"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"
This notebook begins with a raw time-series of images and ends with $g_2(t)$ for a range of $q$, fit to an exponential or stretched exponential, and a two-time correlation functoin.
The important scientific code is imported from the chxanalys and scikit-beam project. Refer to chxanalys and scikit-beam for additional documentation and citation information.
CHX Olog (https://logbook.nsls2.bnl.gov/11-ID/)
Import packages for I/O, visualization, and analysis.
In [1]:
from chxanalys.chx_packages import *
%matplotlib notebook
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams.update({ 'image.origin': 'lower' })
plt.rcParams.update({ 'image.interpolation': 'none' })
import pickle as cpk
from skimage.draw import line_aa, line, polygon, ellipse
In [2]:
scat_geometry = 'saxs' #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
#scat_geometry = 'gi_saxs' #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
#scat_geometry = 'gi_waxs' #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
# gi_waxs define a simple box-shaped ROI
force_compress = False
In [3]:
CYCLE= '2016_2' #change clycle here
username = getpass.getuser()
path = '/XF11ID/analysis/%s/masks/'%CYCLE
data_dir0 = create_user_folder(CYCLE, username)
print( data_dir0 )
In [4]:
uid = 'e4fa1a' #(scan num: 3086) (Measurement: PSPMMA2 180C 200 x10ms 1.0s period 4th )
uid = 'a0c868' #(scan num: 3085) (Measurement: PSPMMA2 180C 200 x10ms 1.0s period 3rd )'
In [5]:
data_dir = os.path.join(data_dir0, '%s/'%uid)
os.makedirs(data_dir, exist_ok=True)
print('Results from this analysis will be stashed in the directory %s' % data_dir)
uidstr = 'uid=%s'%uid
In [6]:
sud = get_sid_filenames(db[uid])
print ('scan_id, full-uid, data path are: %s--%s--%s'%(sud[0], sud[1], sud[2][0] ))
In [ ]:
md = get_meta_data( uid )
imgs = load_data( uid, md['detector'], reverse= False )
md.update( imgs.md );Nimg = len(imgs);
#if 'number of images' not in list(md.keys()):
md['number of images'] = Nimg
pixel_mask = 1- np.int_( np.array( imgs.md['pixel_mask'], dtype= bool) )
print( 'The data are: %s' %imgs )
md['acquire period' ] = md['cam_acquire_period']
md['exposure time'] = md['cam_acquire_time']
In [9]:
print_dict( md, ['suid', 'number of images', 'uid', 'scan_id', 'start_time', 'stop_time', 'sample', 'Measurement',
'acquire period', 'exposure time',
'det_distance', 'beam_center_x', 'beam_center_y', ] )
In [33]:
imgs[0].shape
Out[33]:
In [55]:
center = [ 1227,1261 ] # center of the speckle pattern, read from [image_x, image_y], ((not python y,x))
center = [ 1227,1258 ] # center of the speckle pattern, read from [image_x, image_y], ((not python y,x))
center = [ 1327,1358 ] # center of the speckle pattern, read from [image_x, image_y], ((not python y,x))
# Yugang modifiy here here
######################################
center = [ 1327,1261 ] # center of the speckle pattern, read from [image_x, image_y], ((not python y,x))
center=[center[0], 2070 - center[1]]
######################################
inc_x0 = center[1]
inc_y0= center[0]
dpix, lambda_, Ldet, exposuretime, timeperframe, center = check_lost_metadata(
md, Nimg, inc_x0 = inc_x0, inc_y0= inc_y0, pixelsize = 7.5*10*(-5) )
setup_pargs=dict(uid=uidstr, dpix= dpix, Ldet=Ldet, lambda_= lambda_, exposuretime=exposuretime,
timeperframe=timeperframe, center=center, path= data_dir)
print_dict( setup_pargs )
In [35]:
mask_path = '/XF11ID/analysis/2016_2/masks/'
# mask_name = 'July18_mask.npy' #smaller than 160 C use this one
mask_name = 'July18_mask2.npy' #>= 160 C use this one
In [36]:
md['detector']
Out[36]:
In [37]:
if md['detector'] =='eiger1m_single_image':
Chip_Mask=np.load( '/XF11ID/analysis/2017_1/masks/Eiger1M_Chip_Mask.npy')
elif md['detector'] =='eiger4m_single_image' or md['detector'] == 'image':
Chip_Mask= np.array(np.load( '/XF11ID/analysis/2017_1/masks/Eiger4M_chip_mask.npy'), dtype=bool)
elif md['detector'] =='eiger500K_single_image':
Chip_Mask= 1 #to be defined the chip mask
else:
Chip_Mask = 1
In [38]:
#show_img(Chip_Mask)
In [39]:
mask = load_mask(mask_path, mask_name, plot_ = False, image_name = uidstr + '_mask', reverse= True )
mask = mask * pixel_mask * Chip_Mask
show_img(mask,image_name = uidstr + '_mask', save=True, path=data_dir, aspect=1)
mask_load=mask.copy()
imgsa = apply_mask( imgs, mask )
In [40]:
#show_img( imgs[0], vmin=.1e-4, vmax= 1e5, logs=True, aspect=1,cmap = cmap_albula)
In [31]:
#show_img( imgs[0]*mask, vmin=.1e-4, vmax= 1e5, logs=True, aspect=1,cmap = cmap_albula)
In [ ]:
In [18]:
good_start =5 # 5 #5 #make the good_start at least 0
In [19]:
bin_frame = False #True # False # True #generally make bin_frame as False
if bin_frame:
bin_frame_number= 4
timeperframe = acquisition_period * bin_frame_number
else:
bin_frame_number =1
In [20]:
import time
t0= time.time()
if bin_frame_number==1:
filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s.cmp'%md['uid']
else:
filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s_bined--%s.cmp'%(md['uid'],bin_frame_number)
mask, avg_img, imgsum, bad_frame_list = compress_eigerdata(imgs, mask, md, filename,
force_compress= force_compress, para_compress= True, bad_pixel_threshold = 1e14,
bins=bin_frame_number, num_sub= 100, num_max_para_process= 500, with_pickle=True )
min_inten = 10
good_start = max(good_start, np.where( np.array(imgsum) > min_inten )[0][0] )
print ('The good_start frame number is: %s '%good_start)
FD = Multifile(filename, good_start, len(imgs)//bin_frame_number)
#FD = Multifile(filename, good_start, 100)
uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
print( uid_ )
plot1D( y = imgsum[ np.array( [i for i in np.arange(good_start, len(imgsum)) if i not in bad_frame_list])],
title =uidstr + '_imgsum', xlabel='Frame', ylabel='Total_Intensity', legend='imgsum' )
Nimg = Nimg/bin_frame_number
run_time(t0)
In [56]:
fig,ax = plt.subplots()
show_img( avg_img, ax=[fig,ax], vmin=.0001, vmax= 1e2, logs=True, aspect=1, #save_format='tif',
image_name= uidstr + '_img_avg', save=True, path=data_dir, cmap = cmap_albula )
plot1D(center[0],center[1],ax=ax, c='b', m='o', legend='')
In [57]:
center
Out[57]:
In [58]:
setup_pargs
Out[58]:
In [60]:
if scat_geometry =='saxs':
## Get circular average| * Do plot and save q~iq
hmask = create_hot_pixel_mask( avg_img, threshold = 1e4, center=center, center_radius= 100)
qp_saxs, iq_saxs, q_saxs = get_circular_average( avg_img, mask * hmask, pargs=setup_pargs )
plot_circular_average( qp_saxs, iq_saxs, q_saxs, pargs=setup_pargs,
xlim=[q_saxs.min() * 0.1, q_saxs.max()*1.1], ylim = [iq_saxs.min(), iq_saxs.max()*10] )
mask =np.array( mask * hmask, dtype=bool)
In [61]:
if scat_geometry =='saxs':
uniformq = True # False
## Define ROI
#* Create ring mask defined by inner_radius, outer_radius, width, num_rings (all in pixel unit)
#* Create ring mask defined by edges (all in pixel unit)
### Define a non-uniform distributed rings by giving edges
if not uniformq:
width = 0.0001 # in A-1
#width = 0.0001
number_rings= 1
qcenters = [ 0.00146, 0.00156, 0.0017, 0.002, 0.0023,
0.0028, 0.0034, 0.00365, 0.00395,
0.0048, 0.0050, 0.0052 ]#0.00639,0.00754, 0.00880 ] #in A-1
edges = get_non_uniform_edges( qcenters, width, number_rings )
inner_radius= None
outer_radius = None
width = None
num_rings = None
# Define a uniform distributed rings by giving inner_radius, outer_radius, width, num_rings (all in pixel unit)
if uniformq:
inner_radius= 0.006
outer_radius = 0.02
num_rings = 8 #72
gap_ring_number = 10
width = ( outer_radius - inner_radius)/(num_rings + gap_ring_number)
print(width)
edges = None
In [62]:
if scat_geometry =='saxs':
roi_mask, qr, qr_edge = get_ring_mask( mask, inner_radius=inner_radius,
outer_radius = outer_radius , width = width, num_rings = num_rings, edges=edges,
unit='A', pargs=setup_pargs )
qind, pixelist = roi.extract_label_indices( roi_mask )
qr = np.round( qr, 5)
print(len(qr))
show_ROI_on_image( avg_img, roi_mask, center, label_on = False, rwidth =840, alpha=.9,
save=True, path=data_dir, uid=uidstr, vmin= np.min(avg_img), vmax= np.max(avg_img),
aspect=1)
qval_dict = get_qval_dict( np.round(qr, 5) )
In [63]:
if scat_geometry =='saxs':
plot_qIq_with_ROI( q_saxs, iq_saxs, qr, logs=True, uid=uidstr, xlim=[0.0001,0.08],
ylim = [iq_saxs.min(), iq_saxs.max()], save=True, path=data_dir)
In [121]:
def create_ellipse_donut( cx, cy , wx_inner, wy_inner, wx_outer, wy_outer, roi_mask, gap=0):
Nmax = np.max( np.unique( roi_mask ) )
rr1, cc1 = ellipse( cy,cx, wy_inner, wx_inner )
rr2, cc2 = ellipse( cy, cx, wy_inner + gap, wx_inner +gap )
rr3, cc3 = ellipse( cy, cx, wy_outer,wx_outer )
roi_mask[rr3,cc3] = 2 + Nmax
roi_mask[rr2,cc2] = 0
roi_mask[rr1,cc1] = 1 + Nmax
return roi_mask
def create_box( cx, cy, wx, wy, roi_mask):
Nmax = np.max( np.unique( roi_mask ) )
for i, [cx_,cy_] in enumerate(list( zip( cx,cy ))): #create boxes
x = np.array( [ cx_-wx, cx_+wx, cx_+wx, cx_-wx])
y = np.array( [ cy_-wy, cy_-wy, cy_+wy, cy_+wy])
rr, cc = polygon( y,x)
roi_mask[rr,cc] = i +1 + Nmax
return roi_mask
In [ ]:
In [122]:
if scat_geometry =='gi_waxs':
box_roi = True
single_box = False #True, if True, the roi is one box, else, roi is multi-boxes
ellipse_roi = True
if box_roi:
if not single_box:
roi_mask = np.zeros_like( avg_img , dtype = np.int32)
wx,wy = [20,10] #each box width and height
cx = np.int_(np.linspace( 55, 955, 10)) #box center-x
nx = len(cx)//2
y1 = 760-8
y2= 780-8
cy1 = np.linspace( y1, y2, nx)
cy2 = np.linspace( y2, y1, nx)
cy = np.int_( np.concatenate( [cy1, cy2] ) ) #box-center y
for i, [cx_,cy_] in enumerate(list( zip( cx,cy ))): #create boxes
x = np.array( [ cx_-wx, cx_+wx, cx_+wx, cx_-wx])
y = np.array( [ cy_-wy, cy_-wy, cy_+wy, cy_+wy])
rr, cc = polygon( y,x)
#print( i + 1 )
roi_mask[rr,cc] = i +1
roi_mask = roi_mask * mask
else:
roi_mask = np.zeros_like( avg_img , dtype = np.int32)
wx,wy = [40,20] #each box width and height
cx, cy = [[ 184, 817, 200, 800], [ 637, 637,200, 200]]
cx, cy = [[ 160, 817, 200, 800], [ 650, 637,200, 200]]
for i, [cx_,cy_] in enumerate(list( zip( cx,cy ))): #create boxes
x = np.array( [ cx_-wx, cx_+wx, cx_+wx, cx_-wx])
y = np.array( [ cy_-wy, cy_-wy, cy_+wy, cy_+wy])
rr, cc = polygon( y,x)
#print( i + 1 )
roi_mask[rr,cc] = i +1
if False:
Nmax = np.max( np.unique( roi_mask ) )
print( Nmax)
wx,wy = [30,10] #each box width and height
cx, cy = [[ 44, 80], [ 725, 725]]
for i, [cx_,cy_] in enumerate(list( zip( cx,cy ))): #create boxes
x = np.array( [ cx_-wx, cx_+wx, cx_+wx, cx_-wx])
y = np.array( [ cy_-wy, cy_-wy, cy_+wy, cy_+wy])
rr, cc = polygon( y,x)
#print( i + 1 )
roi_mask[rr,cc] = i +1 + Nmax
if ellipse_roi ==True:
#define donut shapes here
roi_mask = np.zeros_like( avg_img , dtype = np.int32)
wx1,wy1 = [30,15] #inner ellipse width and height
wx2,wy2 = [80,40] #outer ellipse width and height
gap=5 #gap between two ellipse
#cx, cy = [[ 184, 817, 200, 800], [ 637, 637,200, 200]]
cx, cy = [[ 140, 886, 93, 920], [ 700, 700, 75, 75]]
for i, [x,y] in enumerate(list( zip( cx,cy ))): #create ellipse
roi_mask = create_ellipse_donut( x, y , wx1, wy1,
wx2, wy2, roi_mask, gap=gap)
#define one box here
wx,wy = [40,15] #each box width and height
cx, cy = [[ 510], [ 880]]
roi_mask = create_box( cx, cy, wx, wy, roi_mask)
roi_mask = roi_mask * mask
qind, pixelist = roi.extract_label_indices(roi_mask)
noqs = len(np.unique(qind))
qval_dict = get_qval_dict( 1 + np.arange(noqs) )
In [123]:
if scat_geometry =='gi_waxs':
badpixel = np.where( avg_img[:600,:] >=300 )
roi_mask[badpixel] = 0
show_ROI_on_image( avg_img, roi_mask, label_on = True, alpha=.1,
save=True, path=data_dir, uid=uidstr, vmin=0.01, vmax=100, cmap = cmap_albula)
In [ ]:
In [124]:
if scat_geometry =='gi_saxs':
# Get Q-Map (Qz and Qr)
### Users put incident-Beam and Reflection_Beam Centers here!!!
# Change these lines
#inc_x0 = 1573 - 3
#inc_y0 = 331
#refl_x0 = 1574 - 3
#refl_y0 = 903
inc_x0 = 1539
inc_y0 = 2167- 1928
refl_x0 = 1539
refl_y0 = 2167 - 1211
# Don't Change these lines below here
alphaf,thetaf, alphai, phi = get_reflected_angles( inc_x0, inc_y0,refl_x0 , refl_y0, Lsd=Ldet )
qx_map, qy_map, qr_map, qz_map = convert_gisaxs_pixel_to_q( inc_x0, inc_y0,refl_x0,refl_y0, lamda=lambda_, Lsd=Ldet )
ticks_ = get_qzr_map( qr_map, qz_map, inc_x0, Nzline=10, Nrline=10 )
ticks = ticks_[:4]
plot_qzr_map( qr_map, qz_map, inc_x0, ticks = ticks_, data= avg_img, uid= uidstr, path = data_dir )
In [125]:
if scat_geometry =='gi_saxs':
# For diffuse near Yoneda wing
qz_start = 0.040 # was 0.046
qz_end = 0.046
qz_num= 1
qz_width = 0.006
qr_start = 0.002
qr_end = 0.14
qr_num = 1
qr_width = 0.14
Qrs = [qr_start , qr_end, qr_width, qr_num]
Qzs= [qz_start, qz_end, qz_width , qz_num ]
# Don't Change these lines below here
roi_masks, qval_dicts = get_gisaxs_roi( Qrs, Qzs, qr_map, qz_map, mask= mask )
show_qzr_roi( avg_img, roi_masks, inc_x0, ticks, alpha=0.5, save=True, path=data_dir, uid=uidstr )
In [126]:
if scat_geometry =='gi_saxs':
