Deep Learning

Assignment 4

Previously in 2_fullyconnected.ipynb and 3_regularization.ipynb, we trained fully connected networks to classify notMNIST characters.

The goal of this assignment is make the neural network convolutional.


In [1]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range

In [2]:
pickle_file = 'notMNIST.pickle'

with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)

Reformat into a TensorFlow-friendly shape:

  • convolutions need the image data formatted as a cube (width by height by #channels)
  • labels as float 1-hot encodings.

In [3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale

import numpy as np

def reformat(dataset, labels):
  dataset = dataset.reshape(
    (-1, image_size, image_size, num_channels)).astype(np.float32)
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)


Training set (200000, 28, 28, 1) (200000, 10)
Validation set (10000, 28, 28, 1) (10000, 10)
Test set (10000, 28, 28, 1) (10000, 10)

In [4]:
def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.


In [5]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64

graph = tf.Graph()

with graph.as_default():

  # Input data.
  tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal(
      [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, strides=[1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer1_biases)
    conv = tf.nn.conv2d(hidden, layer2_weights, strides=[1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(conv + layer2_biases)
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
    
  # Optimizer.
  optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))

In [6]:
num_steps = 1001

with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 50 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))


Initialized
Minibatch loss at step 0: 3.449420
Minibatch accuracy: 12.5%
Validation accuracy: 10.0%
Minibatch loss at step 50: 1.830083
Minibatch accuracy: 56.2%
Validation accuracy: 44.0%
Minibatch loss at step 100: 0.837069
Minibatch accuracy: 68.8%
Validation accuracy: 71.2%
Minibatch loss at step 150: 1.473721
Minibatch accuracy: 62.5%
Validation accuracy: 74.0%
Minibatch loss at step 200: 0.787563
Minibatch accuracy: 75.0%
Validation accuracy: 77.0%
Minibatch loss at step 250: 0.641945
Minibatch accuracy: 87.5%
Validation accuracy: 77.6%
Minibatch loss at step 300: 0.349620
Minibatch accuracy: 93.8%
Validation accuracy: 80.6%
Minibatch loss at step 350: 0.703037
Minibatch accuracy: 75.0%
Validation accuracy: 77.9%
Minibatch loss at step 400: 1.113127
Minibatch accuracy: 68.8%
Validation accuracy: 79.5%
Minibatch loss at step 450: 0.473712
Minibatch accuracy: 81.2%
Validation accuracy: 81.2%
Minibatch loss at step 500: 0.657054
Minibatch accuracy: 75.0%
Validation accuracy: 81.1%
Minibatch loss at step 550: 0.784644
Minibatch accuracy: 81.2%
Validation accuracy: 81.2%
Minibatch loss at step 600: 0.607107
Minibatch accuracy: 81.2%
Validation accuracy: 82.2%
Minibatch loss at step 650: 0.566229
Minibatch accuracy: 87.5%
Validation accuracy: 81.6%
Minibatch loss at step 700: 0.870859
Minibatch accuracy: 68.8%
Validation accuracy: 81.8%
Minibatch loss at step 750: 0.737973
Minibatch accuracy: 81.2%
Validation accuracy: 82.3%
Minibatch loss at step 800: 0.358601
Minibatch accuracy: 87.5%
Validation accuracy: 82.7%
Minibatch loss at step 850: 1.070934
Minibatch accuracy: 75.0%
Validation accuracy: 82.6%
Minibatch loss at step 900: 0.033167
Minibatch accuracy: 100.0%
Validation accuracy: 82.5%
Minibatch loss at step 950: 0.864425
Minibatch accuracy: 75.0%
Validation accuracy: 82.1%
Minibatch loss at step 1000: 0.282750
Minibatch accuracy: 87.5%
Validation accuracy: 82.4%
Test accuracy: 88.5%

Problem 1

The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides by a max pooling operation (nn.max_pool()) of stride 2 and kernel size 2.



In [7]:
batch_size = 16
patch_size = 5
depth = 12 # was 16
num_hidden = 64

graph = tf.Graph()

with graph.as_default():

  # Input data.
  tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)
  
  # Variables.
  layer1_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))
  layer2_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
  layer3_weights = tf.Variable(tf.truncated_normal(
      [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
  layer4_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, num_labels], stddev=0.1))
  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
  # Model.
  def model(data):
    conv = tf.nn.conv2d(data, layer1_weights, strides=[1, 1, 1, 1], padding='SAME')
    pooled_logits = tf.nn.max_pool(conv + layer1_biases, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pooled_logits)
    conv = tf.nn.conv2d(hidden, layer2_weights, strides=[1, 1, 1, 1], padding='SAME')
    pooled_logits = tf.nn.max_pool(conv + layer2_biases, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    hidden = tf.nn.relu(pooled_logits)
    shape = hidden.get_shape().as_list()
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden, layer4_weights) + layer4_biases
  
  # Training computation.
  logits = model(tf_train_dataset)
  loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
  
  # Optimizer.
  optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
  
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(logits)
  valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
  test_prediction = tf.nn.softmax(model(tf_test_dataset))

In [ ]:
num_steps = 1001

with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  for step in range(num_steps):
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 50 == 0):
      print('Minibatch loss at step %d: %f' % (step, l))
      print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
      print('Validation accuracy: %.1f%%' % accuracy(
        valid_prediction.eval(), valid_labels))
  print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))


Initialized
Minibatch loss at step 0: 3.475038
Minibatch accuracy: 6.2%
Validation accuracy: 10.8%
Minibatch loss at step 50: 2.098833
Minibatch accuracy: 18.8%
Validation accuracy: 37.6%
Minibatch loss at step 100: 0.931086
Minibatch accuracy: 75.0%
Validation accuracy: 61.6%
Minibatch loss at step 150: 2.063606
Minibatch accuracy: 50.0%
Validation accuracy: 68.2%
Minibatch loss at step 200: 0.821987
Minibatch accuracy: 81.2%
Validation accuracy: 77.9%
Minibatch loss at step 250: 1.085510
Minibatch accuracy: 62.5%
Validation accuracy: 77.1%
Minibatch loss at step 300: 0.533044
Minibatch accuracy: 81.2%
Validation accuracy: 80.4%
Minibatch loss at step 350: 0.609465
Minibatch accuracy: 81.2%
Validation accuracy: 78.1%
Minibatch loss at step 400: 1.293028
Minibatch accuracy: 62.5%
Validation accuracy: 79.1%
Minibatch loss at step 450: 0.451418
Minibatch accuracy: 87.5%
Validation accuracy: 81.8%
Minibatch loss at step 500: 0.702769
Minibatch accuracy: 81.2%
Validation accuracy: 80.8%
Minibatch loss at step 550: 0.865492
Minibatch accuracy: 81.2%
Validation accuracy: 80.9%
Minibatch loss at step 600: 0.791420
Minibatch accuracy: 81.2%
Validation accuracy: 82.8%
Minibatch loss at step 650: 0.586654
Minibatch accuracy: 81.2%
Validation accuracy: 81.3%
Minibatch loss at step 700: 0.608558
Minibatch accuracy: 81.2%
Validation accuracy: 83.2%
Minibatch loss at step 750: 0.830679
Minibatch accuracy: 75.0%
Validation accuracy: 83.0%
Minibatch loss at step 800: 0.409509
Minibatch accuracy: 87.5%
Validation accuracy: 83.7%
Minibatch loss at step 850: 1.099006
Minibatch accuracy: 81.2%
Validation accuracy: 82.2%
Minibatch loss at step 900: 0.063412
Minibatch accuracy: 100.0%
Validation accuracy: 84.3%
Minibatch loss at step 950: 0.884818
Minibatch accuracy: 68.8%
Validation accuracy: 83.8%
Minibatch loss at step 1000: 0.197182
Minibatch accuracy: 87.5%
Validation accuracy: 82.8%

Problem 2

Try to get the best performance you can using a convolutional net. Look for example at the classic LeNet5 architecture, adding Dropout, and/or adding learning rate decay.



In [ ]: