• Bokeh is a Python interactive visualization library that targets modern web browsers for presentation. Bokeh provides elegant, concise construction of novel graphics with high-performance interactivity over very large or streaming datasets in a quick and easy way
  • 其会自动生成 HTML 文件

In [7]:
from bokeh.plotting import figure, output_notebook, show

# prepare some data
x = [1, 2, 3, 4, 5]
y = [6, 7, 2, 4, 5]

# output to static HTML file
output_notebook()

# create a new plot with a title and axis labels
p = figure(title="simple line example", x_axis_label='x', y_axis_label='y')

# add a line renderer with legend and line thickness
p.line(x, y, legend="Temp.", line_width=2)

# show the results
show(p)


Loading BokehJS ...

In [8]:
from bokeh.plotting import figure, output_notebook, show

# prepare some data
x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) for i in x]

# output to static HTML file
output_notebook()

# create a new plot
p = figure(
   tools="pan,box_zoom,reset,save",
   y_axis_type="log", y_range=[0.001, 10**11], title="log axis example",
   x_axis_label='sections', y_axis_label='particles'
)

# add some renderers
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill_color="white", size=8)
p.line(x, y0, legend="y=x^2", line_width=3)
p.line(x, y1, legend="y=10^x", line_color="red")
p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6)
p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4")

# show the results
show(p)


Loading BokehJS ...

In [ ]: