In [1]:
%pylab inline
In [2]:
import mathlab
importing the Math and Physics Lab project
equation describing a line between two points A-B: $$x = x_{\mathrm{A}} + s * (x_{\mathrm{B}} - x_{\mathrm{A}})$$ $$y = y_{\mathrm{A}} + s * (y_{\mathrm{B}} - y_{\mathrm{A}})$$
with: $$0 \leq s \leq 1$$
equation of a line passing through P and orthogonal to A-B: $$x = x_{\mathrm{P}} + t * sin(\alpha)$$ $$y = y_{\mathrm{P}} + t * cos(\alpha)$$
with: $$sin(\alpha) = (y_{\mathrm{B}} - y_{\mathrm{A}})/L$$ $$cos(\alpha) = (x_{\mathrm{B}} - x_{\mathrm{A}})/L$$
and
$$L = \sqrt{(x_{\mathrm{B}} - x_{\mathrm{A}})^2 + (y_{\mathrm{B}} - y_{\mathrm{A}})^2 }$$instersection between the two line: $$x_{\mathrm{A}} + s * (x_{\mathrm{B}} - x_{\mathrm{A}}) = x_{\mathrm{P}} + t * sin(\alpha)$$ $$y_{\mathrm{A}} + s * (y_{\mathrm{B}} - y_{\mathrm{A}}) = y_{\mathrm{P}} - t * cos(\alpha)$$
system of equation: $$s * (x_{\mathrm{B}} - x_{\mathrm{A}}) - t * sin(\alpha) = x_{\mathrm{P}} - x_{\mathrm{A}}$$ $$s * (y_{\mathrm{B}} - y_{\mathrm{A}}) + t * cos(\alpha) = y_{\mathrm{P}} - y_{\mathrm{A}}$$
$$x_{\mathrm{A}} = 0; y_{\mathrm{A}} = 0; x_{\mathrm{B}} = 100; y_{\mathrm{B}} = 110; x_{\mathrm{P}} = 70; y_{\mathrm{P}} = 22$$
In [4]:
result = mathlab.point_line(0, 0, 100, 100, 70, 22)
In [ ]: