In [1]:
# If we're running on Colab, install modsimpy
# https://pypi.org/project/modsimpy/
import sys
IN_COLAB = 'google.colab' in sys.modules
if IN_COLAB:
!pip install pint
!pip install modsimpy
!mkdir figs
In [2]:
# Configure Jupyter so figures appear in the notebook
%matplotlib inline
# import functions from the modsim.py module
from modsim import *
In [3]:
def plot_results(census, un, timeseries, title):
"""Plot the estimates and the model.
census: TimeSeries of population estimates
un: TimeSeries of population estimates
timeseries: TimeSeries of simulation results
title: string
"""
plot(census, ':', label='US Census')
plot(un, '--', label='UN DESA')
plot(timeseries, color='gray', label='model')
decorate(xlabel='Year',
ylabel='World population (billion)',
title=title)
In [4]:
def run_simulation(system, update_func):
"""Simulate the system using any update function.
system: System object
update_func: function that computes the population next year
returns: TimeSeries
"""
results = TimeSeries()
results[system.t_0] = system.p_0
for t in linrange(system.t_0, system.t_end):
results[t+1] = update_func(results[t], t, system)
return results
In [5]:
# Get the data file
import os
filename = 'World_population_estimates2.csv'
if not os.path.exists(filename):
!wget https://raw.githubusercontent.com/AllenDowney/ModSimPy/master/notebooks/data/World_population_estimates2.csv
In [6]:
def read_table2(filename):
tables = pd.read_html(filename, header=0, index_col=0, decimal='M')
table2 = tables[2]
table2.columns = ['census', 'prb', 'un', 'maddison',
'hyde', 'tanton', 'biraben', 'mj',
'thomlinson', 'durand', 'clark']
return table2
In [7]:
#table2 = read_table2()
#table2.to_csv('data/World_population_estimates2.csv')
In [8]:
table2 = pd.read_csv('World_population_estimates2.csv')
table2.index = table2.Year
table2.head()
Out[8]:
In [9]:
un = table2.un / 1e9
census = table2.census / 1e9
plot(census, ':', label='US Census')
plot(un, '--', label='UN DESA')
decorate(xlabel='Year',
ylabel='World population (billion)',
title='Estimated world population')
Here's the update function for the quadratic growth model with parameters alpha
and beta
.
In [10]:
def update_func_quad(pop, t, system):
"""Update population based on a quadratic model.
pop: current population in billions
t: what year it is
system: system object with model parameters
"""
net_growth = system.alpha * pop + system.beta * pop**2
return pop + net_growth
Extract the starting time and population.
In [11]:
t_0 = get_first_label(census)
t_end = get_last_label(census)
p_0 = get_first_value(census)
Initialize the system object.
In [12]:
system = System(t_0=t_0,
t_end=t_end,
p_0=p_0,
alpha=0.025,
beta=-0.0018)
Run the model and plot results.
In [13]:
results = run_simulation(system, update_func_quad)
plot_results(census, un, results, 'Quadratic model')
To generate projections, all we have to do is change t_end
In [14]:
system.t_end = 2250
results = run_simulation(system, update_func_quad)
plot_results(census, un, results, 'World population projection')
savefig('figs/chap08-fig01.pdf')
The population in the model converges on the equilibrium population, -alpha/beta
In [15]:
results[system.t_end]
Out[15]:
In [16]:
-system.alpha / system.beta
Out[16]:
Exercise: What happens if we start with an initial population above the carrying capacity, like 20 billion? Run the model with initial populations between 1 and 20 billion, and plot the results on the same axes.
In [17]:
# Solution
p0_array = linspace(1, 25, 11)
for system.p_0 in p0_array:
results = run_simulation(system, update_func_quad)
plot(results)
decorate(xlabel='Year',
ylabel='Population (billions)',
title='Projections with hypothetical starting populations')
We can compare the projection from our model with projections produced by people who know what they are doing.
In [18]:
# Get the data file
import os
filename = 'World_population_estimates3.csv'
if not os.path.exists(filename):
!wget https://raw.githubusercontent.com/AllenDowney/ModSimPy/master/notebooks/data/World_population_estimates3.csv
In [19]:
def read_table3(filename = 'data/World_population_estimates.html'):
tables = pd.read_html(filename, header=0, index_col=0, decimal='M')
table3 = tables[3]
table3.columns = ['census', 'prb', 'un']
return table3
In [20]:
#table3 = read_table3()
#table3.to_csv('data/World_population_estimates3.csv')
In [21]:
table3 = pd.read_csv('World_population_estimates3.csv')
table3.index = table3.Year
table3.head()
Out[21]:
NaN
is a special value that represents missing data, in this case because some agencies did not publish projections for some years.
This function plots projections from the UN DESA and U.S. Census. It uses dropna
to remove the NaN
values from each series before plotting it.
In [22]:
def plot_projections(table):
"""Plot world population projections.
table: DataFrame with columns 'un' and 'census'
"""
census_proj = table.census / 1e9
un_proj = table.un / 1e9
plot(census_proj.dropna(), ':', color='C0', label='US Census')
plot(un_proj.dropna(), '--', color='C1', label='UN DESA')
Run the model until 2100, which is as far as the other projections go.
In [23]:
system = System(t_0=t_0,
t_end=2100,
p_0=p_0,
alpha=0.025,
beta=-0.0018)
In [24]:
results = run_simulation(system, update_func_quad)
plt.axvspan(1950, 2016, color='C0', alpha=0.05)
plot_results(census, un, results, 'World population projections')
plot_projections(table3)
savefig('figs/chap08-fig02.pdf')
People who know what they are doing expect the growth rate to decline more sharply than our model projects.
Exercise: The net growth rate of world population has been declining for several decades. That observation suggests one more way to generate projections, by extrapolating observed changes in growth rate.
The modsim
library provides a function, compute_rel_diff
, that computes relative differences of the elements in a sequence.
Here's how we can use it to compute the relative differences in the census
and un
estimates:
In [25]:
alpha_census = compute_rel_diff(census)
plot(alpha_census, label='US Census')
alpha_un = compute_rel_diff(un)
plot(alpha_un, label='UN DESA')
decorate(xlabel='Year', label='Net growth rate')
Other than a bump around 1990, net growth rate has been declining roughly linearly since 1965. As an exercise, you can use this data to make a projection of world population until 2100.
Define a function, alpha_func
, that takes t
as a parameter and returns an estimate of the net growth rate at time t
, based on a linear function alpha = intercept + slope * t
. Choose values of slope
and intercept
to fit the observed net growth rates since 1965.
Call your function with a range of ts
from 1960 to 2020 and plot the results.
Create a System
object that includes alpha_func
as a system variable.
Define an update function that uses alpha_func
to compute the net growth rate at the given time t
.
Test your update function with t_0 = 1960
and p_0 = census[t_0]
.
Run a simulation from 1960 to 2100 with your update function, and plot the results.
Compare your projections with those from the US Census and UN.
In [26]:
# Solution
def alpha_func(t):
intercept = 0.02
slope = -0.00021
return intercept + slope * (t - 1970)
In [27]:
# Solution
ts = linrange(1960, 2020)
alpha_model = TimeSeries(alpha_func(ts), ts)
plot(alpha_model, color='gray', label='model')
plot(alpha_census)
plot(alpha_un)
decorate(xlabel='Year', ylabel='Net growth rate')
In [28]:
# Solution
t_0 = 1960
t_end = 2100
p_0 = census[t_0]
In [29]:
# Solution
system = System(t_0=t_0,
t_end=t_end,
p_0=p_0,
alpha_func=alpha_func)
In [30]:
# Solution
def update_func_alpha(pop, t, system):
"""Update population based on a quadratic model.
pop: current population in billions
t: what year it is
system: system object with model parameters
"""
net_growth = system.alpha_func(t) * pop
return pop + net_growth
In [31]:
# Solution
update_func_alpha(p_0, t_0, system)
Out[31]:
In [32]:
# Solution
results = run_simulation(system, update_func_alpha);
In [33]:
# Solution
plot_results(census, un, results, 'World population projections')
plot_projections(table3)
Related viewing: You might be interested in this video by Hans Rosling about the demographic changes we expect in this century.