In [1]:
    
push!(LOAD_PATH, "$(pwd())/../src"); using PyPlot, StatsBase, Distributions, StochasticProcesses;
    
In [2]:
    
rms(a) = norm(a) / sqrt(length(a))
rms(process, result) = rms(result .- solution(process, result.t, result.b))
    
    Out[2]:
Brownian motion with drift:
In [11]:
    
let p=BrownianMotionWithDrift(.1, .2, 100.), q = 1.:20
    loglog(2.^(-q), (s -> rms(p, sim(p, linspace(0,1, 2^s), 1000))).(q))
end;
    
    
Geometric brownian motion:
In [9]:
    
let p=GeometricBrownianMotion(.1, .2, 100.), q = 1.:20
    loglog(2.^(-q), (s -> rms(p, sim(p, linspace(0,1, 2^s), 1000))).(q))
end;
    
    
In [5]:
    
# todo: weak convergence