In [ ]:
import os
PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT ID
BUCKET = "cloud-training-demos-ml" # REPLACE WITH YOUR BUCKET NAME
REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1
MODEL_TYPE = "cnn"
# Do not change these
os.environ["PROJECT"] = PROJECT
os.environ["BUCKET"] = BUCKET
os.environ["REGION"] = REGION
os.environ["MODEL_TYPE"] = MODEL_TYPE
os.environ["TFVERSION"] = "1.13" # Tensorflow version
In [ ]:
%%bash
gcloud config set project $PROJECT
gcloud config set compute/region $REGION
The key difference between this notebook and the MNIST one is in the input function. In the input function here, we are doing the following:
Since we want to run our code on Cloud ML Engine, we've packaged it as a python module.
The model.py
and task.py
containing the model code is in flowersmodel
Complete the TODOs in model.py
before proceeding!
Once you've completed the TODOs, run it locally for a few steps to test the code.
In [ ]:
%%bash
rm -rf flowersmodel.tar.gz flowers_trained
gcloud ml-engine local train \
--module-name=flowersmodel.task \
--package-path=${PWD}/flowersmodel \
-- \
--output_dir=${PWD}/flowers_trained \
--train_steps=5 \
--learning_rate=0.01 \
--batch_size=2 \
--model=$MODEL_TYPE \
--augment \
--train_data_path=gs://cloud-ml-data/img/flower_photos/train_set.csv \
--eval_data_path=gs://cloud-ml-data/img/flower_photos/eval_set.csv
Now, let's do it on ML Engine. Note the --model parameter
In [ ]:
%%bash
OUTDIR=gs://${BUCKET}/flowers/trained_${MODEL_TYPE}
JOBNAME=flowers_${MODEL_TYPE}_$(date -u +%y%m%d_%H%M%S)
echo $OUTDIR $REGION $JOBNAME
gsutil -m rm -rf $OUTDIR
gcloud ml-engine jobs submit training $JOBNAME \
--region=$REGION \
--module-name=flowersmodel.task \
--package-path=${PWD}/flowersmodel \
--job-dir=$OUTDIR \
--staging-bucket=gs://$BUCKET \
--scale-tier=BASIC_GPU \
--runtime-version=$TFVERSION \
-- \
--output_dir=$OUTDIR \
--train_steps=1000 \
--learning_rate=0.01 \
--batch_size=40 \
--model=$MODEL_TYPE \
--augment \
--batch_norm \
--train_data_path=gs://cloud-ml-data/img/flower_photos/train_set.csv \
--eval_data_path=gs://cloud-ml-data/img/flower_photos/eval_set.csv
In [ ]:
from google.datalab.ml import TensorBoard
TensorBoard().start("gs://{}/flowers/trained_{}".format(BUCKET, MODEL_TYPE))
In [ ]:
for pid in TensorBoard.list()["pid"]:
TensorBoard().stop(pid)
print("Stopped TensorBoard with pid {}".format(pid))
Here are my results:
Model | Accuracy | Time taken | Run time parameters |
---|---|---|---|
cnn with batch-norm | 0.582 | 47 min | 1000 steps, LR=0.01, Batch=40 |
as above, plus augment | 0.615 | 3 hr | 5000 steps, LR=0.01, Batch=40 |
What was your accuracy?
In [ ]:
%%bash
MODEL_NAME="flowers"
MODEL_VERSION=${MODEL_TYPE}
MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/flowers/trained_${MODEL_TYPE}/export/exporter | tail -1)
echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes"
#gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME}
#gcloud ml-engine models delete ${MODEL_NAME}
gcloud ml-engine models create ${MODEL_NAME} --regions $REGION
gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION
To predict with the model, let's take one of the example images that is available on Google Cloud Storage
The online prediction service expects images to be base64 encoded as described here.
In [ ]:
%%bash
IMAGE_URL=gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg
# Copy the image to local disk.
gsutil cp $IMAGE_URL flower.jpg
# Base64 encode and create request message in json format.
python -c 'import base64, sys, json; img = base64.b64encode(open("flower.jpg", "rb").read()).decode(); print(json.dumps({"image_bytes":{"b64": img}}))' &> request.json
Send it to the prediction service
In [ ]:
%%bash
gcloud ml-engine predict \
--model=flowers \
--version=${MODEL_TYPE} \
--json-instances=./request.json
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.