In [11]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
In [12]:
import antipackage
import github.ellisonbg.misc.vizarray as va
Here is a function that produces standard Brownian motion using NumPy. This is also known as a Wiener Process.
In [13]:
def brownian(maxt, n):
"""Return one realization of a Brownian (Wiener) process with n steps and a max time of t."""
t = np.linspace(0.0,maxt,n)
h = t[1]-t[0]
Z = np.random.normal(0.0,1.0,n-1)
dW = np.sqrt(h)*Z
W = np.zeros(n)
W[1:] = dW.cumsum()
return t, W
Call the brownian
function to simulate a Wiener process with 1000
steps and max time of 1.0
. Save the results as two arrays t
and W
.
In [17]:
# YOUR CODE HERE
brownian(1.0,1000)
t,W = np.array(brownian(1.0,1000))
In [18]:
assert isinstance(t, np.ndarray)
assert isinstance(W, np.ndarray)
assert t.dtype==np.dtype(float)
assert W.dtype==np.dtype(float)
assert len(t)==len(W)==1000
Visualize the process using plt.plot
with t
on the x-axis and W(t)
on the y-axis. Label your x and y axes.
In [19]:
plt.plot(t,W)
Out[19]:
In [20]:
assert True # this is for grading
Use np.diff
to compute the changes at each step of the motion, dW
, and then compute the mean and standard deviation of those differences.
In [25]:
dW = np.diff(W)
print (dW.mean())
print (dW.std())
In [26]:
assert len(dW)==len(W)-1
assert dW.dtype==np.dtype(float)
Write a function that takes $W(t)$ and converts it to geometric Brownian motion using the equation:
$$ X(t) = X_0 e^{((\mu - \sigma^2/2)t + \sigma W(t))} $$Use Numpy ufuncs and no loops in your function.
In [45]:
def geo_brownian(t, W, X0, mu, sigma):
"Return X(t) for geometric brownian motion with drift mu, volatility sigma."""
a = (((mu - (sigma ** 2))/2)*t) + (sigma * W(t))
y = (X0)*(np.exp(a))
return(t,y)
In [46]:
assert True # leave this for grading
Use your function to simulate geometric brownian motion, $X(t)$ for $X_0=1.0$, $\mu=0.5$ and $\sigma=0.3$ with the Wiener process you computed above.
Visualize the process using plt.plot
with t
on the x-axis and X(t)
on the y-axis. Label your x and y axes.
In [ ]:
# YOUR CODE HERE
raise NotImplementedError()
In [ ]:
assert True # leave this for grading