Сначала всякие настройки и импорты
In [173]:
import matplotlib.pyplot as plt
import numpy as np
from numpy import poly1d, polyfit, power
import scipy.optimize
from math import *
from IPython.display import HTML
from IPython.display import Image
import os
import PIL as pil
import heapq
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
import matplotlib.cm as cm
%matplotlib inline
#Размер изображений
import matplotlib.pylab as pylab
pylab.rcParams['figure.figsize'] = 12, 12
#Наклон галактики по данным Засова
incl=36.0
# Масштаб пк/секунда из NED
scale=321
#Эффективный радиус балджа
r_eb = 6.7
Всякие картинки и БД для большего удобства:
In [174]:
# Данные из SDSS DR9
HTML('<iframe src=http://skyserver.sdss3.org/dr9/en/tools/explore/obj.asp?ra=03:01:42.4&dec=+35:12:21 width=1000 height=350></iframe>')
Out[174]:
In [175]:
# Данные из HYPERLEDA
HTML('<iframe src=http://leda.univ-lyon1.fr/ledacat.cgi?o=ngc1167 width=1000 height=350></iframe>')
Out[175]:
In [176]:
# Данные из NED
HTML('<iframe src=http://ned.ipac.caltech.edu/cgi-bin/objsearch?objname=ngc+1167&extend=no&hconst=73&omegam=0.27&omegav=0.73&corr_z=1&out_csys=Equatorial&out_equinox=J2000.0&obj_sort=RA+or+Longitude&of=pre_text&zv_breaker=30000.0&list_limit=5&img_stamp=YES width=1000 height=350></iframe>')
Out[176]:
In [177]:
os.chdir("C:\\science\\2FInstability\\data\\ngc1167")
#Изображения, которые имеют отношение
try:
from PIL import Image
except:
import Image
fig, subplot = plt.subplots(1, 2)
subplot[0].imshow(np.asarray(Image.open("ngc1167_JHK.jpg")))
subplot[0].set_title("2MASS image JHK")
subplot[1].imshow(np.asarray(Image.open("ngc1167_SDSS.jpeg")))
subplot[1].set_title("SDSS DR9 whole image")
plt.show()
plt.imshow(np.asarray(Image.open("ugc2487.png")))
plt.title("Image with HI surf. dens.")
plt.show()
In [178]:
#Выводим данные за header-а файла
for line in file("v_stars_maZ.dat"):
if line[0] == '#':
print(line)
Выведем также для удобства данные из обоих файлов:
In [179]:
# ma = pd.read_csv('v_stars_maZ.dat', skiprows=10, sep=' ', header=False)
# HTML(ma.to_html())
In [180]:
# mi = pd.read_csv('v_stars_miZ.dat', skiprows=10, sep=' ', header=False)
# HTML(mi.to_html())
Посмотрим теперь на все доступные даные по кривым вращения.
In [181]:
# Данные по звездной кинематике Засова 2012 вдоль большей полуоси, не исправленные за наклон
zasov_raw_data = np.loadtxt("v_stars_maZ.dat", float)
r_ma, vel_ma, e_vel_ma, sig_ma, e_sig_ma = zip(*zasov_raw_data)
# Данные по звездной кинематике Засова 2012 вдоль малой полуоси, не исправленные за наклон
zasov_raw_data = np.loadtxt("v_stars_miZ.dat", float)
r_mi, vel_mi, e_vel_mi, sig_mi, e_sig_mi = zip(*zasov_raw_data)
# Данные по кинематике газа Struve, WSRT (не исправлено за наклон)
wsrt_raw_data = np.loadtxt("v_gas_WSRT.dat", float)
r_wsrt, vel_wsrt, e_vel_wsrt = zip(*wsrt_raw_data)
# Данные по кинематике газа Noordermee 2007, WSRT (не исправлено за наклон?)
noord_raw_data = np.loadtxt("v_gas_noord.dat", float)
r_noord, vel_noord, e_vel_noord = zip(*noord_raw_data)
plt.plot(r_ma, vel_ma, '.-', label="Zasov 2008, maj")
plt.plot(r_mi, vel_mi, '.-', label="Zasov 2008, min")
plt.plot(r_wsrt, vel_wsrt, '.-', label="gas Struve")
plt.plot(r_noord, vel_noord, '.-', label="gas Noordermeer 2007")
plt.legend()
plt.plot()
Out[181]:
In [182]:
def incline_velocity(v, angle):
return v / sin(angle * pi / 180)
# Переносит центр в (r0,v0) и перегибает кривую вращения,
# а также исправляет за наклон если необходимо
def correct_rotation_curve(rdata, vdata, dvdata, r0, v0, incl):
rdata_tmp = [abs(r-r0) for r in rdata]
vdata_tmp = [incline_velocity(abs(v-v0), incl) for v in vdata]
data = zip(rdata_tmp, vdata_tmp, dvdata)
data.sort()
return zip(*data)
r_ma_b, vel_ma_b, e_vel_b = correct_rotation_curve(r_ma, vel_ma, e_vel_ma, 0.0, 4959.3, incl)
r_mi_b, vel_mi_b, e_vel_mi_b = correct_rotation_curve(r_mi, vel_mi, e_vel_mi, 0.0, 4959.3, incl)
plt.plot(r_ma_b, vel_ma_b, 'd', label = 'Zasov star maj')
plt.errorbar(r_ma_b, vel_ma_b, yerr=e_vel_b, fmt='.', marker='.', mew=0, color='blue')
plt.plot(r_mi_b, vel_mi_b, '.', label = 'Zasov star min', color='green')
plt.errorbar(r_mi_b, vel_mi_b, yerr=e_vel_mi_b, fmt='.', marker='.', mew=0, color='green')
plt.legend()
plt.plot()
Out[182]:
В дальнейшем используем только засовские данные по звездам по большой полуоси, приблизим их полиномом.
In [183]:
poly_star = poly1d(polyfit(r_ma_b, vel_ma_b, deg=3))
plt.plot(r_ma_b, vel_ma_b, 'x-', color='blue', markersize=6)
test_points = np.arange(0.0, max(r_ma_b), 0.1)
plt.plot(test_points, poly_star(test_points), '-', color='red')
plt.xlabel('$R$'); plt.ylim(0)
plt.ylabel('$V^{maj}_{\phi}(R)$')
plt.show()
In [184]:
os.chdir("C:\\Users\\root\\Dropbox\\RotationCurves\\PhD\\paper1\\text\\imgs")
np.save('n1167_maj_rot', zip(r_ma_b, vel_ma_b, e_vel_b))
np.save('n1167_rot_poly', zip(test_points, poly_star(test_points)))
os.chdir("C:\\science\\2FInstability\\data\\ngc1167")
Кривая вращения нам нужна для нахождения соотношения $\sigma_{\varphi}^{2}/\sigma_{R}^{2}$, которое описывается уравнением ${\displaystyle \sigma_{\varphi}^{2}/\sigma_{R}^{2}=0.5\left(1+\frac{R}{\bar{v}_{\varphi}}\frac{d\bar{v}_{\varphi}}{dR}\right)}$ (Binney & Tremaine, 1987) и приближается гладко функцией $f=0.5(1+e^{-R/R_{0}}),$ где $R_{0}$ --- характерный масштаб.
${\bf Примечание:}$ Такое приближение оправдано следующими соображениями. Для равновесного диска верно уравнение, описанное выше. Для твердотельного участка вращения в центральных областях выражение в скобках равно 2, а $\sigma_{\varphi}^{2}/\sigma_{R}^{2}=1$. На плоском участке кривой вращения на периферии диска $\sigma_{\varphi}^{2}/\sigma_{R}^{2}\thickapprox0.5$. Функция $f$ как раз аппроксимирует такое поведение отношения $\sigma_{\varphi}^{2}/\sigma_{R}^{2}$.
Изобразим получившийся профиль $\sigma_{\varphi}^{2}/\sigma_{R}^{2}$, вычисляемый через производную полинома:
In [185]:
def sigPhi_to_sigR_real(R):
return 0.5 * (1 + R*poly_star.deriv()(R) / poly_star(R))
plt.plot(test_points, [sigPhi_to_sigR_real(R) for R in test_points], 'd-', color='blue')
plt.axhline(y=0.5)
plt.axhline(y=0.0)
plt.xlabel('$R$')
plt.ylabel(r"$\sigma_{\varphi}^2/\sigma_{R}^2$")
plt.ylim(0)
plt.show()
Найдем теперь характерный масштаб $f=0.5(1+e^{-R/R_{0}})$:
In [186]:
def f(R, Ro):
return 0.5*(1 + np.exp( -R/Ro ))
xdata = test_points
ydata = sigPhi_to_sigR_real(xdata)
from scipy.optimize import curve_fit
popt, pcov = curve_fit(f, xdata, ydata, p0=[1.0])
Ro = popt[0]
plt.plot(xdata, ydata, 'x-')
plt.plot(xdata, [f(p, Ro) for p in xdata], 's')
plt.axhline(y=0.5)
plt.axhline(y=0.0)
plt.title('$R_{0} = %s $' % Ro)
plt.ylim(0, 2)
plt.show()
Теперь знаем значение отношения $\sigma_{\varphi}^{2}/\sigma_{R}^{2}$ в любой точке, заведем соответствующую функцию:
In [187]:
def sigPhi_to_sigR(R):
return sqrt(f(R, Ro))
Построим графики дисперсий скоростей на луче зрения вдоль большой и малой оси ($\sigma_{los}^{maj}$ и $\sigma_{los}^{min}$):
In [188]:
# Исправляем значения вдоль малой оси на синус угла:
def correct_min(R):
return R / cos(incl * pi / 180)
r_mi_extend = map(correct_min, r_mi)
plt.plot(r_ma, sig_ma, 's-', label='$\sigma_{los}^{maj}$')
plt.errorbar(r_ma, sig_ma, yerr=e_sig_ma, fmt='.', marker='.', mew=0, color='blue')
plt.plot(r_mi_extend, sig_mi, 's-', label='$\sigma_{los}^{min}$')
plt.errorbar(r_mi_extend, sig_mi, yerr=e_sig_mi, fmt='.', marker='.', mew=0, color='black')
plt.xlabel('$R$')
plt.ylabel('$\sigma$')
plt.legend()
plt.show()
Перегнем и приблизим полиномами:
In [189]:
bind_curve = lambda p: (abs(p[0]), abs(p[1]), p[2])
sig_maj_data = zip(r_ma, sig_ma, e_sig_ma)
sig_maj_data = map(bind_curve, sig_maj_data)
sig_maj_data.sort()
radii_maj, sig_maj_p, e_sig_maj_p = zip(*sig_maj_data)
poly_sig_maj = poly1d(polyfit(radii_maj, sig_maj_p, deg=9))
sig_min_data = zip(r_mi_extend, sig_mi, e_sig_mi)
sig_min_data = map(bind_curve, sig_min_data)
sig_min_data.sort()
radii_min, sig_min_p, e_sig_min_p = zip(*sig_min_data)
# Добавляем лишние точки чтобы протянуть дальше
num_fake_points = 10; expscale = 200.0
# fake_radii, fake_sig = zip(*[(31.0 + i, 115*exp(- i / expscale )) for i in range(1, num_fake_points+1)])
fake_radii, fake_sig = (),()
poly_sig_min = poly1d(polyfit(radii_min + fake_radii, sig_min_p + fake_sig, deg=9))
points = np.arange(0, max(radii_min), 0.1)
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(fake_radii, fake_sig, 'bs', color='green', label='$fake points$')
plt.legend()
plt.ylim(0,250)
plt.xlim(0,55)
plt.show()
In [190]:
# Граница. по которой обрезаем
cutted = 3.
# cutted = r_eb
sig_maj_data = zip(radii_maj, sig_maj_p, e_sig_maj_p)
sig_maj_data = filter(lambda l: l[0] > cutted, sig_maj_data)
radii_maj, sig_maj_p, e_sig_maj_p = zip(*sig_maj_data)
sig_min_data = zip(radii_min, sig_min_p, e_sig_min_p)
sig_min_data = filter(lambda l: l[0] > cutted, sig_min_data)
radii_min, sig_min_p, e_sig_min_p = zip(*sig_min_data)
points = np.arange(0, max(radii_min), 0.1)
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.axvline(x=cutted, color='black')
plt.legend()
plt.ylim(0, 250)
plt.show()
In [191]:
def w(arr):
return map(lambda l: 1/(1. + l**2), arr)
import scipy.interpolate as inter
# points = filter(lambda l: l > cutted, points)
# Try to hack, not necessary
radii_maj, sig_maj_p, e_sig_maj_p = radii_maj[:-1], sig_maj_p[:-1], e_sig_maj_p[:-1]
# radii_maj, sig_maj_p, e_sig_maj_p = radii_maj[:-4] + radii_maj[-3:-1], sig_maj_p[:-4]+sig_maj_p[-3:-1], e_sig_maj_p[:-4]+e_sig_maj_p[-3:-1]
spl_maj = inter.UnivariateSpline (radii_maj[::-1], sig_maj_p[::-1], k=3, s=10000., w=w(e_sig_maj_p))
spl_min = inter.UnivariateSpline (radii_min[::-1], sig_min_p[::-1], k=3, s=10000., w=w(e_sig_min_p))
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, spl_maj(points), label = '$\sigma_{los}^{maj}\, splinefit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, spl_min(points), label = '$\sigma_{los}^{min}\, splinefit$', color='red')
plt.axvline(x=cutted, color='black')
plt.legend()
plt.show()
poly_sig_maj = spl_maj
poly_sig_min = spl_min
In [192]:
os.chdir("C:\\Users\\root\\Dropbox\\RotationCurves\\PhD\\paper1\\text\\imgs")
np.save('n1167_maj', zip(radii_maj, sig_maj_p, e_sig_maj_p))
np.save('n1167_min', zip(radii_min, sig_min_p, e_sig_min_p))
np.save('n1167_min_poly', zip(points, poly_sig_min(points)))
np.save('n1167_maj_poly', zip(points, poly_sig_maj(points)))
os.chdir("C:\\science\\2FInstability\\data\\ngc1167")
Посчитаем величину невязок для полученного приближения:
In [193]:
sqerr_maj = sum(power([poly_sig_maj(p[0]) - p[1] for p in sig_maj_data], 2))
sqerr_min = sum(power([poly_sig_min(p[0]) - p[1] for p in sig_min_data], 2))
chi2_maj = sqerr_maj / len(sig_maj_p)
chi2_min = sqerr_min / len(sig_min_p)
print "Poly chi^2 for maj full = %s, mean = %s" % (sqerr_maj, chi2_maj)
print "Poly chi^2 for min full = %s, mean = %s" % (sqerr_min, chi2_maj)
Методика восстановления профилей $\sigma_{R}(R)$, $\sigma_{\varphi}(R)$ и $\sigma_{z}(R)$ следующая. Представим, что $\sigma_{Z}/\sigma_{R} \equiv \alpha \equiv const$. Тогда, зная значения $\sigma_{\varphi}^{2}/\sigma_{R}^{2}=f(R)$ в каждой точке, получаем из уравнений, описанных выше: $$\sigma_{los,maj}^2=\sigma_R^2[f\sin^2i+\alpha^2\cos^2i]$$ $$\sigma_{los,min}^2=\sigma_R^2[\sin^2i+\alpha^2\cos^2i]$$ Представим теперь $\sigma_R(R)=\sigma_{R,0}\times F(R)$, где $F(0)=1$. Значение в квадратных скобках для $\sigma_{los,min}$ равно константе и, следуя предположению, получаем представление для дисперсии вдоль луча зрения для малой оси как $\sigma_{los,min}(R)=\sigma_{min,0}\times F(R)$. Очевидно $\sigma_{min,0} = \sigma_{los,min}(0)$, а значит мы знаем в каждой точке значение $F(R)=\sigma_{los,min(R)}/\sigma_{min,0}$. Описанная выше система уравнений вырождается в следующую: $$\sigma_{los,maj}^2(R)=\frac{\sigma_{R,0}^2\sigma_{los,min}^2(R)[f\sin^2i+\alpha^2\cos^2i]}{\sigma_{min,0}^2}$$ $$\sigma_{min,0}^2=\sigma_{R,0}^2\sin^2i+\sigma_{R,0}^2\alpha^2\cos^2i$$ Сделаем замену: $\sigma_{R,0}^2\sin^2 i \equiv A,\ \sigma_{R,0}^2\cos^2 i\times \alpha^2 \equiv B$. Окончательно, имеем $N+1$ линейное уравнение для $N$ точек, которые можем решить МНК: $$\left\{ \begin{array}{lr} \sigma_{los,maj}^2(R_j)\times \sigma_{min,0}^2 =\sigma_{los,min}^2(R_j)[Af(R_j)+B]\\ \sigma_{min,0}^2=A+B \end{array} \right. $$
In [194]:
#Обрезаем данные по x > r_eff
r_eff = 8.0
#Значение sig_los_min в 0
sig_min_0 = poly_sig_min(0)
# sig_min_0 = 180
#Правая граница
r_max = 30.0
#Количество точек N и сами точки
N = 10
radii_points = np.arange(r_eff, r_max, (r_max-r_eff)/N)
#Как вычислять ошибку
def residuals(params, xdata, ydata):
return (ydata - np.dot(xdata, params))
#Начальное приближение (А,В)
x0 = [1000, 100]
#Уравнения: одно для min и N для maj
#Левая часть:
eq_left = np.concatenate( ([sig_min_0**2],
[poly_sig_maj(p)**2 * sig_min_0**2 for p in radii_points]) )
#Правая часть:
eq_right = np.transpose(
np.array([
np.concatenate(([1.0],
[poly_sig_min(R)**2 * sigPhi_to_sigR(R)**2 for R in radii_points])),
np.concatenate(([1.0],
[poly_sig_min(R)**2 for R in radii_points]))]))
# Что будет, если выкинуть уравнение для min:
# eq_left = np.array([poly_sig_maj(p)**2 * sig_min_0**2 for p in radii_points])
# eq_right = np.transpose(
# np.array([[poly_sig_min(R)**2 * sigPhi_to_sigR(R)**2 for R in radii_points],
# [poly_sig_min(R)**2 for R in radii_points]]))
# МНК для получившихся уравнений:
solution = scipy.optimize.leastsq(residuals, x0, args=(eq_right, eq_left))[0]
A, B = solution[0], solution[1]
chi2 = sum(power(residuals(solution, eq_right, eq_left), 2))/N
print 'Solution: A = %s, B = %s' % (A, B)
print 'Chi^2:', chi2
#Подставить в уравнение в какой-нибудь точке:
# rrr = 25.0
# print (poly_sig_maj(rrr)**2) * sig_min_0**2 - (poly_sig_min(rrr)**2) * (A*f(rrr, Ro)+B)
Теперь восстановим исходные неизвестные - $\alpha$ и $\sigma_{R, 0}$:
In [195]:
sig_R_0 = round( sqrt(A) / sin(incl*pi/180), 3)
alpha = round( sqrt(B)/ (cos(incl*pi/180) * sig_R_0), 3)
# sig_R_0 = 160
# alpha = 0.55
print "sig_R_0 = %s, alpha = %s" % (sig_R_0, alpha)
Построим полученные профили дисперсий скоростей:
In [196]:
def sigR_exp(R):
return sig_R_0*poly_sig_min(R)/sig_min_0
def sigZ_exp(R):
return alpha * sigR_exp(R)
def sigPhi_exp(R):
return sigPhi_to_sigR(R) * sigR_exp(R)
plt.plot(points, [sigR_exp(R) for R in points], '-', color='red', label='$\sigma_{R, exp}$')
plt.plot(points, [sigPhi_exp(R) for R in points], '-', color='blue', label=r'$\sigma_{\varphi, exp}$')
plt.plot(points, [sigZ_exp(R) for R in points], '-', color='black', label='$\sigma_{Z, exp}$')
plt.legend()
plt.ylim(0, 350)
plt.xlim(0, 50)
plt.show()
И восстановим профили $\sigma_{los}^{maj}$ и $\sigma_{los}^{min}$. Связь профилей описывается следующими уравнениями: $$\sigma_{los,maj}^2=\sigma_{\varphi}^2\sin^2i+\sigma_Z^2\cos^2i$$ $$\sigma_{los,min}^2=\sigma_R^2\sin^2i+\sigma_Z^2\cos^2i$$
In [197]:
def sig_maj_exp(R):
return sqrt(sigPhi_exp(R)**2 * sin(incl*pi/180)**2 + sigZ_exp(R)**2 * cos(incl*pi/180)**2)
def sig_min_exp(R):
return sqrt(sigR_exp(R)**2 * sin(incl*pi/180)**2 + sigZ_exp(R)**2 * cos(incl*pi/180)**2)
cos_i, sin_i = cos(incl * pi / 180), sin(incl * pi / 180)
def sig_maj_exp(R):
tmp = sigPhi_to_sigR_real(R) * sin_i**2 + alpha**2 * cos_i**2
if tmp > 0:
return sig_R_0*poly_sig_min(R)/sig_min_0 * sqrt(sigPhi_to_sigR_real(R) * sin_i**2 + alpha**2 * cos_i**2)
else:
return -100
# return sig_R_0*spl_min(R)/sig_min_0 * sqrt(sigPhi_to_sigR(R)**2 * sin_i**2 + alpha**2 * cos_i**2)
# return sqrt(sigPhi_exp(R)**2 * sin(incl*pi/180)**2 + sigZ_exp(R)**2 * cos(incl*pi/180)**2)
def sig_min_exp(R):
return sig_R_0*poly_sig_min(R)/sig_min_0 * sqrt(sin_i**2 + alpha**2 * cos_i**2)
# return sqrt(sigR_exp(R)**2 * sin(incl*pi/180)**2 + sigZ_exp(R)**2 * cos(incl*pi/180)**2)
plt.plot(points, poly_sig_maj(points), '-', label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(points, [sig_maj_exp(R) for R in points], '--', color='blue', label='$\sigma_{maj, exp}$')
plt.plot(points, poly_sig_min(points), '-', label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(points, [sig_min_exp(R) for R in points], '--', color='red', label='$\sigma_{min, exp}$')
plt.legend()
plt.ylim(0, 350)
plt.xlim(0, 50)
plt.show()
Финальный штрих - нанесем точки:
In [198]:
plt.plot(points, poly_sig_maj(points), '-', label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(points, [sig_maj_exp(R) for R in points], '--', color='blue', label='$\sigma_{maj, exp}$')
plt.plot(points, poly_sig_min(points), '-', label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(points, [sig_min_exp(R) for R in points], '--', color='red', label='$\sigma_{min, exp}$')
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.legend()
plt.ylim(0, 250)
plt.xlim(0, 50)
plt.show()
И посчитаем невязки для восстановленного профиля:
In [199]:
sqerr_maj_final = sum(power([sig_maj_exp(p[0]) - p[1] for p in sig_maj_data], 2))
sqerr_min_final = sum(power([sig_min_exp(p[0]) - p[1] for p in sig_min_data], 2))
print "Poly chi^2 for maj = %s, mean = %s" % (sqerr_maj_final, sqerr_maj_final / sig_maj_p.__len__())
print "Poly chi^2 for min = %s, mean = %s" % (sqerr_min_final, sqerr_min_final / sig_min_p.__len__())
Попробуем поискать точки, в которых МНК решается лучше всего:
In [200]:
#Восстановление первоначальных неизвестных
def physical_unknowns(A, B):
sig_R_0 = round( sqrt(A) / sin(incl*pi/180), 3)
alpha = round( sqrt(B)/ (cos(incl*pi/180) * sig_R_0), 3)
return (sig_R_0, alpha)
Ns = [50, 75, 100]
right_max = 50.
#Шаг сетки по расстоянию
dx = 2.
#Минимальный размер отрезка, на котором ищем ответ
min_size = 20.
lefts = np.arange(0, right_max, dx)
best = []
for n in Ns:
result_for_N = []
for left in lefts:
rights = np.arange(left+min_size, right_max, dx)
for right in rights:
r_points = np.arange(left, right, (right-left)/n)
eq_left = np.concatenate( ([sig_min_0**2],
[poly_sig_maj(p)**2 * sig_min_0**2 for p in r_points]) )
eq_right = np.transpose(
np.array([
np.concatenate(([1.0],
[poly_sig_min(R)**2 * sigPhi_to_sigR(R)**2 for R in r_points])),
np.concatenate(([1.0],
[poly_sig_min(R)**2 for R in r_points]))]))
solution = scipy.optimize.leastsq(residuals, x0, args=(eq_right, eq_left))[0]
A, B = solution[0], solution[1]
chi2 = sum(power(residuals(solution, eq_right, eq_left), 2))/n
if A > 0 and B > 0:
result_for_N.append([chi2, left, right-left, A, B])
if result_for_N.__len__() > 0:
result_for_N.sort()
Z,X,Y,A,B = zip(*result_for_N)
print "For N=%s top-10 best results:" % n
for ind in range(0, min(10, Z.__len__())):
prin = (ind+1, Z[ind], X[ind], X[ind]+Y[ind]) + physical_unknowns(A[ind], B[ind])
print "\t%s place: chi2 = %s in range [%s:%s]; sig_R_0 = %s alpha = %s" % prin
if best.__len__() == 0 or best[0] > Z[0]:
best = [Z[0], X[0], Y[0], n]
if best.__len__() > 0:
print "Best of the best: N=%s chi2 = %s on range[%s:%s]" % (best[3], best[0], best[1], best[2]+best[1])
Заметим, что можно было не решать систему МНК, а честно разрешить систему из двух уравнений $$\left\{ \begin{array}{lr} \sigma_{los,maj}^2(R_j)\times \sigma_{min,0}^2 =\sigma_{los,min}^2(R_j)[Af(R_j)+B]\\ \sigma_{min,0}^2=A+B \end{array} \right. $$ относительно $A$ и $B$ для почти любого $R_j$ (а лучше даже относительно начальных неизвестных - $\sigma_{R,0}$ и $\alpha$). Решение: $$\sigma_{R,0}^2 = \frac{\sigma_{min,0}^2}{\sin^2 i}\times\frac{1}{f(R)-1}\times(P(R)-1)$$ $$\alpha^2 = \tan^2 i\frac{f(R) - P(R)}{P(R)-1},$$ $$P(R)=\frac{\sigma_{los,maj}^2(R)}{\sigma_{los, min}^2(R)}$$ Имеет смысл также искать не $\alpha$, а $\alpha\cdot\sigma_{R,0}=\sigma_{Z,0}$.
In [201]:
cos_i, sin_i = cos(incl * pi / 180), sin(incl * pi / 180)
def P(R):
"""Отношение maj к min, как описано выше"""
return (poly_sig_maj(R)/poly_sig_min(R))**2
def direct_solve_A(R):
"""Аналитически находим значение sig_R_0 для уравнения в точке R"""
res = sig_min_0**2 * (P(R) - 1) / (sin_i**2 * (sigPhi_to_sigR(R)**2 - 1))
return sqrt(res) if res > 0 else 0
def direct_solve_B(R):
"""Аналитически находим значение alpha для уравнения в точке R"""
res = (sigPhi_to_sigR(R)**2 - P(R))/(P(R) - 1) * (sin_i/cos_i)**2
return sqrt(res) if res > 0 else 0
def direct_find_sig_R_0(R):
return direct_solve_A(R)
def direct_find_sig_Z_0(R):
return direct_solve_A(R) * direct_solve_B(R)
Найдем значения $\sigma_{R,0}$ и $\sigma_{Z,0}$ для всех точек на большой оси:
In [202]:
p_r = radii_maj
direct_sigR0 = map(direct_find_sig_R_0, p_r)
direct_sigZ0 = map(direct_find_sig_Z_0, p_r)
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(p_r, direct_sigR0, 'o', color='r', label='$\sigma_{R,0}$')
plt.plot(p_r, direct_sigZ0, 'o', color='k', label='$\sigma_{Z,0}$')
plt.legend()
plt.ylim(-10, 400)
plt.show()
Как видно - значения $\sigma_{R,0}$ колеблются, найдем их среднее:
In [203]:
#Обрежем по 5
q=5.
ind_q = p_r.index(filter(lambda l: l > q, p_r)[0])
poly_q = poly1d(polyfit(p_r[ind_q:], direct_sigR0[ind_q:], deg=0))
print "sig_R poly mean = %s" % poly_q[0]
In [204]:
sig_R_0 = poly_q[0]
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(p_r, direct_sigR0, 'o', color='r', label='$\sigma_{R,0}$')
plt.axhline(y=sig_R_0)
#Строим полученный на основе среднего профиль sig_R
plt.plot(points, poly_sig_min(points)*sig_R_0/sig_min_0, label = '$\sigma_R$', color='m')
plt.legend()
plt.ylim(-10, 400)
plt.show()
Как мы видим, значения профиля дисперсии $\sigma_R(R)$ восстанавливаются довольно надежно, однако оказываются по-видимому больше реальных и поэтому не получается восстановить профиль в вертикальном направлении. Попробуем оценить, насколько этот вклад оказывается переоценен в данном случае. Известно, что отношение $\sigma_Z/\sigma_R$ не может быть меньше некоего порогового значения, в противном случае галактика будет неустойчива к осесимметричным изгибным возмущениям плотности. Многие авторы оценивали эту величину, в том числе Засов, однако последния статья Сотниковой и Радионова "Bending instability in galactic discs. Advocacy of the linear theory" (2013, http://arxiv.org/abs/1306.5975) продемонстрировала, что искомое попроговое значение близко к таковому, полученному из линейной теории Тумре в 1966 год и равно примерно 0.3. Чем это ценно для нас? Если мы примем, что $\frac{\sigma_Z}{\sigma_R} \gtrsim 0.3,$ то, исходя из уравнения $\sigma_{los,min}^2=\sigma_R^2\sin^2i+\sigma_Z^2\cos^2i$ можем получить оценку сверху на значения радиальной дисперсии: $$\frac{\sigma_{los,min}}{\sqrt{\sin^2i+0.09\cos^2i}} \gtrsim \sigma_R$$ Также аналогичную оценку, только чуть более сложную, можно сделать и для данных вдоль большой оси.
In [205]:
def sig_R_upper_lim(R, alpha):
"""Оценка сверху на sigR(R)"""
return poly_sig_min(R)/sqrt(sin_i**2 + alpha**2 * cos_i**2)
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='blue')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='blue')
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='red')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='red')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(p_r, direct_sigR0, 'o', color='r', label='$\sigma_{R,0}$')
plt.axhline(y=sig_R_0)
plt.plot(points, poly_sig_min(points)*sig_R_0/sig_min_0, label = '$\sigma_R$', color='m')
plt.plot(points, [sig_R_upper_lim(R, 0.3) for R in points], label = '$\sigma_R^{up}$', color='g')
plt.legend()
plt.ylim(-10, 400)
plt.show()
Как видим, значения действительно оказались переоценены минимум на 20 км/c. Посмотрим, насколько сильно верхняя оценка зависит от $\alpha$:
In [206]:
alphas = np.arange(0.05, 1.2, 0.01)
plt.plot(alphas, [sig_R_upper_lim(0., a) for a in alphas], 'x')
plt.xlabel(r'$\alpha$', size = 20.)
plt.ylabel('$\sigma_R^{up}$', size=20.)
plt.show()
Как видим, разброс существенный. Давайте ради интереса попробуем восстановить эллипсоид скоростей и исходные профили, исходя из условия об маржинальной устойчивости диска относительно изгибных возмущений:
In [207]:
sig_R_0 = 291.
alpha = 0.3
plt.plot(points, [sigR_exp(R) for R in points], '-', color='red', label='$\sigma_{R, exp}$')
plt.plot(points, [sigPhi_exp(R) for R in points], '-', color='blue', label=r'$\sigma_{\varphi, exp}$')
plt.plot(points, [sigZ_exp(R) for R in points], '-', color='black', label='$\sigma_{Z, exp}$')
plt.legend()
plt.show()
In [208]:
plt.plot(points, poly_sig_maj(points), '-', label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(points, [sig_maj_exp(Rr) for Rr in points], '--', color='blue', label='$\sigma_{maj, exp}$')
plt.plot(points, poly_sig_min(points), '-', label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(points, [sig_min_exp(R) for R in points], 'x', color='red', label='$\sigma_{min, exp}$')
plt.legend()
plt.ylim(0, 200)
plt.show()
Теперь то, с чего надо было начинать - построим картинки для разных значений $\alpha$ и $\sigma_{R,0}$. Для того, чтобы найти где минимум, попробуем построить просто двумерные карты $\chi^2$ для разных $\sigma_{R,0}$ $\alpha$: (это очень долго, так что пересчитывать в крайнем случае)
In [209]:
alphas = np.arange(0.1, 1.2, 0.03)
sigmas = np.arange(100.0, 400, 3.)
def calc_chi2_normal(obs, obserr, predicted):
return sum([(o-p)**2/err**2 for (o,p,err) in zip(obs, predicted, obserr)])/len(obs)
def compute_chi2_maps(alphas=(), sigmas=()):
'''Вычисляем все изображения, чтобы потом только настройки менять'''
image_min = np.random.uniform(size=(len(sigmas), len(alphas)))
image_maj = np.random.uniform(size=(len(sigmas), len(alphas)))
image = np.random.uniform(size=(len(sigmas), len(alphas)))
for i,si in enumerate(sigmas):
for j,al in enumerate(alphas):
global alpha, sig_R_0
alpha = al
sig_R_0 = si
# sqerr_maj = sum(power([sig_maj_exp(p[0]) - p[1] for p in sig_maj_data], 2))/len(sig_maj_data)
# sqerr_min = sum(power([sig_min_exp(p[0]) - p[1] for p in sig_min_data], 2))/len(sig_min_data)
# sqerr_maj = sum([(sig_maj_exp(p[0]) - p[1])**2/p[2]**2 for p in sig_maj_data])
# sqerr_min = sum([(sig_min_exp(p[0]) - p[1])**2/p[2]**2 for p in sig_min_data])
sqerr_maj = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
sqerr_min = calc_chi2_normal(sig_min_p, e_sig_min_p, [sig_min_exp(r) for r in radii_min])
# print alpha, sig_R_0, sqerr_maj, sqerr_min
sqerr_sum = 0.5*sqerr_maj+0.5*sqerr_min
image[i][j] = sqerr_sum
image_maj[i][j] = sqerr_maj
image_min[i][j] = sqerr_min
return image, image_maj, image_min
pics_path = '.cutted\\pics\\'
if not os.path.exists(pics_path):
os.makedirs(pics_path)
if os.path.isfile(pics_path + 'chi2_map.npy'):
image = np.load(pics_path + "chi2_map.npy")
image_maj = np.load(pics_path + "chi2_map_maj.npy")
image_min = np.load(pics_path + "chi2_map_min.npy")
else:
image, image_maj, image_min = compute_chi2_maps(alphas=alphas, sigmas=sigmas)
np.save(pics_path + 'chi2_map', image)
np.save(pics_path + 'chi2_map_maj', image_maj)
np.save(pics_path + 'chi2_map_min', image_min)
In [210]:
from mpl_toolkits.axes_grid1 import make_axes_locatable
def plot_chi2_map(image, ax, log_scale=False, title='$\chi^2$', is_contour=False, vmax=0.):
'''Рисуем получившиеся карты.
Colormaps: http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps'''
if image is not None:
if log_scale:
image_log = np.apply_along_axis(np.log, 1, image)
vmax = image_log.max()
else:
image_log = image
if is_contour:
norm = cm.colors.Normalize(vmax=image.max(), vmin=-image.max())
cmap = cm.PRGn
levels = np.linspace(start=image_log.min(), stop=vmax, num=10)
cset=ax.contour(image_log, levels, hold='on', colors = 'k', origin='lower', extent=[alphas[0],alphas[-1],sigmas[0],sigmas[-1]])
im = ax.imshow(image_log, cmap='jet', vmin=image_log.min(), vmax=vmax, interpolation='spline16',
origin="lower", extent=[alphas[0], alphas[-1],sigmas[0],sigmas[-1]], aspect="auto")
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
min_sigma = sigmas[int(np.where(image == image.min())[0])]
ax.set_title(title + '$,\ \sigma(min)=%s$' % min_sigma, size=20.)
ax.set_ylabel('$\sigma_{R,0}$', size=20.)
ax.set_xlabel(r'$\alpha$', size=20.)
ax.grid(True)
fig, axes = plt.subplots(nrows=3, ncols=1, sharex=False, sharey=True, figsize=[16,16])
plot_chi2_map(image, axes[0], log_scale=False, title='$\chi^2 = (\chi^2_{maj} + \chi^2_{min})/2$', is_contour=False, vmax=30.)
plot_chi2_map(image_maj, axes[1], log_scale=False, title='$\chi^2_{maj}$', is_contour=False, vmax=30.)
plot_chi2_map(image_min, axes[2], log_scale=False, title='$\chi^2_{min}$', is_contour=False, vmax=20.)
plt.show()
Видно для малой оси неплохое такое вырождение. Попробуем на этой карте взять два среза:
In [211]:
plt.figure(figsize=(10,8))
ax = plt.gca()
min_sigmas = np.where(image_min < image_min.min() + 3.)
slice_alph, slice_sig = min_sigmas[1], min_sigmas[0]
# видимо округление не правильное, добавляем шаг
slice_alph = map(lambda l: 0.01 + alphas[0] + (alphas[-1] - alphas[0])*l/len(image_min[0]) , slice_alph)
slice_sig = map(lambda l: 3.0 + sigmas[0] + (sigmas[-1] - sigmas[0])*l/len(image_min), slice_sig)
ax.plot(slice_alph, slice_sig, '.', color='pink')
poly_slice = poly1d(polyfit(slice_alph, slice_sig, deg=3))
im = ax.imshow(image_min, cmap='jet', vmin=image_min.min(), vmax=15., interpolation='spline16',
origin="lower", extent=[alphas[0], alphas[-1],sigmas[0],sigmas[-1]], aspect="auto")
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
ax.set_title('$\chi^2_{min}$', size=20.)
ax.set_ylabel('$\sigma_{R,0}$', size=20.)
ax.set_xlabel(r'$\alpha$', size=20.)
ax.grid()
xx = np.arange(0.3, 0.9, 0.01)
ax.plot(xx, poly_slice(xx), color='pink')
plt.show()
In [212]:
alphs = np.arange(0.2, 0.9, 0.01)
err_maj, err_maj_p = [], []
err_min, err_min_p = [], []
err_mean, err_mean_p = [], []
main_slice = lambda l: sig_min_0/sqrt(sin_i**2 + cos_i**2 * l**2)
for al in alphs:
global alpha, sig_R_0
alpha = al
sig_R_0 = main_slice(al)
err_maj.append(sum(power([sig_maj_exp(p[0]) - p[1] for p in sig_maj_data], 2))/len(sig_maj_data))
err_min.append(sum(power([sig_min_exp(p[0]) - p[1] for p in sig_min_data], 2))/len(sig_min_data))
err_mean.append(0.5*(err_maj[-1] + err_min[-1]))
sig_R_0 = poly_slice(alpha)
err_maj_p.append(sum(power([sig_maj_exp(p[0]) - p[1] for p in sig_maj_data], 2))/len(sig_maj_data))
err_min_p.append(sum(power([sig_min_exp(p[0]) - p[1] for p in sig_min_data], 2))/len(sig_min_data))
err_mean_p.append(0.5*(err_maj_p[-1] + err_min_p[-1]))
In [213]:
xx = np.arange(0.2, 0.9, 0.01)
fig, axes = plt.subplots(nrows=3, ncols=2, sharex=False, sharey=False, figsize=[16,16])
plot_chi2_map(image, axes[0, 0], log_scale=False, title='$\chi^2 = (\chi^2_{maj} + \chi^2_{min})/2$', is_contour=False, vmax=30.)
axes[0,0].plot(xx, map(main_slice, xx), color='red')
axes[0,0].plot(xx, poly_slice(xx), color='pink')
axes[0, 1].plot(alphs, err_mean, '.-', label = 'main slice', color='red')
axes[0, 1].plot(alphs, err_mean_p, '.-', label = 'min slice', color='pink'); axes[0, 1].legend()
plot_chi2_map(image_maj, axes[1, 0], log_scale=False, title='$\chi^2_{maj}$', is_contour=False, vmax=30.)
axes[1,0].plot(xx, map(main_slice, xx), color='red')
axes[1,0].plot(xx, poly_slice(xx), color='pink')
axes[1, 1].plot(alphs, err_maj, '.-', label = 'main slice', color= 'red')
axes[1, 1].plot(alphs, err_maj_p, '.-', label = 'min slice', color= 'pink'); axes[1, 1].legend()
plot_chi2_map(image_min, axes[2, 0], log_scale=False, title='$\chi^2_{min}$', is_contour=False, vmax=15.)
axes[2,0].plot(xx, map(main_slice, xx), color='red')
axes[2,0].plot(xx, poly_slice(xx), color='pink')
axes[2, 1].plot(alphs, err_min, '.-', label = 'main slice', color= 'red')
axes[2, 1].plot(alphs, err_min_p, '.-', label = 'min slice', color='pink'); axes[2, 1].legend()
plt.show()
Как видно, ситуация сложная - широкий разброс $\sigma_{R,0}$ при которых достигается минимальное значение $\chi^2$. Научимся также изображать сами восстановленные профили при разбросе параметров:
In [214]:
# Перебор alpha
alphas = np.arange(0.1, 0.7, 0.11)
# Перебор sig_R_0
sigmas = np.arange(270., 350., 16.)
# Те картинки, на которые стоит обратить особое внимание
good_pics = []
def plot_ranges(sigmas_range, alphas_range, good_pics=[], calc_chi=False, best_err=3):
'''
Для всех предложенных вариантов sigR и alpha
рисует графики исходных и восстановленных дисперсий скоростей los.
Если calc_chi = True, то также считает ошибку по наблюдаемым точкам.
Если ошибка считается, то отмечаются best_err лучших (наименьших) результата.
Синий - для большой оси, красный - малой, зеленый - полусумма.
Изменяет глобальные значения sig_R_0 и alpha!'''
nrows = alphas.size
ncols = sigmas.size
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True, figsize=[16,12])
plt_index = 0
# Последнее - среднее геометрическое
sqerr_majs, sqerr_mins, sqerr_mean = [],[],[]
for al in alphas_range:
for si in sigmas_range:
global alpha, sig_R_0
alpha = al
sig_R_0 = si
ax = axes[plt_index/ncols, plt_index % ncols]
ax.set_title(r'$\alpha = %s, \sigma_{R,0}=%s$' % (al,si))
ax.plot(points, poly_sig_maj(points), '-', color='blue')
ax.plot(points, [sig_maj_exp(Rr) for Rr in points], '--', color='blue')
ax.plot(points, poly_sig_min(points), '-', color='red')
ax.plot(points, [sig_min_exp(R) for R in points], '--', color='red')
if calc_chi:
sqerr_maj = sum(power([sig_maj_exp(p[0]) - p[1] for p in sig_maj_data], 2))/len(sig_maj_data)
sqerr_min = sum(power([sig_min_exp(p[0]) - p[1] for p in sig_min_data], 2))/len(sig_min_data)
ax.text(1, 5, "$\chi^2_{maj}=%5.0f\, \chi^2_{min}=%5.0f$" % (sqerr_maj, sqerr_min), fontsize=12)
sqerr_majs.append(sqerr_maj);sqerr_mins.append(sqerr_min)
sqerr_mean.append(0.5*sqerr_maj+0.5*sqerr_min)
ax.set_ylim(0, 250)
ax.set_xlim(0, 50)
if (plt_index/ncols, plt_index % ncols) in good_pics:
ax.plot([40], [200], 'o', markersize=12., color=(0.2,1.0,0.))
plt_index = plt_index + 1
if calc_chi:
best_maj_err = heapq.nsmallest(best_err, sqerr_majs)
for b_maj in best_maj_err:
b_maj_ind = sqerr_majs.index(b_maj)
ax = axes[b_maj_ind/ncols, b_maj_ind % ncols]
#ax.plot([35], [200], 'o', markersize=12., color='b')
ax.text(35, 200, "%s" % (best_maj_err.index(b_maj)+1), fontsize=12, color='b',
bbox=dict(facecolor='none', edgecolor='b', boxstyle='round'))
best_min_err = heapq.nsmallest(best_err, sqerr_mins)
for b_min in best_min_err:
b_min_ind = sqerr_mins.index(b_min)
ax = axes[b_min_ind/ncols, b_min_ind % ncols]
#ax.plot([30], [200], 'o', markersize=12., color='r')
ax.text(30, 200, "%s" % (best_min_err.index(b_min)+1), fontsize=12, color='r',
bbox=dict(facecolor='none', edgecolor='r', boxstyle='round'))
best_mean_err = heapq.nsmallest(best_err, sqerr_mean)
for b_mean in best_mean_err:
b_mean_ind = sqerr_mean.index(b_mean)
ax = axes[b_mean_ind/ncols, b_mean_ind % ncols]
ax.text(25, 200, "%s" % (best_mean_err.index(b_mean)+1), fontsize=12, color='g',
bbox=dict(facecolor='none', edgecolor='g', boxstyle='round'))
plot_ranges(sigmas, alphas, good_pics=good_pics, calc_chi=True)
plt.show()
In [215]:
alphas = np.arange(0.1, 0.5, 0.08)
sigmas = np.arange(280., 320., 8.)
plot_ranges(sigmas, alphas, good_pics=good_pics, calc_chi=True)
plt.show()
Еще одно интересное приложение для тех галактик, в которых есть данные по газу. Разница между скоростями вращения звезд и газа вокруг центра галактики называется ассиметричным сдвигом и описывается следующим уравнением (Binney & Tremaine 1987): $$v_{\mathrm{c}}^{2}-\bar{v}_{\varphi}^{2}=\sigma_{R}^{2}\left(\frac{\sigma_{\varphi}^{2}}{\sigma_{R}^{2}}-1-\frac{\partial\ln\Sigma_{\mathrm{s}}}{\partial\ln R}-\frac{\partial\ln\sigma_{R}^{2}}{\partial\ln R}\right)\,$$ Отношение ${\displaystyle \frac{\sigma_{\varphi}^{2}}{\sigma_{R}^{2}}}$ знаем из соответствующего уравнения. Поймем, как в этом выражении вычисляется логарифмическая производная ${\displaystyle \frac{\partial\ln\Sigma_{\mathrm{s}}}{\partial\ln R}}$. Если отношение массы к светимости принять постоянной вдоль радиуса величиной, то в производной ${\displaystyle \frac{\partial\ln\Sigma_{\mathrm{s}}}{\partial\ln R}}$ можно использовать поверхностную яркость звездного диска вместо поверхностной плотности $\Sigma_{\mathrm{s}}$ в тех полосах, которые трассируют старое звездное население. Это означает, что логарифмическая производная должна быть заменена отношением $-{\displaystyle \frac{R}{h_{\text{d}}}}\,,$ где $h_{\text{d}}$ --- экспоненциальный масштаб диска.
Таким образом, если мы восстановили профиль значений $\sigma_R$ и имеем представление о фотометрии диска галактики, то мы можем вычислить предполагаемый профиль газовой кривой вращения и сравнить его с истинным. В том случае, когда у нас нет данных по газу, мы можем их предсказать. Продемонстрируем это.
Фотометрию возьмем из диплома, тем более что там она была непротиворичивой, значение экспоненциального масштаба $h_r=24.2^{\prime\prime}$ в полосе $R$. Необходимую нам логарифмическую производную несложно посчитать, если приблизить профиль полиномом $\sigma_R(R) \equiv p(x)$: $$\frac{\partial\ln\sigma_{R}^{2}}{\partial\ln R} = \frac{2}{p(R)}\times\frac{\partial\ln p(e^{\ln R})}{\partial\ln R} = \frac{2Rp^{\prime}(R)}{p(R)}$$ Сделаем перебор по $\chi^2$:
In [216]:
def log_deriv(R):
"""Вычисление логарифмической производной sig_R,
для ассиметричного сдвига - как описано выше"""
return 2*R * poly_marj_R.deriv()(R) / poly_marj_R(R)
#Масштаб диска в секундах
h_d = 24.2
print "h_d = %s" % h_d
def asym_drift_value(R):
"""Вычисляем величину сдвига между квадратами скоростей газа и звезд"""
return poly_marj_R(R)**2 * (sigPhi_to_sigR(R)**2 - 1 + R/h_d - log_deriv(R))
predict_drift = lambda l: asym_drift_value(l) + poly_star(l)**2
predict_gas = lambda l: sqrt(predict_drift(l)) if predict_drift(l) > 0 else np.nan
Посмотрим теперь на перегнутые данные по газу. У Струве в http://arxiv.org/abs/1009.0658 есть в явном виде записанная кривая вращения и она немного не совпадает с нашей, видимо не совсем точно была выставленна точка перегиба:
In [217]:
r_w_b, vel_w_b, e_vel_w_b = correct_rotation_curve(r_wsrt, vel_wsrt, e_vel_wsrt, 0., 4959., incl)
#Лучше всего около 4951.4
# r_w_b, vel_w_b, e_vel_w_b = correct_rotation_curve(r_wsrt, vel_wsrt, e_vel_wsrt, 0., 4951.4, incl)
#Данные из статьи:
x = np.arange(20, 210, 10.)
y = [334, 335, 335, 337, 340, 340, 348, 361, 373, 377, 354, 342, 333, 325, 320, 322, 316, 318, 315]
plt.plot(x, y, 'x-')
plt.plot(r_w_b, vel_w_b, 's', label = 'gas Struve', color='black')
plt.errorbar(r_w_b, vel_w_b, yerr=e_vel_w_b, fmt='.', marker='.', mew=0, color='black')
plt.ylim(250, 400)
plt.show()
Будем дальше использовать данные из статьи, которые были записаны в явном виде, с прежними ошибками:
In [218]:
r_w_b, vel_w_b = x, y
#Режем по 50, потому что только до этого у нас есть звездная кривая
gas_data_struve = filter(lambda l: l[0] < 50.1, zip(r_w_b, vel_w_b))
In [219]:
#От альфа не зависит
alpha = 0.5
sigmas = np.arange(100.0, 400, 2.)
def compute_chi2_drift(sigmas=()):
result_err = []
for i,si in enumerate(sigmas):
global sig_R_0, poly_marj_R
sig_R_0 = si
#Приближаем полиномом для подсчета производной
poly_marj_R = poly1d(polyfit(points, [sigR_exp(R) for R in points], deg=11))
sqerr = sum(power([predict_gas(p[0]) - p[1] for p in gas_data_struve], 2))/len(gas_data_struve)
result_err.append(sqerr)
return result_err
pics_path = '.cutted\\pics\\'
if os.path.isfile(pics_path + 'drift_err.npy'):
drift_err = list(np.load(pics_path + "drift_err.npy"))
else:
drift_err = compute_chi2_drift(sigmas=sigmas)
np.save(pics_path + 'drift_err', drift_err)
In [220]:
def plot_chi2_drift(sigmas, drifts):
plt.plot(sigmas, drifts, 's')
ind = drifts.index(min(drifts))
value = drifts[ind]
plt.plot(sigmas[ind], value, 's', color='red', ms=10.)
plt.title('$Asymmetric\, drift\, \chi^2$', size=20.)
plt.xlabel('$\sigma_{R,0}$', size=20.)
plt.ylabel('$\chi^2$', size=20.)
plt.text(100, 7000, 'min = %.3f in %s' % (value, sigmas[ind]), size = 24.)
plt.axhline(y=value+100)
accep_val = filter(lambda l: l < value+100, drifts)
ind_l = drifts.index(accep_val[0]); ind_r = drifts.index(accep_val[-1])
plt.text(100, 6000, '$\Delta min=100\, on\, range\, [%s:%s]$' %(sigmas[ind_l], sigmas[ind_r]) , size = 24.)
plt.show()
plot_chi2_drift(sigmas, drift_err)
Есть четкий минимум, но он совсем не там, где предсказывается простым минимумом - что неудивительно, т.к. данные по газ очень плохие.
In [221]:
sig_R_0 = 156.
poly_marj_R = poly1d(polyfit(points, [sigR_exp(R) for R in points], deg=11))
plt.plot(points, [sigR_exp(R) for R in points], '-', color='red', label='$\sigma_{R, exp}$')
plt.plot(points, [poly_marj_R(R) for R in points], '-', color='m', label='$\sigma_{R, exp} polyfit$')
plt.legend()
plt.show()
Теперь нанесем туда же данные по газу:
In [222]:
plt.plot(r_ma_b, vel_ma_b, 'o', color='blue', markersize=6)
plt.plot(test_points, poly_star(test_points), '-', color='blue', label=r'$V_{\varphi}$')
plt.plot(r_w_b, vel_w_b, '.', label = 'gas Struve', color='black')
# plt.errorbar(r_w_b, vel_w_b, yerr=e_vel_w_b, fmt='.', marker='.', mew=0, color='black')
predict_drift = lambda l: asym_drift_value(l) + poly_star(l)**2
predict_gas = lambda l: sqrt(predict_drift(l)) if predict_drift(l) > 0 else -100
plt.plot(test_points, [predict_gas(R) for R in test_points],
'-', color='m', label=r'$V_c$', lw=2.)
plt.xlabel('$R$'); plt.ylim(0)
plt.ylabel('$V(R)$')
plt.ylim(0, 450)
plt.xlim(0, 200)
ad = [sqrt(asym_drift_value(R) + poly_star(R)**2) for R in test_points]
dif = [abs(ad[i] - poly_star(test_points[i])) for i in range(test_points.__len__())]
plt.plot(test_points, dif, marker='.', lw=1, color = 'pink', label = 'drift value')
plt.fill_between(test_points, 0, dif, color = 'pink')
dif2 = [abs(sqrt(asym_drift_value(R) + poly_star(R)**2) - vel_w_b[np.where(r_w_b==R)[0][0]]) for R in filter(lambda l: l< 50.1, r_w_b)]
plt.plot(filter(lambda l: l< 50.1, r_w_b), dif2, marker='.', lw=1, color = 'yellow', label = 'gas diff')
plt.grid()
plt.legend()
plt.show()
In [223]:
sigmas = np.arange(100., 400., 4.)
plt.plot(r_ma_b, vel_ma_b, 'o', color='black', markersize=6)
plt.plot(test_points, poly_star(test_points), '-', color='black', label=r'$V_{\varphi}$')
plt.xlabel('$R$')
plt.ylabel('$V(R)$')
plt.ylim(0, 450)
plt.xlim(0, 200)
for s in sigmas:
sig_R_0 = s
poly_marj_R = poly1d(polyfit(points, [sigR_exp(R) for R in points], deg=11))
ind = np.where(sigmas==s)[0][0]
plt.plot(test_points, [predict_gas(R) for R in test_points],
'-', lw=1.5, ms=0.5, color=plt.cm.RdYlBu(ind*1.0/len(sigmas)))
plt.plot(r_w_b, vel_w_b, 's', label = 'gas Struve', color='black')
# plt.errorbar(r_w_b, vel_w_b, yerr=e_vel_w_b, fmt='.', marker='.', mew=0, color='black')
sig_R_0 = 156.
poly_marj_R = poly1d(polyfit(points, [sigR_exp(R) for R in points], deg=11))
plt.plot(test_points, [predict_gas(R) for R in test_points],
'o', label='possible value', color='black', mfc='none', markersize=1)
plt.legend(loc='lower right')
plt.show()
К сожалению, данных по газу фактически нет, а по имеющимся ничего установить не удастся.
Если мы с высокой достоверностью определили $\sigma_R$, то какое значение $\alpha$ ему соответствует? Посчитать нужный профиль мы можем простым вычитанием: $$\sigma_Z = \frac{1}{\cos i}\sqrt{\sigma_{los,min}^2 - \sigma_R^2\sin^2i}$$ После вычитания мы сможем проверить, какое получается отношение $\alpha$ вдоль профиля (оно в силу формул будет константой, но какой?).
In [224]:
#Пусть это наиболее вероятное значение sigR_0
sig_R_0 = 291.
#Его вероятная ошибка
dsig_R0 = 2.
def sigZ_from_substr(R):
'''Вычисление sigZ вичитанием готового профиля sigR'''
sq2 = poly_sig_min(R)**2 - sigR_exp(R)**2 * sin_i**2
if sq2 > 0:
return sqrt(sq2)/cos_i
else:
return 0.0
plt.plot(points, poly_sig_maj(points), label = '$\sigma_{los}^{maj} polyfit$', color='blue')
plt.plot(points, poly_sig_min(points), label = '$\sigma_{los}^{min} polyfit$', color='red')
plt.plot(points, [sigR_exp(R) for R in points], label = '$\sigma_R$', color='m')
plt.plot(points, [sigZ_from_substr(R) for R in points], label = '$\sigma_Z substr$', color='g')
plt.plot(points, [100*sigZ_from_substr(R)/sigR_exp(R) for R in points],
'-', label = r'$100\times\,\alpha$', color=(0.1,0.1,0.1))
plt.text(1, 10, r"100$\alpha=%s\, for\, %s$" %
(100*sigZ_from_substr(0.)/sigR_exp(0.), sig_R_0), fontsize=20, color='black')
#Верхняя граница
sig_R_0 = sig_R_0 - dsig_R0
plt.text(1, 0, r"100$\alpha=%s\, for\, %s$" %
(100*sigZ_from_substr(0.)/sigR_exp(0.), sig_R_0), fontsize=20, color='black')
#Нижняя граница
sig_R_0 = sig_R_0 + 2*dsig_R0
plt.text(1, 20, r"100$\alpha=%s\, for\, %s$" %
(100*sigZ_from_substr(0.)/sigR_exp(0.), sig_R_0), fontsize=20, color='black')
plt.legend()
plt.ylim(-10, 400)
plt.show()
Shapiro и Gerssen в статье 2003 года (http://arxiv.org/abs/astro-ph/0308489) "Observational Constraints on Disk Heating as a Function of Hubble Type" пытались проследить зависимость отношения $\sigma_Z/\sigma_R$ для галактик разных хаббловских типов. Неплохо было бы ради интереса на их график добавить и нашу полученную точку. У 1167 тип S0, т.е. располагается она левее крайней отметки.
In [225]:
os.chdir("C:\\science\\2FInstability\\notebooks")
plt.imshow(np.asarray(pil.Image.open("shapiro_2003_hubble_type.png")))
# Не настоящее значение еще!
plt.plot(140, 480, 's', color='blue')
plt.errorbar(140, 480, yerr=80, xerr=75, color='blue')
plt.text(140, 570, "$S0$", fontsize=20, color='red')
plt.ylim(1000, 0)
plt.show()
Еще одна важная идея, на которую тоже интересно посмотреть - кинематический масштаб. Gerssen и Shapiro в своих работах восстанавливают профиль дисперсий скоростей исходя из предположения об его экспоненциальной форме: $$\sigma_R = \sigma_{R,0}\exp(-R/h_{kin}),$$ $$\sigma_Z = \sigma_{Z,0}\exp(-R/h_{kin}),$$ где характерный экспоненциальный масштаб предполагается равным для обоих профилей (и это и есть кинематический масштаб). Из неких предположений следует, что этот масштаб равен удвоенному масштабу диска: $h_{kin}=2h_d$, но это проверять на будущее - когда будет известна фотометрия.
Найдем кинетический масштаб и профили, которые получились бы у них для NGC 338. Сделать это довольно легко: $$\sigma_{los,min}^2 = \sigma_R^2\sin^2i + \sigma_Z^2\cos^2i,$$ а значит из предположения выше $$\sigma_{los,min}^2 = \exp(-2R/h_{kin})\times(\sigma_{R,0}^2\sin^2i + \sigma_{Z,0}^2\cos^2i),$$ а если взять логарифм: $$2\ln\sigma_{los,min} = -2R/h_{kin} + \ln(\rm{const}).$$ Приблизим точки прямой и константа при y будет равно обратному кинематическому масштабу.
In [226]:
import math
sig_min_p_ln = [math.log(p) for p in sig_min_p]
poly_ln = poly1d(polyfit(radii_min, sig_min_p_ln, deg=1))
h_kin_gerssen = float("{0:.2f}".format(-1./poly_ln[1]))
plt.plot(radii_min, sig_min_p_ln, 's', label='$\ln\,{\sigma_{los}^{min}}$', color='red')
plt.plot(points, [poly_ln(R) for R in points], label = '$line\, approx$', color='g')
plt.text(25, 5.3, r"$y=%s$" % poly_ln.__str__()[2:], fontsize=20, color='black')
plt.text(25, 5.2, r"$h_{kin}^{gerssen}=\,%s$" % h_kin_gerssen, fontsize=22, color='black')
plt.legend()
plt.show()
Запишем МНК, решив которую мы сможем также найти $\alpha$ при данном $h_{kin}$ (идея как и раньше, раз мы взяли герсеновскую параметризацию профилей). В дипломе такое не было сделано - просто брали $\alpha=0.5$. Неизвестные: $\sigma_{R,0}^2\sin^2 i \equiv A,\ \sigma_{R,0}^2\cos^2 i\times \alpha^2 \equiv B$. $$\left\{ \begin{array}{lr} \sigma_{los,maj}^2(R_j)=\exp(-2R_j/h_{kin})\times[Af(R_j)+B]\\ \sigma_{los, min}^2(R_j)=\exp(-2R_j/h_{kin})\times[A+B] \end{array} \right. $$
In [227]:
def calc_chi2_normal(obs, obserr, predicted):
return sum([(o-p)**2/err**2 for (o,p,err) in zip(obs, predicted, obserr)])/len(obs)
os.chdir("C:\\Users\\root\\Dropbox\\RotationCurves\\PhD\\paper1\\text\\imgs")
alphas = np.arange(0.1, 1.2, 0.03)
sigmas = np.arange(100.0, 400, 3.)
import matplotlib.mlab as mlab
import matplotlib
fig, axes = plt.subplots(nrows=3, ncols=1, sharex=True, sharey=False, figsize=[8,16])
ax = axes[0]
# levels = np.linspace(start=image_min.min(), stop=20., num=5)
# levels = [100., 125., 150., 175., 200.]
# levels = [image_min.min()+0.02, image_min.min()+0.4, image_min.min()+1.1, image_min.min()+2.,
# image_min.min()+3.1, image_min.min()+4.1]
# levels = np.linspace(start=image_min.min()+0.1, stop=image_min.min()+4.1, num=5)
levels = np.linspace(start=image_min.min()*1.1, stop=image_min.min()*1.1+4, num=5)
# im = ax.imshow(image_min, cmap='jet', vmin=image_min.min(), vmax=20., interpolation='spline16',
# origin="lower", aspect="auto")
# plt.show()
cset=ax.contour(image_min, levels, colors = 'k', origin='lower', extent=[alphas[0],alphas[-1],sigmas[0],sigmas[-1]])
min_map_gutter = cset.collections[0].get_paths()
v1,v2 = min_map_gutter[1].vertices, min_map_gutter[0].vertices
x1,x2 = v1[:,0], v2[:,0]
y1,y2 = v1[:,1], v2[:,1]
plt.clabel(cset, inline=1, fontsize=10, fmt='%1.1f',)
ax.text(0.87, 280, '$\chi^2_{min}$', size = 24.)
ax.set_ylabel('$\sigma_{R,0}$', size=20.)
xx = np.arange(0.25, 1.0, 0.01)
ax.plot(xx, map(main_slice, xx), '--', color='black')
# ax.set_ylim(180, 300)
ax.fill_between(x1, y1, 0, color='gray', alpha=0.3)
ax.fill_between(x2, y2, 0, color='white')
min_sigmas = np.where(image_min < image_min.min() + 0.03)
slice_alph, slice_sig = min_sigmas[1], min_sigmas[0]
slice_alph = map(lambda l: alphas[0] + (alphas[-1] - alphas[0])*l/len(image_min[0]) , slice_alph)
slice_sig = map(lambda l: sigmas[0] + (sigmas[-1] - sigmas[0])*l/len(image_min), slice_sig)
# ax.plot(slice_alph, slice_sig, '.', color='pink')
poly_slice = poly1d(polyfit(slice_alph, slice_sig, deg=3))
# ax.plot(xx, poly_slice(xx), '.-', color='black')
ax = axes[1]
# levels = np.linspace(start=image_maj.min()-4.3, stop=10., num=10)
# levels = [7., 10., 50., 100.]
# levels = [image_maj.min()+0.2, image_maj.min()+0.7, image_maj.min()+1.1, image_maj.min()+2.1, image_maj.min()+3.1,
# image_maj.min()+4.1]
levels = np.linspace(start=image_maj.min()+0.3, stop=image_maj.min()+4.1, num=5)
cset=ax.contour(image_maj, levels, hold='on', colors = 'k', origin='lower', extent=[alphas[0],alphas[-1],sigmas[0],sigmas[-1]])
plt.clabel(cset, inline=1, fontsize=10, fmt='%1.1f',)
ax.text(0.87, 280, '$\chi^2_{maj}$', size = 24.)
ax.set_ylabel('$\sigma_{R,0}$', size=20.)
xx = np.arange(0.25, 1.0, 0.01)
ax.plot(xx, map(main_slice, xx), '--', color='black')
ax.fill_between(x1, y1, 0, color='gray', alpha=0.3)
ax.fill_between(x2, y2, 0, color='white')
# ax.set_ylim(150, 320)
ax = axes[2]
err_maj = []
for al in alphas:
global alpha, sig_R_0
alpha = al
sig_R_0 = main_slice(al)
sqerr_maj = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
err_maj.append(sqerr_maj)
ax.plot(alphas, err_maj, '--', color='black')
err_maj1 = []
for pa in zip(x2,y2):
global alpha, sig_R_0
alpha = pa[0]
sig_R_0 = pa[1]
sqerr_maj = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
err_maj1.append(sqerr_maj)
# ax.plot(x2, err_maj1, '-', color='black')
err_maj2 = []
for pa in zip(x1,y1):
global alpha, sig_R_0
alpha = pa[0]
sig_R_0 = pa[1]
sqerr_maj = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
err_maj2.append(sqerr_maj)
# ax.plot(x1, err_maj2, '-', color='black')
ax.set_ylabel(r'$\chi^2$', size=20.)
ax.set_xlabel(r'$\alpha$', size=20.)
import scipy.interpolate as sp
try:
f1 = sp.interp1d(x2, err_maj1, kind='linear')
ax.fill_between(x1, map(f1, x1), err_maj2, color='grey', alpha=0.3)
except Exception:
f2 = sp.interp1d(x1, err_maj2, kind='linear')
ax.fill_between(x2, map(f2, x2), err_maj1, color='grey', alpha=0.3)
ax.set_ylabel(r'$\chi^2$', size=20.)
ax.set_xlabel(r'$\alpha$', size=20.)
# ax.set_ylim(3.1, 3.5)
fig.subplots_adjust(hspace=0.)
axes[0].yaxis.get_major_ticks()[0].set_visible(False)
axes[1].yaxis.get_major_ticks()[0].set_visible(False)
ax.set_xlim(0.25, 0.99)
plt.savefig('ngc1167_maps.eps', format='eps')
plt.savefig('ngc1167_maps.png', format='png')
plt.savefig('ngc1167_maps.pdf', format='pdf', dpi=150)
plt.show()
In [ ]:
# os.chdir(tex_imgs_dir)
sig_maj_data_t = zip(r_ma, sig_ma, e_sig_ma)
sig_maj_data_t = map(bind_curve, sig_maj_data_t)
sig_maj_data_t.sort()
radii_maj_t, sig_maj_p_t, e_sig_maj_p_t = zip(*sig_maj_data_t)
sig_min_data_t = zip(r_mi_extend, sig_mi, e_sig_mi)
sig_min_data_t = map(bind_curve, sig_min_data_t)
sig_min_data_t.sort()
radii_min_t, sig_min_p_t, e_sig_min_p_t = zip(*sig_min_data_t)
points = np.arange(r_eb, max(radii_min), 0.1)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
ax.set_rasterization_zorder(1)
ax.errorbar(radii_maj_t, sig_maj_p_t, yerr=e_sig_maj_p_t,
label=r'$\sigma_{\rm{los, maj}}$', fmt='.', marker='s', mew=1, color='blue')
ax.errorbar(radii_min_t, sig_min_p_t, yerr=e_sig_min_p_t,
label=r'$\sigma_{\rm{los, min}}$', fmt='.', marker='o', mew=1, color='red')
# ax.axvline(x=cutted, color='black', zorder=0)
lg = plt.legend(numpoints=1, fontsize=18)
lg.draw_frame(False)
ax.set_xlabel(r'$R,\,\rm{arcsec}$', fontsize=20)
ax.set_ylabel(r'$\sigma,\,\rm{km/s}$', fontsize=20)
# ax.set_xlim(r_eb)
ax.set_xlim(0, 45)
ax.set_ylim(0, 240)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.xaxis.set_minor_locator(MultipleLocator(2))
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10))
# ax.axes.yaxis.set_ticklabels([0, 50, 100, 150])
ax.tick_params('both', length=10, width=2, which='major')
ax.tick_params('both', length=5, width=1, which='minor')
# ax.yaxis.tick_right()
alpha = 0.5
# sig_R_0 = 130.
sig_R_0 = 180.
ma1 = [sig_maj_exp(R) for R in points]
mi1 = [sig_min_exp(R) for R in points]
chi_ma1 = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
chi_mi1 = calc_chi2_normal(sig_min_p, e_sig_min_p, [sig_min_exp(r) for r in radii_min])
alpha = 0.9
# sig_R_0 = 150.
sig_R_0 = 240.
ma2 = [sig_maj_exp(R) for R in points]
mi2 = [sig_min_exp(R) for R in points]
chi_ma2 = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
chi_mi2 = calc_chi2_normal(sig_min_p, e_sig_min_p, [sig_min_exp(r) for r in radii_min])
print '%s\t%s\t%s\t%s' % ('chi_ma1', 'chi_ma2', 'chi_mi1', 'chi_mi2')
print '%.3f\t%.3f\t%.3f\t%.3f' % (chi_ma1, chi_ma2, chi_mi1, chi_mi2)
print 'ma: %.3f +/- %.3f' % ( (chi_ma2 + chi_ma1)/2, chi_ma2 - (chi_ma2 + chi_ma1)/2)
print 'mi: %.3f +/- %.3f' % ( (chi_mi2 + chi_mi1)/2, chi_mi2 - (chi_mi2 + chi_mi1)/2)
ax.fill_between(points, mi1, mi2, color='none', alpha=0.5, zorder=1, hatch="//", edgecolor="r", lw=0.5)
ax.fill_between(points, ma1, ma2, color='none', alpha=0.5, zorder=0, hatch="\\", edgecolor="b", lw=0.5)
plt.plot(points, poly_sig_maj(points), '-', color='blue')
plt.plot(points, poly_sig_min(points), '-', color='red')
plt.axvline(x=r_eb, color='black', ls='--')
plt.savefig('ngc1167_svedata.ps', format='ps', rasterized=True, dpi=150)
plt.savefig('ngc1167_svedata.png', format='png', dpi=150)
plt.savefig('ngc1167_svedata.pdf', format='pdf', dpi=150)
plt.show()
In [ ]:
# os.chdir(tex_imgs_dir)
sig_maj_data_t = zip(r_ma, sig_ma, e_sig_ma)
sig_maj_data_t = map(bind_curve, sig_maj_data_t)
sig_maj_data_t.sort()
radii_maj_t, sig_maj_p_t, e_sig_maj_p_t = zip(*sig_maj_data_t)
sig_min_data_t = zip(r_mi_extend, sig_mi, e_sig_mi)
sig_min_data_t = map(bind_curve, sig_min_data_t)
sig_min_data_t.sort()
radii_min_t, sig_min_p_t, e_sig_min_p_t = zip(*sig_min_data_t)
points = np.arange(r_eb, max(radii_min), 0.1)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
ax.set_rasterization_zorder(1)
# ax.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p,
# label=r'$\sigma_{\rm{los}}^{\rm{maj}}$', fmt='.', marker='s', mew=1, color='blue',zorder=1)
# ax.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p,
# label=r'$\sigma_{\rm{los}}^{\rm{min}}$', fmt='.', marker='o', mew=1, color='red',zorder=1)
ax.errorbar(radii_maj_t, sig_maj_p_t, yerr=e_sig_maj_p_t,
label=r'$\sigma_{\rm{los, maj}}$', fmt='.', marker='s', mew=1, color='blue')
ax.errorbar(radii_min_t, sig_min_p_t, yerr=e_sig_min_p_t,
label=r'$\sigma_{\rm{los, min}}$', fmt='.', marker='o', mew=1, color='red')
# ax.axvline(x=cutted, color='black', zorder=0)
lg = plt.legend(numpoints=1, fontsize=18)
lg.draw_frame(False)
ax.set_xlabel(r'$R,\,\rm{arcsec}$', fontsize=20)
ax.set_ylabel(r'$\sigma,\,\rm{km/s}$', fontsize=20)
# ax.set_xlim(r_eb)
ax.set_xlim(0, 45)
ax.set_ylim(0, 240)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.xaxis.set_minor_locator(MultipleLocator(2))
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10))
# ax.axes.yaxis.set_ticklabels([0, 50, 100, 150])
ax.tick_params('both', length=10, width=2, which='major')
ax.tick_params('both', length=5, width=1, which='minor')
# ax.yaxis.tick_right()
alpha = 0.5
# sig_R_0 = 130.
sig_R_0 = 180.
ma1 = [sig_maj_exp(R) for R in points]
mi1 = [sig_min_exp(R) for R in points]
alpha = 0.9
# sig_R_0 = 150.
sig_R_0 = 240.
ma2 = [sig_maj_exp(R) for R in points]
mi2 = [sig_min_exp(R) for R in points]
colors = cm.rainbow(np.linspace(0, 1, len(np.arange(0.5, 1.0, 0.1))))
for l, color in zip(np.arange(0.5, 1.0, 0.1), colors):
global sig_R_0
global alpha
alpha = l
sig_R_0 = main_slice(l)
chi_ma1 = calc_chi2_normal(sig_maj_p, e_sig_maj_p, [sig_maj_exp(r) for r in radii_maj])
chi_mi1 = calc_chi2_normal(sig_min_p, e_sig_min_p, [sig_min_exp(r) for r in radii_min])
print l, sig_R_0 , chi_mi1, chi_ma1
plt.plot(points, [sig_maj_exp(R) for R in points], '-', color=color)
plt.plot(points, [sig_min_exp(R) for R in points], '-', color=color)
# ax.fill_between(points, mi1, mi2, color='none', alpha=0.5, zorder=1, hatch="//", edgecolor="r", lw=0.5)
# ax.fill_between(points, ma1, ma2, color='none', alpha=0.5, zorder=0, hatch="\\", edgecolor="b", lw=0.5)
plt.plot(points, poly_sig_maj(points), '-', color='blue')
plt.plot(points, poly_sig_min(points), '-', color='red')
plt.axvline(x=r_eb, color='black', ls='--')
# plt.savefig('ngc1167_svedata.ps', format='ps', rasterized=True, dpi=150)
# plt.savefig('ngc1167_svedata.png', format='png', dpi=150)
# plt.savefig('ngc1167_svedata.pdf', format='pdf', dpi=150)
plt.show()
In [ ]:
def lsq_alpha_gerssen(h_kin):
'''
МНК для нахождения alpha методом примерно как у Gerssen - экспоненциальные профили.
Считаем честно для наблюдательных точек.
'''
#Начальное приближение (А,В)
x0 = [1000, 1000]
#Уравнения:
#Левая часть:
eq_left = np.concatenate( ([p[1]**2/exp(-2*p[0]/h_kin) for p in zip(radii_maj, sig_maj_p)],
[p[1]**2/exp(-2*p[0]/h_kin) for p in zip(radii_min, sig_min_p)]) )
#Правая часть:
eq_right = np.transpose(
np.array([
np.concatenate(([sigPhi_to_sigR(R)**2 for R in radii_maj],
[1.]*radii_min.__len__())),
np.concatenate(([1.]*radii_maj.__len__(),
[1.]*radii_min.__len__()))]))
# МНК для получившихся уравнений:
solution = scipy.optimize.leastsq(residuals, x0, args=(eq_right, eq_left))[0]
A, B = solution[0], solution[1]
chi2 = sum(power(residuals(solution, eq_right, eq_left), 2))
print 'Solution: A = %s, B = %s' % (A, B)
print 'Chi^2:', chi2
sig_R_0 = round( sqrt(A) / sin(incl*pi/180), 3)
alpha = round( sqrt(B)/ (cos(incl*pi/180) * sig_R_0), 3)
print "sig_R_0 = %s, alpha = %s" % (sig_R_0, alpha)
return sig_R_0, alpha
lsq_alpha_gerssen(h_kin_gerssen)
Заведем функции для восстановления профиля при герсеновских экспоненциальных предположениях.
In [ ]:
def sigR_ger_exp(R):
return sig_R_0*exp(-R/h_kin_gerssen)
def sigZ_ger_exp(R):
return sigR_ger_exp(R)*alpha
def sigPhi_ger_exp(R):
return sigPhi_to_sigR(R) * sigR_ger_exp(R)
def sig_maj_ger_exp(R):
return sqrt(sigPhi_ger_exp(R)**2 * sin_i**2 + sigZ_ger_exp(R)**2 * cos_i**2)
def sig_min_ger_exp(R):
return sqrt(sigR_ger_exp(R)**2 * sin_i**2 + sigZ_ger_exp(R)**2 * cos_i**2)
In [ ]:
# sig_R_0, alpha = lsq_alpha_gerssen(h_kin_gerssen)
sig_R_0, alpha = 291., 0.3
plt.plot(points, [sigR_ger_exp(R) for R in points], '-', color='red', label='$\sigma_{R, exp}^{gers}$')
plt.plot(points, [sigPhi_ger_exp(R) for R in points], '-', color='blue', label=r'$\sigma_{\varphi, exp}^{gers}$')
plt.plot(points, [sigZ_ger_exp(R) for R in points], '-', color='black', label='$\sigma_{Z, exp}^{gers}$')
plt.plot(points, poly_sig_maj(points), '-', label = '$\sigma_{los}^{maj} polyfit$', color='m')
plt.plot(points, [sig_maj_ger_exp(R) for R in points], '--', color='m', label='$\sigma_{maj, exp}^{gers}$')
plt.plot(points, poly_sig_min(points), '-', label = '$\sigma_{los}^{min} polyfit$', color='y')
plt.plot(points, [sig_min_ger_exp(R) for R in points], '--', color='y', label='$\sigma_{min, exp}^{gers}$')
plt.plot(radii_maj, sig_maj_p, 's', label='$\sigma_{los}^{maj}$', color='m')
plt.errorbar(radii_maj, sig_maj_p, yerr=e_sig_maj_p, fmt='.', marker='.', mew=0, color='m')
plt.plot(radii_min, sig_min_p, 's', label='$\sigma_{los}^{min}$', color='y')
plt.errorbar(radii_min, sig_min_p, yerr=e_sig_min_p, fmt='.', marker='.', mew=0, color='y')
plt.ylim(0, 350)
plt.legend()
plt.show()
Определим теперь, какой кинетический масштаб получается в нашем способе, непосредственно приблизив профили $\ln \sigma_R(R)$ и $\ln \sigma_Z(R)$ прямыми как и раньше:
In [ ]:
sig_R_0 = 291.
alpha = 0.3
sig_R_p_ln = [math.log(p) for p in [sigR_exp(R) for R in points]]
sig_Z_p_ln = [math.log(p) for p in [sigZ_exp(R) for R in points]]
poly_ln_R = poly1d(polyfit(points, sig_R_p_ln, deg=1))
h_kin_R = float("{0:.2f}".format(-1./poly_ln_R[1]))
poly_ln_Z = poly1d(polyfit(points, sig_Z_p_ln, deg=1))
h_kin_Z = float("{0:.2f}".format(-1./poly_ln_Z[1]))
plt.plot(points, sig_R_p_ln, 'o', label='$\ln\,{\sigma_R}$', color='red')
plt.plot(points, [poly_ln_R(R) for R in points], label = '$line\, approx$', color='r')
plt.text(25, 4.9, r"$y_R=%s$" % poly_ln_R.__str__()[2:], fontsize=20, color='black')
plt.text(25, 5.0, r"$h_{kin}^{R}=\,%s$" % h_kin_R, fontsize=22, color='black')
plt.plot(points, sig_Z_p_ln, 's', label='$\ln\,{\sigma_Z}$', color='b')
plt.plot(points, [poly_ln_Z(R) for R in points], label = '$line\, approx$', color='b')
plt.text(5., 4., r"$y_Z=%s$" % poly_ln_Z.__str__()[2:], fontsize=20, color='black')
plt.text(5., 4.1, r"$h_{kin}^{Z}=\,%s$" % h_kin_Z, fontsize=22, color='black')
plt.legend()
plt.show()