数学模型
ALE form of equation $${\partial \over {\partial t}}(J{U_i}) + J{\partial \over {\partial x}}({F_i} - {w_x}{U_i}) = 0 $$ for i = 1,2,3
Boundary condition $$\eqalign{ & {\rm{v(0,t) = 0}} \cr & {\rm{v(L(t),t) = \dot u(t)}} \cr} $$
structure solver $${u^{n + 1}} = {u^n} + \Delta t{{\dot u}^n} + {{\Delta {t^2}} \over 4}({{\ddot u}^n} + {{\ddot u}^{n + 1}})$$ $${{\dot u}^{n + 1}} = {{\dot u}^n} + {{\Delta t} \over 2}({{\ddot u}^n} + {{\ddot u}^{n + 1}})$$ $${{\ddot u}^{n + 1}} = {4 \over {\Delta {t^2}}}\Delta u - {4 \over {\Delta t}}{{\dot u}^n} - {{\ddot u}^n}$$
mesh deformation technique
In [2]:
#structure part is a ordinatry differential equation
#initial condition:
#the stiffness of the spring is k
#x
#disecritization scheme
dn=0.1
dt=0.1
In [ ]:
#solid element equation
#def springElementMatrix(E,rou)
#reading mesh
mesh的数据结构
点的坐标,编号,由点的连接性定义线,并对其编号;由线的连接性定义面,并编号。
#输入材料属性
定义应力应变关系。
#