In [18]:
    
from pint import UnitRegistry
import sympy
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import sys
%matplotlib inline
from IPython.display import display
    
Import Section class, which contains all calculations
In [19]:
    
from Section import Section
    
Initialization of sympy symbolic tool and pint for dimension analysis (not really implemented rn as not directly compatible with sympy)
In [20]:
    
ureg = UnitRegistry()
sympy.init_printing()
    
Define sympy parameters used for geometric description of sections
In [21]:
    
A, A0, t, t0, a, b, h, L = sympy.symbols('A A_0 t t_0 a b h L', positive=True)
    
We also define numerical values for each symbol in order to plot scaled section and perform calculations
In [22]:
    
values = [(A, 150 * ureg.millimeter**2),(A0, 250  * ureg.millimeter**2),(a, 80 * ureg.millimeter), \
          (b, 20 * ureg.millimeter),(h, 35 * ureg.millimeter),(L, 2000 * ureg.millimeter)]
datav = [(v[0],v[1].magnitude) for v in values]
    
Define graph describing the section:
1) stringers are nodes with parameters:
2) panels are oriented edges with parameters:
In [23]:
    
stringers = {1:[(sympy.Integer(0),h),A],
             2:[(sympy.Integer(0),sympy.Integer(0)),A],
             3:[(a,sympy.Integer(0)),A]}
panels = {(1,2):t,
          (2,3):t,
          (3,1):t}
    
Define section and perform first calculations
In [24]:
    
S1 = Section(stringers, panels)
    
In [25]:
    
S1.cycles
    
    Out[25]:
Define a dictionary of coordinates used by Networkx to plot section as a Directed graph. Note that arrows are actually just thicker stubs
In [26]:
    
start_pos={ii: [float(S1.g.node[ii]['ip'][i].subs(datav)) for i in range(2)] for ii in S1.g.nodes() }
    
In [27]:
    
plt.figure(figsize=(12,8),dpi=300)
nx.draw(S1.g,with_labels=True, arrows= True, pos=start_pos)
plt.arrow(0,0,20,0)
plt.arrow(0,0,0,20)
#plt.text(0,0, 'CG', fontsize=24)
plt.axis('equal')
plt.title("Section in starting reference Frame",fontsize=16);
    
    
Expression of Inertial properties wrt Center of Gravity in with original rotation
In [28]:
    
S1.Ixx0, S1.Iyy0, S1.Ixy0, S1.α0
    
    Out[28]:
Section is plotted wrt center of gravity and rotated (if necessary) so that x and y are principal axes. Center of Gravity and Shear Center are drawn
In [29]:
    
positions={ii: [float(S1.g.node[ii]['pos'][i].subs(datav)) for i in range(2)] for ii in S1.g.nodes() }
    
In [30]:
    
x_ct, y_ct = S1.ct.subs(datav)
plt.figure(figsize=(12,8),dpi=300)
nx.draw(S1.g,with_labels=True, pos=positions)
plt.plot([0],[0],'o',ms=12,label='CG')
plt.plot([x_ct],[y_ct],'^',ms=12, label='SC')
#plt.text(0,0, 'CG', fontsize=24)
#plt.text(x_ct,y_ct, 'SC', fontsize=24)
plt.legend(loc='lower right', shadow=True)
plt.axis('equal')
plt.title("Section in pricipal reference Frame",fontsize=16);
    
    
Expression of inertial properties in principal reference frame
In [31]:
    
sympy.simplify(S1.Ixx), sympy.simplify(S1.Iyy), sympy.simplify(S1.Ixy), sympy.simplify(S1.θ)
    
    Out[31]:
In [32]:
    
sympy.N(S1.ct.subs(datav))
    
    Out[32]:
We define some symbols
In [33]:
    
Tx, Ty, Nz, Mx, My, Mz, F, ry, ry, mz = sympy.symbols('T_x T_y N_z M_x M_y M_z F r_y r_x m_z')
    
In [34]:
    
S1.set_loads(_Tx=0, _Ty=Ty, _Nz=0, _Mx=Mx, _My=0, _Mz=0)
#S1.compute_stringer_actions()
#S1.compute_panel_fluxes();
    
Axial Loads
In [35]:
    
#S1.N
    
Panel Fluxes
In [36]:
    
#S1.q
    
Example 2: twisting moment in z direction
In [37]:
    
S1.set_loads(_Tx=0, _Ty=0, _Nz=0, _Mx=0, _My=0, _Mz=Mz)
S1.compute_stringer_actions()
S1.compute_panel_fluxes();
    
Axial Loads
In [38]:
    
S1.N
    
    Out[38]:
Panel Fluxes evaluated to numerical values
In [39]:
    
{k:sympy.N(S1.q[k].subs(datav)) for k in S1.q }
    
    Out[39]:
In [40]:
    
S1.compute_Jt()
    
In [41]:
    
sympy.N(S1.Jt.subs(datav))
    
    Out[41]:
In [ ]: