Computation

The labels associated with DataArray and Dataset objects enables some powerful shortcuts for computation, notably including aggregation and broadcasting by dimension names.

Basic array math

Arithmetic operations with a single DataArray automatically vectorize (like numpy) over all array values:


In [3]:
%matplotlib inline
import numpy as np
import xarray as xr

In [4]:
arr = xr.DataArray(np.random.randn(2, 3), [('x', ['a', 'b']), ('y', [10, 20, 30])])

In [5]:
arr - 3


Out[5]:
<xarray.DataArray (x: 2, y: 3)>
array([[-1.4732171 , -2.50018762, -2.3582823 ],
       [-3.65101496, -4.03530835, -3.6216578 ]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

In [6]:
abs(arr)


Out[6]:
<xarray.DataArray (x: 2, y: 3)>
array([[ 1.5267829 ,  0.49981238,  0.6417177 ],
       [ 0.65101496,  1.03530835,  0.6216578 ]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

You can also use any of numpy’s or scipy’s many ufunc functions directly on a DataArray:


In [8]:
np.sin(arr)


Out[8]:
<xarray.DataArray (x: 2, y: 3)>
array([[ 0.99903157,  0.47926088,  0.59857232],
       [-0.60599409, -0.86001974, -0.58238361]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

Data arrays also implement many numpy.ndarray methods:


In [9]:
arr.round(2)


Out[9]:
<xarray.DataArray (x: 2, y: 3)>
array([[ 1.53,  0.5 ,  0.64],
       [-0.65, -1.04, -0.62]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

In [10]:
arr.T


Out[10]:
<xarray.DataArray (y: 3, x: 2)>
array([[ 1.5267829 , -0.65101496],
       [ 0.49981238, -1.03530835],
       [ 0.6417177 , -0.6216578 ]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

Missing values

xarray objects borrow the isnull(), notnull(), count(), dropna() and fillna() methods for working with missing data from pandas:


In [11]:
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=['x'])

In [12]:
x.isnull()


Out[12]:
<xarray.DataArray (x: 5)>
array([False, False,  True,  True, False], dtype=bool)
Coordinates:
  * x        (x) int64 0 1 2 3 4

In [13]:
x.notnull()


Out[13]:
<xarray.DataArray (x: 5)>
array([ True,  True, False, False,  True], dtype=bool)
Coordinates:
  * x        (x) int64 0 1 2 3 4

In [14]:
x.count()


Out[14]:
<xarray.DataArray ()>
array(3)

In [15]:
x.dropna(dim='x')


Out[15]:
<xarray.DataArray (x: 3)>
array([ 0.,  1.,  2.])
Coordinates:
  * x        (x) int64 0 1 4

In [16]:
x.fillna(-1)


Out[16]:
<xarray.DataArray (x: 5)>
array([ 0.,  1., -1., -1.,  2.])
Coordinates:
  * x        (x) int64 0 1 2 3 4

Like pandas, xarray uses the float value np.nan (not-a-number) to represent missing values.

Aggregation

Aggregation methods have been updated to take a dim argument instead of axis. This allows for very intuitive syntax for aggregation methods that are applied along particular dimension(s):


In [17]:
arr.sum(dim='x')


Out[17]:
<xarray.DataArray (y: 3)>
array([ 0.87576794, -0.53549597,  0.0200599 ])
Coordinates:
  * y        (y) int32 10 20 30

In [18]:
arr.std(['x', 'y'])


Out[18]:
<xarray.DataArray ()>
array(0.8993685282752704)

In [19]:
arr.min()


Out[19]:
<xarray.DataArray ()>
array(-1.0353083542944768)

If you need to figure out the axis number for a dimension yourself (say, for wrapping code designed to work with numpy arrays), you can use the get_axis_num() method:


In [21]:
arr.get_axis_num('y')


Out[21]:
1

These operations automatically skip missing values, like in pandas:


In [22]:
xr.DataArray([1, 2, np.nan, 3]).mean()


Out[22]:
<xarray.DataArray ()>
array(2.0)

If desired, you can disable this behavior by invoking the aggregation method with skipna=False.

Rolling window operations

DataArray objects include a rolling() method. This method supports rolling window aggregation:


In [23]:
arr = xr.DataArray(np.arange(0, 7.5, 0.5).reshape(3, 5), dims=('x', 'y'))

In [24]:
arr


Out[24]:
<xarray.DataArray (x: 3, y: 5)>
array([[ 0. ,  0.5,  1. ,  1.5,  2. ],
       [ 2.5,  3. ,  3.5,  4. ,  4.5],
       [ 5. ,  5.5,  6. ,  6.5,  7. ]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0 1 2 3 4

rolling() is applied along one dimension using the name of the dimension as a key (e.g. y) and the window size as the value (e.g. 3). We get back a Rolling object:


In [25]:
arr.rolling(y=3)


Out[25]:
DataArrayRolling [window->3,center->False,dim->y]

The label position and minimum number of periods in the rolling window are controlled by the center and min_periods arguments:


In [48]:
arr.rolling(y=3, min_periods=2, center=True)


Out[48]:
DataArrayRolling [window->3,min_periods->2,center->True,dim->y]

In [49]:
r = arr.rolling(y=3)

In [50]:
r.mean()


Out[50]:
<xarray.DataArray (x: 3, y: 5)>
array([[ nan,  nan,  0.5,  1. ,  1.5],
       [ nan,  nan,  3. ,  3.5,  4. ],
       [ nan,  nan,  5.5,  6. ,  6.5]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0 1 2 3 4

In [47]:
r.reduce(np.std)


Out[47]:
<xarray.DataArray (y: 5, x: 3)>
array([[ 0.25      ,  0.25      ,  0.25      ],
       [ 0.40824829,  0.40824829,  0.40824829],
       [ 0.40824829,  0.40824829,  0.40824829],
       [ 0.40824829,  0.40824829,  0.40824829],
       [        nan,         nan,         nan]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0 1 2 3 4

Note that rolling window aggregations are much faster (both asymptotically and because they avoid a loop in Python) when bottleneck is installed. Otherwise, we fall back to a slower, pure Python implementation.

Finally, we can manually iterate through Rolling objects:


In [36]:
for label, arr_window in r:
    print('==============================\n', label, '\n-------------------------\n', arr_window)


==============================
 <xarray.DataArray 'y' ()>
array(0, dtype=int64)
Coordinates:
    y        int64 0 
-------------------------
 <xarray.DataArray (x: 3, y: 1)>
array([[ nan],
       [ nan],
       [ nan]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0
==============================
 <xarray.DataArray 'y' ()>
array(1, dtype=int64)
Coordinates:
    y        int64 1 
-------------------------
 <xarray.DataArray (x: 3, y: 2)>
array([[ nan,  nan],
       [ nan,  nan],
       [ nan,  nan]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0 1
==============================
 <xarray.DataArray 'y' ()>
array(2, dtype=int64)
Coordinates:
    y        int64 2 
-------------------------
 <xarray.DataArray (x: 3, y: 3)>
array([[ 0. ,  0.5,  1. ],
       [ 2.5,  3. ,  3.5],
       [ 5. ,  5.5,  6. ]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 0 1 2
==============================
 <xarray.DataArray 'y' ()>
array(3, dtype=int64)
Coordinates:
    y        int64 3 
-------------------------
 <xarray.DataArray (x: 3, y: 3)>
array([[ 0.5,  1. ,  1.5],
       [ 3. ,  3.5,  4. ],
       [ 5.5,  6. ,  6.5]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 1 2 3
==============================
 <xarray.DataArray 'y' ()>
array(4, dtype=int64)
Coordinates:
    y        int64 4 
-------------------------
 <xarray.DataArray (x: 3, y: 3)>
array([[ 1. ,  1.5,  2. ],
       [ 3.5,  4. ,  4.5],
       [ 6. ,  6.5,  7. ]])
Coordinates:
  * x        (x) int64 0 1 2
  * y        (y) int64 2 3 4

Broadcasting by dimension name

DataArray objects are automatically align themselves (“broadcasting” in the numpy parlance) by dimension name instead of axis order. With xarray, you do not need to transpose arrays or insert dimensions of length 1 to get array operations to work, as commonly done in numpy with np.reshape() or np.newaxis.

This is best illustrated by a few examples. Consider two one-dimensional arrays with different sizes aligned along different dimensions:


In [51]:
a = xr.DataArray([1, 2], [('x', ['a', 'b'])])

In [52]:
a


Out[52]:
<xarray.DataArray (x: 2)>
array([1, 2])
Coordinates:
  * x        (x) <U1 'a' 'b'

In [53]:
b = xr.DataArray([-1, -2, -3], [('y', [10, 20, 30])])

In [54]:
b


Out[54]:
<xarray.DataArray (y: 3)>
array([-1, -2, -3])
Coordinates:
  * y        (y) int32 10 20 30

With xarray, we can apply binary mathematical operations to these arrays, and their dimensions are expanded automatically:


In [55]:
a * b


Out[55]:
<xarray.DataArray (x: 2, y: 3)>
array([[-1, -2, -3],
       [-2, -4, -6]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

Moreover, dimensions are always reordered to the order in which they first appeared:


In [56]:
c = xr.DataArray(np.arange(6).reshape(3, 2), [b['y'], a['x']])

In [57]:
c


Out[57]:
<xarray.DataArray (y: 3, x: 2)>
array([[0, 1],
       [2, 3],
       [4, 5]])
Coordinates:
  * y        (y) int32 10 20 30
  * x        (x) <U1 'a' 'b'

In [58]:
a + c


Out[58]:
<xarray.DataArray (x: 2, y: 3)>
array([[1, 3, 5],
       [3, 5, 7]])
Coordinates:
  * x        (x) <U1 'a' 'b'
  * y        (y) int32 10 20 30

This means, for example, that you always subtract an array from its transpose:


In [59]:
c - c.T


Out[59]:
<xarray.DataArray (y: 3, x: 2)>
array([[0, 0],
       [0, 0],
       [0, 0]])
Coordinates:
  * y        (y) int32 10 20 30
  * x        (x) <U1 'a' 'b'

In [ ]: