In [1]:
%run ../../../utils/load_notebook.py

In [2]:
return_back_path = '../../notebooks/2f/test_short/'

In [3]:
import datetime
start = datetime.datetime.now()
start


Out[3]:
datetime.datetime(2017, 7, 4, 22, 27, 29, 536000)

In [4]:
%%time
from n338 import *


importing Jupyter notebook from n338.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib
importing Jupyter notebook from photometry.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib
importing Jupyter notebook from instabilities.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib
ERROR:root:File `u'../../utils/load_notebook.py'` not found.
importing Jupyter notebook from utils.ipynb
Wall time: 1.57 s
C:\Anaconda\lib\site-packages\scipy\integrate\quadpack.py:364: IntegrationWarning: The maximum number of subdivisions (50) has been achieved.
  If increasing the limit yields no improvement it is advised to analyze 
  the integrand in order to determine the difficulties.  If the position of a 
  local difficulty can be determined (singularity, discontinuity) one will 
  probably gain from splitting up the interval and calling the integrator 
  on the subranges.  Perhaps a special-purpose integrator should be used.
  warnings.warn(msg, IntegrationWarning)
9.82081483752
11.1404465179
I : 1.15; B : 1.06; R: 1.24.
+------+-----------+---------+----------+------+---------+----------+-------+-------------+-----------+
|      | Name      |   r_eff |   mu_eff |    n |   mu0_d |   h_disc |   M/L | M_d/M_sun   |   Sigma_0 |
|------+-----------+---------+----------+------+---------+----------+-------+-------------+-----------|
| 0.00 | Noorder R |   15.00 |    20.95 | 3.70 |   21.92 |    18.30 |  1.24 | 9.43E+09.   |        53 |
| 1.00 | Noorder B |   15.00 |    22.70 | 3.70 |   22.53 |    17.70 |  1.06 | 1.14E+10.   |        68 |
| 2.00 | Noorder I |   15.00 |    20.41 | 3.70 |   19.79 |    12.90 |  1.15 | 2.27E+10.   |       255 |
+------+-----------+---------+----------+------+---------+----------+-------+-------------+-----------+
Noorder R      : M/L was 1.24 and for max it equal 20.91, for submax equal 10.42
Noorder B      : M/L was 1.06 and for max it equal 14.02, for submax equal 6.99
Noorder I      : M/L was 1.15 and for max it equal 6.23, for submax equal 3.10
C:\Anaconda\lib\site-packages\matplotlib\pyplot.py:524: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
  max_open_warning, RuntimeWarning)
Wall time: 2min 13s
C:\Anaconda\lib\site-packages\matplotlib\axes\_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.
  warnings.warn("No labelled objects found. "

In [5]:
name


Out[5]:
'N0338'

In [6]:
n338dict = dict(globals(), **locals())

In [7]:
n338dict['name']


Out[7]:
'N0338'

In [8]:
os.chdir(return_back_path)

In [9]:
%%time
from n1167 import *


importing Jupyter notebook from n1167.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib
14.7100823358
B : 3.80; R: 2.71.
+------+----------------+---------+----------+------+---------+----------+-------+-------------+-----------+
|      | Name           |   r_eff |   mu_eff |    n |   mu0_d |   h_disc |   M/L | M_d/M_sun   |   Sigma_0 |
|------+----------------+---------+----------+------+---------+----------+-------+-------------+-----------|
| 0.00 | Noorder R      |    6.70 |    19.40 | 1.70 |   20.12 |    24.20 |  2.71 | 2.30E+11.   |       605 |
| 1.00 | Noorder B      |    6.70 |    20.73 | 1.70 |   21.71 |    27.50 |  3.80 | 2.55E+11.   |       520 |
| 2.00 | Noorder R_max  |    6.70 |    19.40 | 1.70 |   20.12 |    24.20 |  4.00 | 3.39E+11.   |       893 |
| 3.00 | califa g (g-i) |    7.57 |    21.47 | 2.21 |   21.29 |    24.45 |  5.59 | 3.89E+11.   |      1006 |
| 4.00 | califa r (g-r) |    9.09 |    20.70 | 2.66 |   20.60 |    25.82 |  3.88 | 3.04E+11.   |       703 |
| 5.00 | califa i (r-i) |   11.43 |    20.61 | 3.21 |   20.32 |    27.51 |  2.95 | 2.85E+11.   |       581 |
+------+----------------+---------+----------+------+---------+----------+-------+-------------+-----------+
Noorder R      : M/L was 2.71 and for max it equal 5.53, for submax equal 2.76
Noorder B      : M/L was 3.80 and for max it equal 7.93, for submax equal 3.95
Noorder R_max  : M/L was 4.00 and for max it equal 5.53, for submax equal 2.76
califa g (g-i) : M/L was 5.59 and for max it equal 6.80, for submax equal 3.39
califa r (g-r) : M/L was 3.88 and for max it equal 6.39, for submax equal 3.18
califa i (r-i) : M/L was 2.95 and for max it equal 5.52, for submax equal 2.75
Wall time: 2min 25s

In [10]:
name


Out[10]:
'N1167'

In [11]:
n1167dict = dict(globals(), **locals())

In [12]:
n1167dict['name']


Out[12]:
'N1167'

In [13]:
del n1167dict['n338dict']

In [14]:
os.chdir(return_back_path)

In [15]:
%%time
from n2985 import *


importing Jupyter notebook from n2985.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib
Abs B : 0.47; R: 0.75.
Rel B : 0.53; R: 0.81.
0.58 0.63
+------+------------------+---------+----------+--------+----------------+----------------+-------+-------------+-----------+
|      | Name             |   r_eff |   mu_eff |      n | mu0_d          | h_disc         |   M/L | M_d/M_sun   |   Sigma_0 |
|------+------------------+---------+----------+--------+----------------+----------------+-------+-------------+-----------|
| 0.00 | b:Noorder R      |   25.10 |    20.41 |   3.90 | 21.32          | 52.2           |  0.81 | 8.47E+09.   |        60 |
| 1.00 | b:Noorder B      |   25.10 |    21.86 |   3.90 | 22.06          | 57.6           |  0.53 | 9.08E+09.   |        53 |
| 2.00 | b:Mendez-Abreu J |   13.20 |    17.94 |   2.92 | 18.22          | 25.8           |  0.76 | 1.66E+10.   |       479 |
| 3.00 | Gutierrez R 2d   |  nan    |   nan    | nan    | (18.57, 21.76) | (18.1, 81.0)   |  0.75 | 2.44E+10.   |       732 |
| 4.00 | Heidt J          |   12.08 |    17.73 |   2.86 | 18.05          | 30.63          |  0.76 | 2.73E+10.   |       560 |
| 5.00 | Heidt K          |   14.06 |    17.23 |   3.03 | 17.32          | 31.08          |  0.65 | 3.39E+10.   |       674 |
| 6.00 | Heidt H          |   12.81 |    17.03 |   2.86 | 17.27          | 26.1           |  0.70 | 2.76E+10.   |       779 |
| 7.00 | S4G 2d           |    6.32 |   nan    |   2.82 | (18.55, 20.84) | (12.78, 48.89) |  0.67 | 3.42E+10.   |      1630 |
| 8.00 | S4G_AM 2d        |  nan    |   nan    | nan    | (18.28, 20.74) | (11.71, 47.23) |  0.67 | 3.58E+10.   |      2067 |
| 9.00 | Noorder R_max    |   25.10 |    20.41 |   3.90 | 21.32          | 52.2           |  6.00 | 6.29E+10.   |       444 |
+------+------------------+---------+----------+--------+----------------+----------------+-------+-------------+-----------+
b:Noorder R    : M/L was 0.81 and for max it equal 12.08, for submax equal 6.02
b:Noorder B    : M/L was 0.53 and for max it equal 8.18, for submax equal 4.08
b:Mendez-Abreu J: M/L was 0.76 and for max it equal 2.80, for submax equal 1.40
Gutierrez R 2d : M/L was 0.75 and for max it equal 2.48, for submax equal 1.24
Heidt J        : M/L was 0.76 and for max it equal 2.03, for submax equal 1.01
Heidt K        : M/L was 0.65 and for max it equal 1.42, for submax equal 0.71
Heidt H        : M/L was 0.70 and for max it equal 1.55, for submax equal 0.77
S4G 2d         : M/L was 0.67 and for max it equal 1.35, for submax equal 0.67
S4G_AM 2d      : M/L was 0.67 and for max it equal 1.18, for submax equal 0.59
Noorder R_max  : M/L was 6.00 and for max it equal 12.08, for submax equal 6.02
Wall time: 12min 57s

In [16]:
n2985dict = dict(globals(), **locals())

In [17]:
n2985dict['name']


Out[17]:
'N2985'

In [18]:
del n2985dict['n338dict']
del n2985dict['n1167dict']

In [19]:
os.chdir(return_back_path)

In [20]:
%%time
from n3898 import *


importing Jupyter notebook from n3898.ipynb
Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib