Text provided under a Creative Commons Attribution license, CC-BY. All code is made available under the FSF-approved MIT license. (c) Yves Dubief, 2015. NSF for support via NSF-CBET award #1258697.

In [1]:
%matplotlib inline 
# plots graphs within the notebook
%config InlineBackend.figure_format='svg' # not sure what this does, may be default images to svg format

from IPython.display import display,Image, Latex
from __future__ import division
from sympy.interactive import printing
printing.init_printing(use_latex='mathjax')

import time

from IPython.display import display,Image, Latex

from IPython.display import clear_output

#import SchemDraw as schem
#import SchemDraw.elements as e

import matplotlib.pyplot as plt
import numpy as np
import math
import scipy.constants as sc

import sympy as sym

from IPython.core.display import HTML
def header(text):
    raw_html = '<h4>' + str(text) + '</h4>'
    return raw_html

def box(text):
    raw_html = '<div style="border:1px dotted black;padding:2em;">'+str(text)+'</div>'
    return HTML(raw_html)

def nobox(text):
    raw_html = '<p>'+str(text)+'</p>'
    return HTML(raw_html)

def addContent(raw_html):
    global htmlContent
    htmlContent += raw_html
    
class PDF(object):
  def __init__(self, pdf, size=(200,200)):
    self.pdf = pdf
    self.size = size

  def _repr_html_(self):
    return '<iframe src={0} width={1[0]} height={1[1]}></iframe>'.format(self.pdf, self.size)

  def _repr_latex_(self):
    return r'\includegraphics[width=1.0\textwidth]{{{0}}}'.format(self.pdf)

class ListTable(list):
    """ Overridden list class which takes a 2-dimensional list of 
        the form [[1,2,3],[4,5,6]], and renders an HTML Table in 
        IPython Notebook. """
    
    def _repr_html_(self):
        html = ["<table>"]
        for row in self:
            html.append("<tr>")
            
            for col in row:
                html.append("<td>{0}</td>".format(col))
            
            html.append("</tr>")
        html.append("</table>")
        return ''.join(html)
    
font = {'family' : 'serif',
        #'color'  : 'black',
        'weight' : 'normal',
        'size'   : 12,
        }
fontlabel = {'family' : 'serif',
        #'color'  : 'black',
        'weight' : 'normal',
        'size'   : 16,
        }

from matplotlib.ticker import FormatStrFormatter
plt.rc('font', **font)

Steady Laminar Channel Flow

The objective of this first assignment is to compute the well-known Poiseuille velocity profile in a channel flow. Assuming that the channel length and width are both very large, the governing equations for an incompressible flow, $$ \partial_xu+\partial_yv+\partial_z w = 0 $$ $$ \rho\left(\partial_t u+u\partial_x u+v\partial_y u+w\partial_z u\right) = -\partial_x p+\mu\left(\partial^2_x u +\partial^2_y u+\partial^2_z u\right) $$ $$ \rho\left(\partial_t v+u\partial_x v+v\partial_y v+w\partial_z v\right) = -\partial_y p+\mu\left(\partial^2_x v +\partial^2_y v+\partial^2_z v\right) $$ $$ \rho\left(\partial_t w+u\partial_x w+v\partial_y w+w\partial_z w\right) = -\partial_z p+\mu\left(\partial^2_x w +\partial^2_y w+\partial^2_z w\right) $$ reduce to

$$ 0=-\frac{d P}{dx}+\mu\frac{d^2u}{dx^2} $$

Demonstrate the above statement.

Solution

Several assumptions translate into simplifications:

  • Steady flow: $\partial_t =0$
  • Very long channel means fully developed, meaning invariance in $x$: $\partial_x=$
  • Very large channel means end effects in the span are neglected, meaning invariance in $z$: $\partial_z=0$ and also $w=0$
  • </ul> The continuity equation reduces to

    $$ \partial_y v =0 $$

    which integrates to $v=$constant. Since $v=0$ at the wall, $v$ is zero everywhere. It is easy to reduce the 4 equations above to

    $$ 0=-\frac{d P}{dx}+\mu\frac{d^2u}{dx^2} $$

    Taylor Series Expansion

    Given an $C^\infty$ function $f$ defined over an interval $]a,b[$, for any $x\in]a,b[$ and any $h$ such that $x+h\in]a,b[$, the Taylor series expansion writes

    $$ f(x+h)=f(x)+\sum_{n=1}^\infty\frac{h^n}{n!}\frac{d^n f}{dx^n} $$

    Practically, for a small increment $h$, $f(x+h)$ can be estimated as

    $$ f(x+h)=f(x)+\sum_{n=1}^{N-1}\frac{h^n}{n!}\frac{d^n f}{dx^n}+{\cal O}(h^N) $$

    where

    $$ {\cal O}(h^N)=\sum_{n=N}^{\infty}\frac{h^n}{n!}\frac{d^n f}{dx^n} $$ is the truncation error which contains all terms affected by $h^n$ with $n\geq N$. Since $h$ is small, the large $n$, the smaller the contribution of $(h^n/n!)f^{(n)}(x)$. The above estimation of $f(x+h)$ is said to be of order $N$

    Now, let's consider our channel, discretized as shown in the sketch below. This discretization technique is called finite difference method, which is used to solve PDEs and ODEs. Here our ODE is

    $$ \mu\frac{d^2U}{dy^2}+G = 0\text{ with }G=-\frac{dP}{dx} $$

    
    
    In [2]:
    PDF('figures/channel.pdf',size=(300,600))
    
    
    
    
    Out[2]:

    Demonstrate that you can estimate the derivative of $U$ at node $j+1/2$, using $U_j$ and $U_{j+1}$

    To answer this question, you will use the following Taylor series expansion: $$ U(y\pm\Delta y/2)=U(y)+\sum_{n=1}^\infty\frac{(\pm\Delta y/2)^n}{n!}\frac{d^nU}{dy^n} $$

    Solution

    \begin{eqnarray} U_{j+1} &=& U_{j+1/2}+\frac{\Delta y}{2}\left.\frac{dU}{dy}\right\vert_{j+1/2}+\frac{(\Delta y/2)^2}{2!}\left.\frac{d^2U}{dy^2}\right\vert_{j+1/2}+\frac{(\Delta y/2)^3}{3!}\left.\frac{d^3U}{dy^3}\right\vert_{j+1/2}+{\cal O}(\Delta y^4)\\ -U(j) &=& U{j+1/2}+\frac{-\Delta y}{2}\left.\frac{dU}{dy}\right\vert_{j+1/2}+\frac{(-\Delta y/2)^2}{2!}\left.\frac{d^2U}{dy^2}\right\vert_{j+1/2}+\frac{(-\Delta y/2)^3}{3!}\left.\frac{d^3U}{dy^3}\right\vert_{j+1/2}+{\cal O}(\Delta y^4)\\ =U_{j+1}-U_j&=&0+\Delta y\left.\frac{dU}{dy}\right\vert_{j+1/2}+\frac{\Delta y^3}{24}\left.\frac{d^3U}{dy^3}\right\vert_{j+1/2}+{\cal O}(\Delta y^4) \end{eqnarray}

    Therefore

    $$ \left.\frac{dU}{dy}\right\vert_{j+1/2}=\frac{U_{j+1}-U_j}{\Delta y}+{\cal O}(\Delta y^2) $$

    Using the derivative above, show that a numerical scheme for the second derivative of $U$ is $$ \frac{d^2U}{dy^2}= \frac{U_{j-1}-2U_j+U_{j+1}}{\Delta y^2}+{\cal O}(\Delta y^2) $$

    The term ${\cal O}(\Delta y^2)$ represents the truncation error, i.e. all the terms from the Taylor series expansion that are affected with $\Delta y^n$ for $n\geq 2$.

    Solution

    Using Taylor expansion series: \begin{eqnarray} \frac{1}{\Delta y^2}U_{j+1} &=&\frac{1}{\Delta y^2}\left[U_j+\Delta y\left.\frac{dU}{dy}\right\vert_j+\frac{\Delta y^2}{2!}\left.\frac{d^2U}{dy^2}\right\vert_j+\frac{\Delta y^3}{3!}\left.\frac{d^3U}{dy^3}\right\vert_j+\frac{\Delta y^4}{4!}\left.\frac{d^4U}{dy^4}\right\vert_j+{\cal O}(\Delta y^5)\right]\\ -\frac{2}{\Delta y^2}U_{j} &=&\frac{-2}{\Delta y^2}\left[U_j\right]\\ +\frac{1}{\Delta y^2}U_{j-1} &=&\frac{1}{\Delta y^2}\left[U_j-\Delta y\left.\frac{dU}{dy}\right\vert_j+\frac{\Delta y^2}{2!}\left.\frac{d^2U}{dy^2}\right\vert_j-\frac{\Delta y^3}{3!}\left.\frac{d^3U}{dy^3}\right\vert_j+\frac{\Delta y^4}{4!}\left.\frac{d^4U}{dy^4}\right\vert_j+{\cal O}(\Delta y^5)\right]\\ =\frac{U_{j-1}-2U_j+U_{j+1}}{\Delta y^2}&=&\left.\frac{d^2U}{dy^2}\right\vert_j+2\frac{\Delta y^2}{4!}\left.\frac{d^4U}{dy^4}\right\vert_j+{\cal O}(\Delta y^4) \end{eqnarray} yielding

    $$ \left.\frac{d^2U}{dy^2}\right\vert_j= \frac{U_{j-1}-2U_j+U_{j+1}}{\Delta y^2}+{\cal O}(\Delta y^2) $$

    Discretization

    Following the work above, a second order approximation of our ODE is

    $$ \frac{\mu}{\Delta y^2}U_{j-1}-\frac{2\mu}{\Delta y^2}U_{j}+\frac{\mu}{\Delta y^2}U_{j+1}=-G $$

    or

    $$ a_jU_{j-1}+b_jU_{j}+c_jU_{j+1}=-G $$

    for $j=0,N-1$ At the boundaries, the velocity is imposed:

    $$ U_{j=-1}=U_\text{lower wall} $$ $$ U_{j=N}=U_\text{upper wall} $$

    This system of linear equation can be written in a matrix form: $$ \left[\begin{matrix} b_0 & c_0 & 0 & \cdots & \cdots & 0 \\ a_1 & b_1 & c_1 & \ddots & \cdots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & a_{N-1}& b_{N-1} \\ \end{matrix} \right] \left[\begin{matrix} u_0\ u1 \ \vdots \ \vdots \ u{ny-1}\

    \end{matrix}\right]

    \left[\begin{matrix} -G - a_0u_\text{lower wall}\\ -G \\ \vdots \\ \vdots \\ -G - c_{N-1}u_\text{upper wall}\\ \end{matrix}\right] $$

    The matrix being tridiagonal, we can solve this system using the efficient Thomas algorithm as follows:

    
    
    In [3]:
    import numpy as np
    def TDMAsolver(a, b, c, d):
        '''
        TDMA solver, a b c d can be NumPy array type or Python list type.
        refer to http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
        '''
        nf = len(a)     # number of equations
        ac, bc, cc, dc = map(np.array, (a, b, c, d))     # copy the array
        for it in range(1, nf):
            mc = ac[it]/bc[it-1]
            bc[it] = bc[it] - mc*cc[it-1] 
            dc[it] = dc[it] - mc*dc[it-1]
    
        xc = ac
        xc[-1] = dc[-1]/bc[-1]
    
        for il in range(nf-2, -1, -1):
            xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il]
    
        del bc, cc, dc  # delete variables from memory
    
        return xc
    

    Numerical solution

    Here we will solve the flow inside a channel of half-height $h=1$, a pressure gradient $G=1$ and a viscosity $\mu=1/10$. Both walls are fixed.

    Write the code to solve our ODE.

    Solution

    
    
    In [4]:
    #number of computational nodes between walls
    N = 128
    
    #Flow and geometry parameters
    mu = 1/10. #dynamic viscosity
    h = 1. #half height of the channel
    G = 1. #=-dP/dx pressure gradient
    U_lower_wall = 0. #Velocity of the lower wall
    U_upper_wall = 0. #Velocity of the upper wall
    
    #Allocation of memory
    U = np.zeros(N)                  #Velocity. On the sketch: from node j=0 to N-1
    U_all = np.zeros(N+2)            #Velocity. On the sketch: from node j=-1 to N
    y_all = np.linspace(-h, +h, N+2) #location of computational nodes from the lower to the upper wall
    dy = y_all[1] - y_all[0]         #space between computational nodes
    y = np.linspace(-h+dy, +h-dy, N) #location of computational nodes for vector U
    
    #Matrix coefficients
    a = mu/dy**2*np.ones(N)
    b = -2.*mu/dy**2*np.ones(N)
    c = mu/dy**2*np.ones(N)
    #Right hand side vector
    r = -G*np.ones(N)
    
    #Boundary conditions
    r[0] -= a[0]*U_lower_wall
    r[N-1] -= c[N-1]*U_upper_wall
    
    #solution using Thomas Algorithm
    U = TDMAsolver(a, b, c, r)
    
    #Copy array U onto U_all for plotting
    U_all[1:N+1] = U
    U_all[0] = U_lower_wall
    U_all[N+1] = U_upper_wall
    
    #Plot
    plt.plot(y_all,U_all,lw=2,label = r"numerical solution")
    U_exact = G/(2*mu)*(h**2-np.power(y_all,2))
    plt.plot(y_all,U_exact,'r--',lw=2,label = r"exact solution")
    plt.xlabel(r"$y/h$", fontdict = fontlabel)
    plt.ylabel(r"$U(y)$", fontdict = fontlabel)
    plt.legend(loc=3, bbox_to_anchor=[0, 1],
               ncol=2, shadow=True, fancybox=True)
    plt.show()
    
    
    
    

    Error Quantification

    Visual verification is subjective. You should always rely on a statistical approach, such the $L^2$ or $L^\infty$.

    $$ L^2 = \left[\sum_{i=0}^{N-1}(U^{numerical}_j-U_j^{exact})^2\right]^{1/2} $$ $$ L^\infty = \max_{i=0,N-1}\left\vert U^{numerical}_j-U_j^{exact}\right\vert $$

    
    
    In [5]:
    L2 = np.linalg.norm(U_all-U_exact,2)
    print("L2 error= %1.4e" %L2)
    Linf = np.linalg.norm(U_all-U_exact,np.inf)
    print("Linfinity error= %1.4e" %Linf)
    
    
    
    
    L2 error= 3.9434e-13
    Linfinity error= 5.4179e-14
    

    Steady State Laminar Channel with variable density

    Variable density can occur through thermodynamics (e.g. geophysical flows with temperature/density gradients), non-Newtonian flow dynamics (e.q. shear dependent viscosity) and turbulent flows. In the latter, the viscosity is split into the viscosity of the fluid and the dissipative contribution of turbulence:

    $$ \mu_{total}= \mu +\mu_t $$

    where $\mu_t$ is the turbulent viscosity calculated from a turbulence model (to be defined later).

    Equation

    Assuming a spatially variable viscosity $\mu$, the steady state, fully developed channel flow governing equation now writes:

    $$ 0=G+\frac{d}{dy}\mu\frac{dU}{dy} $$

    with walls located at $y=\pm h$.

    Discrete Equation

    Here we assume that velocity and viscosity are collocated. As before, the second derivative is obtained by computing the shear stress $\mu(du/dy)$ at nodes $j\pm1/2$ and then by taking the derivative of the shear stress at node $j$. Note that the viscosity needs to be interpolated at nodes $j\pm1/2$:

    $$ \frac{1}{\Delta y}\left(\frac{\mu_{j+1}+\mu_{j}}{2}\frac{U_{j+1}-U_{j}}{\Delta y}-\frac{\mu_{j}+\mu_{j-1}}{2}\frac{U_{j}-U_{j-1}}{\Delta y}\right)=-G\;, $$

    which is rearranged as

    $$ \frac{\mu_{j}+\mu_{j-1}}{2\Delta y^2}U_{j-1}-\frac{\mu_{j-1}+2\mu_{j}+\mu_{j-1}}{2\Delta y^2}U_j+\frac{\mu_{j}+\mu_{j-1}}{2\Delta y^2}U_{j+1} = -G\,. $$

    Write a code for a turbulent flow using the following model: $$ 0=G+\frac{d}{dy}(\mu+\mu_t)\frac{dU}{dy} $$ with $$ \mu_t = \rho L_m\left\vert\frac{dU}{dy}\right\vert $$ and $$ L_m=\kappa y\left(1-e^{-y^+/A^+}\right) $$ with $\kappa=0.41$, $y$ is the distance from the wall, $A^+=25$, $y^+=yu_\tau/\nu$, $\mu=1/300$ and $G=1$. The skin-friction velocity is defined as: $$ \rho u_\tau^2=\mu\left.\frac{dU}{dy}\right\vert_{wall} $$

    Use nufd to calculate the gradient of velocity. The function takes the locations of computational nodes as an argument and return a matrix, e.g. Dy. The matrix product Dy*U is the vector containing the first derivative of the vector U at the locations of computational nodes.

