In [1]:
import os
os.chdir(os.getcwd() + '/..')
# Run some setup code for this notebook
import time, json
import numpy as np
import matplotlib.pyplot as plt
from utils.metrics_utils import rel_error
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
In [2]:
from utils.coco_utils import load_coco_data
# Load COCO data from disk; this returns a dictionary
# We'll work with dimensionality-reduced features for this notebook, but feel
# free to experiment with the original features by changing the flag below.
data = load_coco_data(pca_features=True)
# Print out all the keys and values from the data dictionary
for k, v in data.items():
if type(v) == np.ndarray:
print(k, type(v), v.shape, v.dtype)
else:
print(k, type(v), len(v))
If you read recent papers, you'll see that many people use a variant on the vanialla RNN called Long-Short Term Memory (LSTM) RNNs. Vanilla RNNs can be tough to train on long sequences due to vanishing and exploding gradiants caused by repeated matrix multiplication. LSTMs solve this problem by replacing the simple update rule of the vanilla RNN with a gating mechanism as follows.
Similar to the vanilla RNN, at each timestep we receive an input $x_t\in\mathbb{R}^D$ and the previous hidden state $h_{t-1}\in\mathbb{R}^H$; the LSTM also maintains an $H$-dimensional cell state, so we also receive the previous cell state $c_{t-1}\in\mathbb{R}^H$. The learnable parameters of the LSTM are an input-to-hidden matrix $W_x\in\mathbb{R}^{4H\times D}$, a hidden-to-hidden matrix $W_h\in\mathbb{R}^{4H\times H}$ and a bias vector $b\in\mathbb{R}^{4H}$.
At each timestep we first compute an activation vector $a\in\mathbb{R}^{4H}$ as $a=W_xx_t + W_hh_{t-1}+b$. We then divide this into four vectors $a_i,a_f,a_o,a_g\in\mathbb{R}^H$ where $a_i$ consists of the first $H$ elements of $a$, $a_f$ is the next $H$ elements of $a$, etc. We then compute the input gate $g\in\mathbb{R}^H$, forget gate $f\in\mathbb{R}^H$, output gate $o\in\mathbb{R}^H$ and block input $g\in\mathbb{R}^H$ as
$$ \begin{align*} i = \sigma(a_i) \hspace{2pc} f = \sigma(a_f) \hspace{2pc} o = \sigma(a_o) \hspace{2pc} g = \tanh(a_g) \end{align*} $$where $\sigma$ is the sigmoid function and $\tanh$ is the hyperbolic tangent, both applied elementwise.
Finally we compute the next cell state $c_t$ and next hidden state $h_t$ as
$$ c_{t} = f\odot c_{t-1} + i\odot g \hspace{4pc} h_t = o\odot\tanh(c_t) $$where $\odot$ is the elementwise product of vectors.
In the rest of the notebook we will implement the LSTM update rule and apply it to the image captioning task.
In the code, we assume that data is stored in batches so that $X_t \in \mathbb{R}^{N\times D}$, and will work with transposed versions of the parameters: $W_x \in \mathbb{R}^{D \times 4H}$, $W_h \in \mathbb{R}^{H\times 4H}$ so that activations $A \in \mathbb{R}^{N\times 4H}$ can be computed efficiently as $A = X_t W_x + H_{t-1} W_h$
Implement the forward pass for a single timestep of an LSTM in the lstm_step_forward
function in the file layers/rnn_layers.py
. This should be similar to the rnn_step_forward
function that you implemented above, but using the LSTM update rule instead.
Once you are done, run the following to perform a simple test of your implementation. You should see errors around 1e-8
or less.
In [3]:
from layers.rnn_layers import lstm_step_forward
N, D, H = 3, 4, 5
x = np.linspace(-0.4, 1.2, num=N*D).reshape(N, D)
prev_h = np.linspace(-0.3, 0.7, num=N*H).reshape(N, H)
prev_c = np.linspace(-0.4, 0.9, num=N*H).reshape(N, H)
Wx = np.linspace(-2.1, 1.3, num=4*D*H).reshape(D, 4 * H)
Wh = np.linspace(-0.7, 2.2, num=4*H*H).reshape(H, 4 * H)
b = np.linspace(0.3, 0.7, num=4*H)
next_h, next_c, cache = lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)
expected_next_h = np.asarray([
[ 0.24635157, 0.28610883, 0.32240467, 0.35525807, 0.38474904],
[ 0.49223563, 0.55611431, 0.61507696, 0.66844003, 0.7159181 ],
[ 0.56735664, 0.66310127, 0.74419266, 0.80889665, 0.858299 ]])
expected_next_c = np.asarray([
[ 0.32986176, 0.39145139, 0.451556, 0.51014116, 0.56717407],
[ 0.66382255, 0.76674007, 0.87195994, 0.97902709, 1.08751345],
[ 0.74192008, 0.90592151, 1.07717006, 1.25120233, 1.42395676]])
print('next_h error: ', rel_error(expected_next_h, next_h))
print('next_c error: ', rel_error(expected_next_c, next_c))
In [4]:
from layers.rnn_layers import lstm_step_backward
from utils.gradient_check import eval_numerical_gradient_array
np.random.seed(231)
N, D, H = 4, 5, 6
x = np.random.randn(N, D)
prev_h = np.random.randn(N, H)
prev_c = np.random.randn(N, H)
Wx = np.random.randn(D, 4 * H)
Wh = np.random.randn(H, 4 * H)
b = np.random.randn(4 * H)
next_h, next_c, cache = lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)
dnext_h = np.random.randn(*next_h.shape)
dnext_c = np.random.randn(*next_c.shape)
fx_h = lambda x: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fh_h = lambda h: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fc_h = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fWx_h = lambda Wx: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fWh_h = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fb_h = lambda b: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
fx_c = lambda x: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
fh_c = lambda h: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
fc_c = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
fWx_c = lambda Wx: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
fWh_c = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
fb_c = lambda b: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
num_grad = eval_numerical_gradient_array
dx_num = num_grad(fx_h, x, dnext_h) + num_grad(fx_c, x, dnext_c)
dh_num = num_grad(fh_h, prev_h, dnext_h) + num_grad(fh_c, prev_h, dnext_c)
dc_num = num_grad(fc_h, prev_c, dnext_h) + num_grad(fc_c, prev_c, dnext_c)
dWx_num = num_grad(fWx_h, Wx, dnext_h) + num_grad(fWx_c, Wx, dnext_c)
dWh_num = num_grad(fWh_h, Wh, dnext_h) + num_grad(fWh_c, Wh, dnext_c)
db_num = num_grad(fb_h, b, dnext_h) + num_grad(fb_c, b, dnext_c)
dx, dh, dc, dWx, dWh, db = lstm_step_backward(dnext_h, dnext_c, cache)
print('dx error: ', rel_error(dx_num, dx))
print('dh error: ', rel_error(dh_num, dh))
print('dc error: ', rel_error(dc_num, dc))
print('dWx error: ', rel_error(dWx_num, dWx))
print('dWh error: ', rel_error(dWh_num, dWh))
print('db error: ', rel_error(db_num, db))
In [5]:
from layers.rnn_layers import lstm_forward
N, D, H, T = 2, 5, 4, 3
x = np.linspace(-0.4, 0.6, num=N*T*D).reshape(N, T, D)
h0 = np.linspace(-0.4, 0.8, num=N*H).reshape(N, H)
Wx = np.linspace(-0.2, 0.9, num=4*D*H).reshape(D, 4 * H)
Wh = np.linspace(-0.3, 0.6, num=4*H*H).reshape(H, 4 * H)
b = np.linspace(0.2, 0.7, num=4*H)
h, cache = lstm_forward(x, h0, Wx, Wh, b)
expected_h = np.asarray([
[[ 0.01764008, 0.01823233, 0.01882671, 0.0194232 ],
[ 0.11287491, 0.12146228, 0.13018446, 0.13902939],
[ 0.31358768, 0.33338627, 0.35304453, 0.37250975]],
[[ 0.45767879, 0.4761092, 0.4936887, 0.51041945],
[ 0.6704845, 0.69350089, 0.71486014, 0.7346449 ],
[ 0.81733511, 0.83677871, 0.85403753, 0.86935314]]])
print('h error: ', rel_error(expected_h, h))
In [6]:
from layers.rnn_layers import lstm_backward
np.random.seed(231)
N, D, T, H = 2, 3, 10, 6
x = np.random.randn(N, T, D)
h0 = np.random.randn(N, H)
Wx = np.random.randn(D, 4 * H)
Wh = np.random.randn(H, 4 * H)
b = np.random.randn(4 * H)
out, cache = lstm_forward(x, h0, Wx, Wh, b)
dout = np.random.randn(*out.shape)
dx, dh0, dWx, dWh, db = lstm_backward(dout, cache)
fx = lambda x: lstm_forward(x, h0, Wx, Wh, b)[0]
fh0 = lambda h0: lstm_forward(x, h0, Wx, Wh, b)[0]
fWx = lambda Wx: lstm_forward(x, h0, Wx, Wh, b)[0]
fWh = lambda Wh: lstm_forward(x, h0, Wx, Wh, b)[0]
fb = lambda b: lstm_forward(x, h0, Wx, Wh, b)[0]
dx_num = eval_numerical_gradient_array(fx, x, dout)
dh0_num = eval_numerical_gradient_array(fh0, h0, dout)
dWx_num = eval_numerical_gradient_array(fWx, Wx, dout)
dWh_num = eval_numerical_gradient_array(fWh, Wh, dout)
db_num = eval_numerical_gradient_array(fb, b, dout)
print('dx error: ', rel_error(dx_num, dx))
print('dh0 error: ', rel_error(dh0_num, dh0))
print('dWx error: ', rel_error(dWx_num, dWx))
print('dWh error: ', rel_error(dWh_num, dWh))
print('db error: ', rel_error(db_num, db))
Now that you have implemented an LSTM, update the implementation of the loss
method of the CaptioningRNN
class in the file classifiers/rnn.py
to handle the case where self.cell_type
is lstm
. This should require adding less than 10 lines of code.
Once you have done so, run the following to check your implementation. You should see a difference of less than 1e-10
.
In [7]:
from classifiers.rnn import CaptioningRNN
N, D, W, H = 10, 20, 30, 40
word_to_idx = {'<NULL>': 0, 'cat': 2, 'dog': 3}
V = len(word_to_idx)
T = 13
model = CaptioningRNN(word_to_idx,
input_dim=D,
wordvec_dim=W,
hidden_dim=H,
cell_type='lstm',
dtype=np.float64)
# Set all model parameters to fixed values
for k, v in model.params.items():
model.params[k] = np.linspace(-1.4, 1.3, num=v.size).reshape(*v.shape)
features = np.linspace(-0.5, 1.7, num=N*D).reshape(N, D)
captions = (np.arange(N * T) % V).reshape(N, T)
loss, grads = model.loss(features, captions)
expected_loss = 9.82445935443
print('loss: ', loss)
print('expected loss: ', expected_loss)
print('difference: ', abs(loss - expected_loss))
In [9]:
from base.captioning_solver import CaptioningSolver
np.random.seed(231)
small_data = load_coco_data(max_train=50)
small_lstm_model = CaptioningRNN(
cell_type='lstm',
word_to_idx=data['word_to_idx'],
input_dim=data['train_features'].shape[1],
hidden_dim=512,
wordvec_dim=256,
dtype=np.float32,
)
small_lstm_solver = CaptioningSolver(small_lstm_model, small_data,
update_rule='adam',
num_epochs=50,
batch_size=25,
optim_config={
'learning_rate': 5e-3,
},
lr_decay=0.995,
verbose=True, print_every=10,
)
small_lstm_solver.train()
# Plot the training losses
plt.plot(small_lstm_solver.loss_history)
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.title('Training loss history')
plt.show()
In [17]:
from utils.coco_utils import sample_coco_minibatch, decode_captions
from utils.image_utils import image_from_url
for split in ['train', 'val']:
minibatch = sample_coco_minibatch(small_data, split=split, batch_size=2)
gt_captions, features, urls = minibatch
gt_captions = decode_captions(gt_captions, data['idx_to_word'])
sample_captions = small_lstm_model.sample(features)
sample_captions = decode_captions(sample_captions, data['idx_to_word'])
for gt_caption, sample_caption, url in zip(gt_captions, sample_captions, urls):
plt.imshow(image_from_url(url))
plt.title('%s\n%s\nGT:%s' % (split, sample_caption, gt_caption))
plt.axis('off')
plt.show()
Using the pieces you have implemented in this and the previous notebook, try to train a captioning model that gives decent qualitative results (better than the random garbage you saw with the overfit models) when sampling on the validation set. You can subsample the training set if you want; we just want to see samples on the validation set that are better than random.
In addition to qualitatively evaluating your model by inspecting its results, you can also quantitatively evaluate your model using the BLEU unigram precision metric. We'll give you a small amount of extra credit if you can train a model that achieves a BLEU unigram score of >0.3. BLEU scores range from 0 to 1; the closer to 1, the better. Here's a reference to the paper that introduces BLEU if you're interested in learning more about how it works.
Feel free to use PyTorch or TensorFlow for this section if you'd like to train faster on a GPU... though you can definitely get above 0.3 using your Numpy code. We're providing you the evaluation code that is compatible with the Numpy model as defined above... you should be able to adapt it for TensorFlow/PyTorch if you go that route.
In [25]:
import nltk
def BLEU_score(gt_caption, sample_caption):
"""
gt_caption: string, ground-truth caption
sample_caption: string, your model's predicted caption
Returns unigram BLEU score.
"""
reference = [x for x in gt_caption.split(' ')
if ('<END>' not in x and '<START>' not in x and '<UNK>' not in x)]
hypothesis = [x for x in sample_caption.split(' ')
if ('<END>' not in x and '<START>' not in x and '<UNK>' not in x)]
BLEUscore = nltk.translate.bleu_score.sentence_bleu([reference], hypothesis, weights = [1])
return BLEUscore
def evaluate_model(model):
"""
model: CaptioningRNN model
Prints unigram BLEU score averaged over 1000 training and val examples.
"""
BLEUscores = {}
for split in ['train', 'val']:
minibatch = sample_coco_minibatch(small_data, split=split, batch_size=1000)
gt_captions, features, urls = minibatch
gt_captions = decode_captions(gt_captions, data['idx_to_word'])
sample_captions = model.sample(features)
sample_captions = decode_captions(sample_captions, data['idx_to_word'])
total_score = 0.0
for gt_caption, sample_caption, url in zip(gt_captions, sample_captions, urls):
total_score += BLEU_score(gt_caption, sample_caption)
BLEUscores[split] = total_score / len(sample_captions)
for split in BLEUscores:
print('Average BLEU score for %s: %f' % (split, BLEUscores[split]))
In [26]:
evaluate_model(small_lstm_model)
In [ ]: