NASA Common Research Model

Drag Prediction Workshop

References

Define case name

This is the solver case to be analysed


In [1]:
case_name = 'dpw5_L3'

Define Data Location

For remote data the interaction will use ssh to securely interact with the data
This uses the reverse connection capability in paraview so that the paraview server can be submitted to a job scheduler
Note: The default paraview server connection will use port 11111


In [2]:
remote_data = True

data_dir='/gpfs/cfms/workarea/JA/NASA_CRM'
data_host='acimpoeru@vis03'

remote_server_auto = True

#paraview_cmd='mpiexec -n 1 ~/apps/Paraview/bin/pvserver --use-offscreen-rendering -rc --client-host=localhost -sp=11113'
paraview_cmd='mpiexec ~/appsbin/pvserver'
if not remote_server_auto:
    paraview_cmd=None

if not remote_data:
    data_host='localhost'
    paraview_cmd=None

Initialise Environment


In [3]:
%pylab inline
from paraview.simple import *
paraview.simple._DisableFirstRenderCameraReset()
import pylab as pl


Populating the interactive namespace from numpy and matplotlib
paraview version 4.1.0-20-g45bf58c

Data Connection

This starts paraview server on remote host and connects


In [4]:
from zutil.post import pvserver_connect
if remote_data:
    pvserver_connect(data_host=data_host,data_dir=data_dir,paraview_cmd=paraview_cmd)


[jappa@asrc2] Executing task 'pvserver'
[jappa@asrc2] run: sleep 2;mpiexec ~/apps/Paraview/bin/pvserver -rc --client-host=localhost -sp=11113&>/dev/null
[jappa@asrc2] out: 
[jappa@asrc2] out: 		   _____ ______ __  __  _____ 
[jappa@asrc2] out: 		  / ____|  ____|  \/  |/ ____|
[jappa@asrc2] out: 		 | |    | |__  | \  / | (___  
[jappa@asrc2] out: 		 | |    |  __| | |\/| |\___ \ 
[jappa@asrc2] out: 		 | |____| |    | |  | |____) |
[jappa@asrc2] out: 		  \_____|_|    |_|  |_|_____/ 
[jappa@asrc2] out:                               
[jappa@asrc2] out:                               
[jappa@asrc2] out: 
[jappa@asrc2] out: ++++++++++++++++++++++++++++: System Data :++++++++++++++++++++++++++++
[jappa@asrc2] out: + Hostname = login02
[jappa@asrc2] out: + Kernel = 2.6.32-358.el6.x86_64
[jappa@asrc2] out: + RHEL Release = Red Hat Enterprise Linux Server release 6.4 (Santiago)
[jappa@asrc2] out: + Uptime = 16:19:04 up 96 days, 4:02, 47 users,
[jappa@asrc2] out: + CPU = 2x Intel Xeon X5570 @ 2.93GHz
[jappa@asrc2] out: + Memory = 49415076 kB
[jappa@asrc2] out: ++++++++++++++++++++++++++++: User Data :++++++++++++++++++++++++++++++
[jappa@asrc2] out: + Username = jappa
[jappa@asrc2] out: +++++++++++++++++++++++: Contact Information :+++++++++++++++++++++++++
[jappa@asrc2] out: + in case of any problems, contact: support@cfms.org.uk
[jappa@asrc2] out: + for feedback, contact: feedback@cfms.org.uk 
[jappa@asrc2] out: +++++++++++++++++++++: Maintenance Information :+++++++++++++++++++++++
[jappa@asrc2] out: + There is no planned maintenance for the cluster
[jappa@asrc2] out: +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
[jappa@asrc2] out: 
[jappa@asrc2] out: 

Get control dictionary


In [5]:
from zutil.post import get_case_parameters,print_html_parameters
parameters=get_case_parameters(case_name,data_host=data_host,data_dir=data_dir)

Get status file


In [6]:
from zutil.post import get_status_dict
status=get_status_dict(case_name,data_host=data_host,data_dir=data_dir)
num_procs = str(status['num processor'])

Define test conditions


In [7]:
alpha = 2.217 # degrees
reference_area = 594720.0 # inches^2
reference_length = 275.8 # inches, mean chord. 
reference_span = 1156.75 # inches

from IPython.display import HTML
HTML(print_html_parameters(parameters))


Out[7]:
pressure101325.0
temperature310.928
Reynolds No5000000.0
Ref length275.8
Speed0.0
Mach No0.85

In [8]:
from zutil.post import cp_profile_wall_from_file

def plot_cp_profile(ax,file_root,span_loc):
    
    force_data = cp_profile_wall_from_file(file_root,
                              [0.0,1.0,0.0],
                              [0, span_loc*reference_span, 0],
                              func=plot_array,
                              axis=ax,
                              span_loc=span_loc,
                              alpha=alpha)
    
def plot_array(data_array,pts_array,**kwargs):
    ax = kwargs['axis']
    span_loc = kwargs['span_loc']
    cp_array = data_array.GetPointData()['cp']
    chord_array = data_array.GetPointData()['chord']
    ax.plot(chord_array, cp_array , 'b.',color='b',label='zCFD SST')

Comparison Data


In [9]:
# Reproduce plots from DPWS presentation, page 45
# Pressure data points (reference semi-span: 1156.75) 
# Station Type          WBL      ETA     Chord
# 1       CFD Cut Only  121.459  0.1050  466.5
# 2       CFD Cut Only  133.026  0.1150  459.6
# 3       CFD Cut Only  144.594  0.1250  452.7
# 4       Pressure Tap  151.074  0.1306  448.8
# 5       Pressure Tap  232.444  0.2009  400.7
# 6       Pressure Tap  327.074  0.2828  345.0
# 7       CFD Cut Only  396.765  0.3430  304.1
# 8       CFD Cut Only  427.998  0.3700  285.8
# 9       Pressure Tap  459.370  0.3971  278.1
# 10      Pressure Tap  581.148  0.5024  248.3
# 11      Pressure Tap  697.333  0.6028  219.9
# 12      Pressure Tap  840.704  0.7268  184.8
# 13      Pressure Tap  978.148  0.8456  151.2
# 14      Pressure Tap  1098.126 0.9500  121.7
# 15      CFD Cut Only  1122.048 0.9700  116.0
# 16      CFD Cut Only  1145.183 0.9900  110.5

#eta_values = [0.1306, 0.2828, 0.3971, 0.5024, 0.7268, 0.9500] # stations 4, 6, 9, 10, 12, 14
from collections import OrderedDict
station_values = OrderedDict([("S04" , 0.1306), ("S06" , 0.2828), ("S09" , 0.3971), ("S10" , 0.5024) , ("S12" , 0.7268), ("S14" , 0.9500)])

#colours can be b: blue, g: green, r: red, c: cyan, m: magenta, y: yellow, k: black, w: white

sources = [["Edge SST","r"], ["CFD++ SST","g"], ["FUN3D SA", "m"], ["MFlow SA", "y"]] 

dpws_comparative_data = eval(open('data/DPWS_Comparative_Data.py', 'r').read())

Cp Profile


In [11]:
from zutil.post import get_case_root
from zutil.post import calc_force_wall


pressure_force, friction_force = calc_force_wall(get_case_root(case_name,num_procs),
                                                 [],half_model=True,
                                                 alpha=alpha)

C_L = (pressure_force[2] + friction_force[2])/reference_area
C_D = (pressure_force[0] + friction_force[0])/reference_area

fig = pl.figure(figsize=(20, 30),dpi=100, facecolor='w', edgecolor='k')
fig.suptitle(r'DPW5 $\alpha$=' + ('%.2f ' % alpha) + ('$C_L$=%.4f ' % C_L) + ('$C_D$=%.4f ' % C_D), fontsize=40, fontweight='bold')

plot = 1

for station in station_values:
    span_loc = station_values[station]
    ax = fig.add_subplot(len(station_values)/2,2,plot)
    ax.set_title('$C_p$ span='+str(span_loc)+'%', fontsize=20, fontweight='bold')
    ax.grid(True)
    ax.set_xlabel('x/c')
    ax.set_ylabel('$C_p$')
    ax.axis([0.0,1.0,1.0,-1.2])
    plot_cp_profile(ax,get_case_root(case_name,num_procs),span_loc)
    
    for source, colour in sources:
        plotlist_x = []
        plotlist_y = []
        for key, value in dpws_comparative_data["L3"][source][station]['X/C'].iteritems():
            plotlist_x.append(value)
        for key, value in dpws_comparative_data["L3"][source][station]['CP'].iteritems():
            plotlist_y.append(value)
        
        ax.plot(plotlist_x, plotlist_y, 'r.', color=colour, label=source)
        
    ax.legend(loc='upper right', shadow=True, scatterpoints=1, numpoints=1)

    plot += 1
    
from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages('images/DPWS_cp_profile.pdf')
pp.savefig()
pp.close()
fig.savefig("images/DPWS_cp_profile.png")
show()
from IPython.display import FileLink, display 
display(FileLink('images/DPWS_cp_profile.png'))




Convergence


In [12]:
from zutil.post import residual_plot, get_case_report
residual_plot(get_case_report(case_name))
show()


Cleaning up


In [13]:
if remote_data:
    #print 'Disconnecting from remote paraview server connection'
    Disconnect()