    Note that the iterative solution uses an under/over relaxation method. At the end of each iteration, the solution becomes a weighted function of the new and old solutions:

    $$ U_{new,final} = \omega U_{new}+(1-\omega)U_{old} $$

    If $\omega < 1$, this is an under-relaxation method, if $\omega > 1$, this is an over-relaxation method.

    
    
    In [13]:
    from scipy.sparse import csr_matrix
    def nufd(x):
        n = len(x)
        h = x[1:]-x[:n-1]
        a0 = -(2*h[0]+h[1])/(h[0]*(h[0]+h[1]))
        ak = -h[1:]/(h[:n-2]*(h[:n-2]+h[1:]))
        an = h[-1]/(h[-2]*(h[-1]+h[-2]))
        b0 = (h[0]+h[1])/(h[0]*h[1]) 
        bk = (h[1:] - h[:n-2])/(h[:n-2]*h[1:])
        bn = -(h[-1]+h[-2])/(h[-1]*h[-2])
        c0 = -h[0]/(h[1]*(h[0]+h[1]))
        ck = h[:n-2]/(h[1:]*(h[:n-2]+h[1:]))
        cn = (2*h[-1]+h[-2])/(h[-1]*(h[-2]+h[-1]))
        val  = np.hstack((a0,ak,an,b0,bk,bn,c0,ck,cn))
        row = np.tile(np.arange(n),3)
        dex = np.hstack((0,np.arange(n-2),n-3))
        col = np.hstack((dex,dex+1,dex+2))
        D = csr_matrix((val,(row,col)),shape=(n,n))
        return D
    
    
    
    In [14]:
    def matrix_coeff(mu):
        #mu needs to be N+2
        global dy #tells python the dy defined in the main code
        n = len(mu)
        a = np.zeros(n-2)
        b = np.zeros(n-2)
        c = np.zeros(n-2)
        a[:] = (mu[0:-2]+mu[1:-1])/(2.*dy**2)
        b[:] = -(mu[0:-2]+2.*mu[1:-1]+mu[2:])/(2.*dy**2)
        c[:] = (mu[1:-1]+mu[2:])/(2.*dy**2)
        return a,b,c
    def rhs(n,a,c):
        global G_0,U_lower_wall,U_upper_wall
        r = -G_0*np.ones(n)
        # boundary conditions
        r[0] -= a[0]*U_lower_wall
        r[n-1] -= c[n-1]*U_upper_wall
        return r
    
    
    
    In [16]:
    N = 512
    
    mu = 1/300.
    rho = 1.
    nu = mu/rho
    Aplus = 25.
    h = 1. # half height of the channel
    G_0 = 1. #=-dP/dx pressure gradient
    U_lower_wall = 0.
    U_upper_wall = 0.
    kappa = 0.41
    
    # allocate memory for variables
    U = np.zeros(N)
    U_all = np.zeros(N+2)
    
    # define location of computational nodes
    y_all = np.linspace(-h, +h, N+2)
    dy = y_all[1] - y_all[0]
    y = np.linspace(-h+dy, +h-dy, N)
    
    #Compute the derivation matrix to obtain first derivative in y
    Dy_all = nufd(y_all)
    
    # first guess for a,b,c: mu_t=0
    mu_total = mu*np.ones(N+2)
    #Matrix coefficients
    a = np.zeros(N)
    b = np.zeros(N)
    c = np.zeros(N)
    a,b,c = matrix_coeff(mu_total)
    #Right hand side vector
    r = -G_0*np.ones(N)
    r -= G
    
    #Boundary conditions
    r[0] -= a[0]*U_lower_wall
    r[N-1] -= c[N-1]*U_upper_wall
    
    #Laminar solution (first guess)
    U = TDMAsolver(a, b, c, r)
    U_all[1:N+1] = U
    U_all[0] = U_lower_wall
    U_all[N+1] = U_upper_wall
    
    gradU_all = np.zeros(N+2)
    gradU_all = Dy_all*U_all
    # plt.plot(y_all,mu*gradU_all)
    # define distance from the wall (careful we are in a channel)
    y_dist_all = np.zeros(N+2)
    mask = np.where(y_all > 0.)
    y_dist_all = h + y_all
    y_dist_all[mask] = h - y_all[mask]
    
    #mixing length model
    def eddy_viscosity(Uall):
        global Dy_all,y_dist_all,nu,mu,rho
        n = len(Uall)
        Lm = np.zeros(n)
        gradU_all = Dy_all*Uall
        tauw = mu * gradU_all[0] #wall shear stress
        utau = np.sqrt(tauw/rho) #skin friction velocity
        y_plus_all = y_dist_all*utau/nu
        Lm = kappa*y_dist_all*(1.-np.exp(-y_plus_all/Aplus))
        mutotal = np.zeros(n)
        mutotal = rho * np.power(Lm,2)*np.abs(gradU_all)
        return mutotal
    
    error_U = np.inf
    tolerance_U = 1e-5
    mu_t = np.zeros(N+2)
    itermax = 1000
    iteration = 0
    error_tab = np.zeros(itermax)
    relax_U = 0.65
    while (error_U > tolerance_U) and (iteration < itermax) :
        mu_total = np.zeros(N+2)
        U_old = np.copy(U)
        U_all_old = np.copy(U_all)
        # new viscosity
        mu_total = mu + eddy_viscosity(U_all)
        # new matrix coefficients
        a, b, c = matrix_coeff(mu_total)
        # new right hand side vector
        r = rhs(N,a,c)
        # solve for new U
        U = TDMAsolver(a, b, c, r)
        # relaxation step
        U = relax_U * U + (1-relax_U)*U_old
        U_all[1:N+1] = U
        U_all[0] = U_lower_wall
        U_all[N+1] = U_upper_wall
        #
        error_U = np.linalg.norm(U_old - U, np.inf)
        error_tab[iteration] = error_U
        iteration += 1
    print(iteration,error_U)
    
    plt.plot(y_all,U_all,lw=2)
    U_exact = G_0/(2*mu)*(h**2-np.power(y_all,2))
    plt.xlabel(r"$y/h$", fontdict = fontlabel)
    plt.ylabel(r"$U(y)$", fontdict = fontlabel)
    # plt.legend(loc=3, bbox_to_anchor=[0, 1],
    #            ncol=2, shadow=True, fancybox=True)
    plt.show()
    mask = np.where(error_tab > 0.)
    plt.semilogy(error_tab[mask])
    plt.xlabel(r"iteration", fontdict = fontlabel)
    plt.ylabel(r"error", fontdict = fontlabel)
    # plt.legend(loc=3, bbox_to_anchor=[0, 1],
    #            ncol=2, shadow=True, fancybox=True)
    plt.show()
    
    
    
    
    14 8.67876574873e-06
    
    
    
    In [12]:
    gradU_all = Dy_all*U_all
    tauw = mu * gradU_all[0] #wall shear stress
    utau = np.sqrt(tauw/rho) #skin friction velocity
    y_plus_all = y_dist_all*utau/nu
    plt.semilogx(y_plus_all[1:N//2+1],U_all[1:N//2+1], lw =2, label="model")
    plt.xlabel(r"$y/h$", fontdict = fontlabel)
    plt.ylabel(r"$U(y)$", fontdict = fontlabel)
    y_log_law = np.logspace(1,2,10)
    U_log_law = 1/kappa*np.log(y_log_law)+5.0
    plt.semilogx(y_log_law,U_log_law,lw = 2, label="log law")
    plt.legend(loc=3, bbox_to_anchor=[0, 1],
               ncol=2, shadow=True, fancybox=True)
    plt.show()
    
    
    
    

    Now write a code for a non-Newtonian fluid, using the following viscosity for non-Newtonian fluids $$ \mu_{total}(\dot{\gamma}) = \mu_\infty + (\mu_0-\mu_\infty)\left(1+(\lambda\dot{\gamma})^2\right)^\frac{n-1}{2} $$ with $\mu_0=1/10$, $\mu_\infty=1/100$, $\lambda=1$ and $n=-0.05$. The variable $\dot{\gamma}$ is the local shear $dU/dy$. Compare to the Newtonian solution. With these parameters, the fluid is shear thinning. Do you verify that the code is showing the proper physics? Using increasing resolution, develop a validation of the non-Newtonian solution.

    Solution

    
    
    In [ ]:
    
    
    
    
    In [ ]: