In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks
that finds and returns the indices of the local maxima in a sequence. Your function should:
In [15]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
peaks = []
data = np.array(a)
deriv = np.diff(data)
if deriv[0] < 0:
peaks.append(0)
for i in range(1,len(deriv)):
if deriv[i]<0 and deriv[i-1]>0:
peaks.append(i)
if deriv[-1] >0:
peaks.append(len(data)-1)
return np.array(peaks)
In [16]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff
to find the distances between consequtive local maxima.
In [24]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
pi_dig_num=np.array(list(pi_digits_str))
pi_dig_num=pi_dig_num.astype(int)
peak=find_peaks(pi_dig_num)
peakdiff=np.diff(peak)
In [59]:
plt.hist(peakdiff, bins=100, width=1, color='k',edgecolor='b', align='right');
plt.xlabel("Distance between adjacent local maxima in pi")
plt.ylabel("Counts")
plt.title("Distance between adjacent local maxima in pi");
In [60]:
assert True # use this for grading the pi digits histogram
In [ ]: