A climate scientist wishes to analyse potential correlations between Ozone and Cloud ECVs.
In [ ]:
from cate.core.ds import DATA_STORE_REGISTRY
import cate.ops as ops
from cate.util import ConsoleMonitor
In [ ]:
monitor = ConsoleMonitor()
In [ ]:
data_store = DATA_STORE_REGISTRY.get_data_store('esa_cci_odp')
local_store = DATA_STORE_REGISTRY.get_data_store('local')
In [ ]:
oz_remote_sources = data_store.query('esacci.OZONE.mon.L3.NP.multi-sensor.multi-platform.MERGED.fv0002.r1')
oz_remote_sources
In [ ]:
oz_remote_sources[0].make_local(local_name='ozone.mon',
time_range='2007-01-01, 2007-03-31',
monitor=monitor)
In [ ]:
cl_remote_sources = data_store.query('esacci.CLOUD.mon.L3C.CLD_PRODUCTS.multi-sensor.multi-platform.ATSR2-AATSR.2-0.r1')
cl_remote_sources
In [ ]:
cl_remote_sources[0].make_local(local_name='clouds1.mon',
time_range='2007-01-01, 2007-03-31',
monitor=monitor)
In [ ]:
local_store
In [ ]:
cc = ops.open_dataset('local.clouds1.mon')
In [ ]:
cc
In [ ]:
oz = ops.open_dataset('local.ozone.mon')
In [ ]:
oz
In [ ]:
cc_tot = ops.select_var(cc, 'cfc')
oz_tot = ops.select_var(oz, 'O3_du_tot')
In [ ]:
oz_tot
Plot the first time slice of the dataset
In [ ]:
%matplotlib inline
ops.plot_map(oz_tot, var='O3_du_tot', time='2007-01-01', file='/home/ccitbx/Desktop/fig1.png')
In [ ]:
ops.plot_map(cc_tot, var='cfc', time='2007-01-01', file='/home/ccitbx/Desktop/fig2.png')
In [ ]:
print(cc_tot['cfc'].shape)
print(oz_tot['O3_du_tot'].shape)
In [ ]:
cc_tot_res = ops.coregister(oz_tot, cc_tot)
In [ ]:
print(cc_tot_res['cfc'].shape)
print(oz_tot['O3_du_tot'].shape)
In [ ]:
ops.plot_map(cc_tot_res, var='cfc', time='2007-01', file='/home/ccitbx/Desktop/fig3.png')
In [ ]:
africa = '-20.0, -40.0, 60.0, 40.0'
# 'lon_min, lat_min, lon_max, lat_max'
cc_tot_africa = ops.subset_spatial(cc_tot_res, africa)
oz_tot_africa = ops.subset_spatial(oz_tot, africa)
In [ ]:
ops.plot_map(cc_tot_africa, var='cfc', time='2007-01-01', file='/home/ccitbx/Desktop/fig4.png')
In [ ]:
ops.plot_map(cc_tot_africa, var='cfc', time='2007-01-01',
region=africa, file='/home/ccitbx/Desktop/fig5.png')
In [ ]:
cc_tot_janmar = ops.subset_temporal(cc_tot_africa, '2007-01-01, 2007-03-31')
oz_tot_janmar = ops.subset_temporal(oz_tot_africa, '2007-01-01, 2007-03-31')
In [ ]:
print(cc_tot_janmar.time)
In [ ]:
print(oz_tot_janmar.time)
In [ ]:
oz_ts_point = ops.tseries_point(oz_tot_janmar, point='50, 50')
cc_ts_point = ops.tseries_point(cc_tot_janmar, point='50, 50')
oz_ts_mean = ops.tseries_mean(oz_tot_janmar, var='O3_du_tot')
cc_ts_mean = ops.tseries_mean(cc_tot_janmar, var='cfc')
In [ ]:
print(oz_ts_mean)
In [ ]:
print(cc_ts_mean)
In [ ]:
ops.plot(cc_ts_mean, 'cfc', file='/home/ccitbx/Desktop/fig6.png')
In [ ]:
ops.plot(oz_ts_mean, 'O3_du_tot', file='/home/ccitbx/Desktop/fig7.png')
In [ ]:
correlation = ops.pearson_correlation_scalar(cc_ts_mean, oz_ts_mean, 'cfc', 'O3_du_tot')
correlation
In [ ]:
ops.write_text(correlation, file='/home/ccitbx/Desktop/corr.txt')
In [ ]:
correlation = ops.pearson_correlation(cc_tot_janmar, oz_tot_janmar, 'cfc', 'O3_du_tot')
In [ ]:
correlation
In [ ]:
ops.write_netcdf4(correlation, file='/home/ccitbx/Desktop/corr.nc')
In [ ]:
ops.plot_map(correlation, var='corr_coef',
region=africa, file='/home/ccitbx/Desktop/fig8.png')
In [ ]: