In [1]:
from pint import UnitRegistry
import sympy
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import sys
%matplotlib inline
from IPython.display import display
Import Section class, which contains all calculations
In [2]:
from Section import Section
Initialization of sympy symbolic tool and pint for dimension analysis (not really implemented rn as not directly compatible with sympy)
In [3]:
ureg = UnitRegistry()
sympy.init_printing()
Define sympy parameters used for geometric description of sections
In [4]:
A, A0, t, t0, a, b, h, L = sympy.symbols('A A_0 t t_0 a b h L', positive=True)
We also define numerical values for each symbol in order to plot scaled section and perform calculations
In [5]:
values = [(A, 450 * ureg.millimeter**2),(A0, 250 * ureg.millimeter**2),(a, 130 * ureg.millimeter), \
(b, 300 * ureg.millimeter),(h, 150 * ureg.millimeter),(L, 650 * ureg.millimeter)]
datav = [(v[0],v[1].magnitude) for v in values]
Define graph describing the section:
1) stringers are nodes with parameters:
2) panels are oriented edges with parameters:
In [6]:
stringers = {1:[(sympy.Integer(0),h),A],
2:[(sympy.Integer(0),sympy.Integer(0)),A],
3:[(a,sympy.Integer(0)),A],
4:[(a+b,sympy.Integer(0)),A],
5:[(a+b,h),A],
6:[(a,h),A]}
panels = {(1,2):t,
(2,3):t,
(3,4):t,
(4,5):t,
(5,6):t,
(6,1):t,
(3,6):t}
Define section and perform first calculations
In [7]:
S3 = Section(stringers, panels)
As we need to compute $x_{sc}$, we have to perform
$$A \cdot q_{ext} = T$$where:
Expression of A
In [8]:
sympy.simplify(S3.A)
Out[8]:
Expression of T
In [9]:
sympy.simplify(S3.T)
Out[9]:
Resulting fluxes and coordinate
In [10]:
sympy.simplify(S3.tempq)
Out[10]:
In [11]:
start_pos={ii: [float(S3.g.node[ii]['ip'][i].subs(datav)) for i in range(2)] for ii in S3.g.nodes() }
In [12]:
plt.figure(figsize=(12,8),dpi=300)
nx.draw(S3.g,with_labels=True, arrows= True, pos=start_pos)
plt.arrow(0,0,20,0)
plt.arrow(0,0,0,20)
#plt.text(0,0, 'CG', fontsize=24)
plt.axis('equal')
plt.title("Section in starting reference Frame",fontsize=16);
Expression of Inertial properties wrt Center of Gravity in with original rotation
In [13]:
S3.Ixx0, S3.Iyy0, S3.Ixy0, S3.α0
Out[13]:
Section is plotted wrt center of gravity and rotated (if necessary) so that x and y are principal axes. Center of Gravity and Shear Center are drawn
In [14]:
positions={ii: [float(S3.g.node[ii]['pos'][i].subs(datav)) for i in range(2)] for ii in S3.g.nodes() }
In [15]:
x_ct, y_ct = S3.ct.subs(datav)
plt.figure(figsize=(12,8),dpi=300)
nx.draw(S3.g,with_labels=True, pos=positions)
plt.plot([0],[0],'o',ms=12,label='CG')
plt.plot([x_ct],[y_ct],'^',ms=12, label='SC')
#plt.text(0,0, 'CG', fontsize=24)
#plt.text(x_ct,y_ct, 'SC', fontsize=24)
plt.legend(loc='lower right', shadow=True)
plt.axis('equal')
plt.title("Section in pricipal reference Frame",fontsize=16);
Expression of inertial properties in principal reference frame
In [16]:
S3.Ixx, S3.Iyy, S3.Ixy, S3.θ
Out[16]:
In [17]:
S3.ct
Out[17]:
In [18]:
S3.cycles
Out[18]:
Set loads on the section:
Example 1: shear in y direction and bending moment in x direction
In [19]:
Tx, Ty, Nz, Mx, My, Mz, F, ry, ry, mz = sympy.symbols('T_x T_y N_z M_x M_y M_z F r_y r_x m_z')
S3.set_loads(_Tx=0, _Ty=Ty, _Nz=0, _Mx=Mx, _My=0, _Mz=0)
Compute axial loads in stringers and shear flows in panels
In [20]:
S3.compute_stringer_actions()
S3.compute_panel_fluxes();
Expression of matrix A:
In [21]:
sympy.simplify(S3.A)
Out[21]:
Expression of T
In [22]:
sympy.simplify(S3.T)
Out[22]:
In [23]:
S3.N
Out[23]:
In [24]:
sympy.simplify(S3.q)
Out[24]:
Example 2: twisting moment in z direction
In [25]:
S3.set_loads(_Tx=0, _Ty=0, _Nz=0, _Mx=0, _My=0, _Mz=Mz)
S3.compute_stringer_actions()
S3.compute_panel_fluxes();
In [26]:
S3.N
Out[26]:
In [27]:
S3.q
Out[27]:
Set loads on the section:
Example 3: shear in x direction and bending moment in y direction
In [28]:
S3.set_loads(_Tx=Tx, _Ty=0, _Nz=0, _Mx=0, _My=My, _Mz=0)
S3.compute_stringer_actions()
S3.compute_panel_fluxes();
In [29]:
S3.N
Out[29]:
In [30]:
S3.q
Out[30]:
Verify that $$q_i \cdot l_i = T_x$$
In [31]:
sympy.simplify(S3.q[(2,3)]*a+S3.q[(3,4)]*b-S3.q[(5,6)]*b-S3.q[(6,1)]*a)
Out[31]:
In [32]:
S3.compute_Jt()
S3.Jt
Out[32]:
In [ ]: