluate does distributed training.


In [ ]:
# Create train_and_evaluate function
def train_and_evaluate(output_dir, hparams):
    # Build Keras model
    model = linear_model()
        
    # Compile Keras model with optimizer, loss function, and eval metrics
    model.compile(
        optimizer = "adam",
        loss = "categorical_crossentropy",
        metrics = ["accuracy"])
        
    # Convert Keras model to an Estimator
    estimator = tf.keras.estimator.model_to_estimator(
        keras_model = model, 
        model_dir = output_dir)

    # Set estimator's train_spec to use train_input_fn and train for so many steps
    train_spec = tf.estimator.TrainSpec(
        input_fn = train_input_fn,
        max_steps = hparams["train_steps"])

    # Create exporter that uses serving_input_fn to create saved_model for serving
    exporter = tf.estimator.LatestExporter(
        name = "exporter", 
        serving_input_receiver_fn = serving_input_fn)

    # Set estimator's eval_spec to use eval_input_fn and export saved_model
    eval_spec = tf.estimator.EvalSpec(
        input_fn = eval_input_fn,
        steps = None,
        exporters = exporter)

    # Run train_and_evaluate loop
    tf.estimator.train_and_evaluate(
        estimator = estimator, 
        train_spec = train_spec, 
        eval_spec = eval_spec)

This is the main() function


In [ ]:
OUTDIR = "mnist/learned"
shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time

hparams = {"train_steps": 1000, "learning_rate": 0.01}
train_and_evaluate(OUTDIR, hparams)

I got:

Saving dict for global step 1000: categorical_accuracy = 0.9112, global_step = 1000, loss = 0.32516304

In other words, we achieved 91.12% accuracy with the simple linear model!

# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.