# Define Q-ROI
#* Users provide the interested Qz and Qr here for XPCS analysis, e.g., qr start/end/number/width et.al
# Change these lines
qz_start = 0.040 + 0.002
qz_end = 0.046 + 0.002
qz_num= 2
qz_width = 0.0015
qr_start = 0.003
qr_end = 0.028
qr_num = 10
qr_width = 0.002
Qr = [qr_start , qr_end, qr_width, qr_num]
Qz= [qz_start, qz_end, qz_width , qz_num ]
# Don't Change these lines below here
roi_mask, qval_dict = get_gisaxs_roi( Qr, Qz, qr_map, qz_map, mask= mask )
In [127]:
if scat_geometry =='gi_saxs':
### Change the below lines to if define another ROI, if define even more, just repeat this process
define_second_roi = False #if True to define another line; else: make it False
if define_second_roi:
qval_dict1 = qval_dict.copy()
roi_mask1 = roi_mask.copy()
del qval_dict, roi_mask
## The Second ROI
if define_second_roi:
qz_start2 = 0.044
qz_end2 = 0.05
qz_num2= 1
gap_qz_num2 = 1
qz_width2 = 0.005 #(qz_end2 - qz_start2)/(qz_num2 +gap_qz_num2)
qr_start2 = -0.003
qr_end2 = 0.003
qr_num2 = 1
gap_qr_num2 = 5
qr_width2 = 0.006 #( qr_end2- qr_start2)/(qr_num2+gap_qr_num2)
Qr2 = [qr_start2 , qr_end2, qr_width2, qr_num2]
Qz2= [qz_start2, qz_end2, qz_width2 , qz_num2 ]
roi_mask2, qval_dict2 = get_gisaxs_roi( Qr2, Qz2, qr_map, qz_map, mask= mask )
qval_dict = update_qval_dict( qval_dict1, qval_dict2 )
roi_mask = update_roi_mask( roi_mask1, roi_mask2 )
show_qzr_roi( avg_img, roi_mask, inc_x0, ticks, alpha=0.5, save=True, path=data_dir, uid=uidstr )
## Get 1D Curve (Q||-intensity¶)
qr_1d_pds = cal_1d_qr( avg_img, Qr, Qz, qr_map, qz_map, inc_x0= None, setup_pargs=setup_pargs )
plot_qr_1d_with_ROI( qr_1d_pds, qr_center=np.unique( np.array(list( qval_dict.values() ) )[:,0] ),
loglog=False, save=True, uid=uidstr, path = data_dir)
In [129]:
qint = 4
roi_inten = check_ROI_intensity( avg_img, roi_mask, ring_number= qint, uid =uidstr )
In [130]:
refine_roi = False
In [131]:
Nq = len( np.unique(roi_mask))-1
In [132]:
if refine_roi:
#if scat_geometry =='saxs':
filter_badpix_dict ={}
for k in range(1, Nq +1 ):
roi_inten = check_ROI_intensity( avg_img, roi_mask, ring_number=k, uid =uidstr, plot=False )
bad_pix_list= get_bad_frame_list( roi_inten, fit=True, polyfit_order = 30,
scale= 3.5, good_start = None, good_end= None, uid= uidstr, path=data_dir, plot=False)
print( 'The bad frame list length is: %s'%len(bad_pix_list ) )
filter_badpix_dict[k] = bad_pix_list
In [133]:
if refine_roi:
#if scat_geometry =='saxs':
roi_mask = filter_roi_mask( filter_badpix_dict, roi_mask, avg_img, filter_type = 'badpix' )
roi_inten = check_ROI_intensity( avg_img, roi_mask, ring_number= qint, uid =uidstr )
In [134]:
path
Out[134]:
In [136]:
fp = path + 'uid=%s_roi_mask.pkl'%uid
cpk.dump( [roi_mask,qval_dict], open(fp, 'wb' ) )
print(fp)
##save with a meaningful filename
fp = path + 'anogales_roi_mask_June8.pkl'
cpk.dump( [roi_mask,qval_dict], open(fp, 'wb' ) )
print(fp)
#roi_mask,qval_dict = cpk.load( open(fp, 'rb' ) ) #for load the saved roi data
In [137]:
if scat_geometry == 'gi_saxs':
fp = path + 'uid=%s_roi_masks.pkl'%uid
cpk.dump( [roi_masks,qval_dicts], open(fp, 'wb' ) )
print(fp)
fp = path + 'XX_roi_masks_June4.pkl'
cpk.dump( [roi_masks,qval_dicts], open(fp, 'wb' ) )
print(fp)
fp = path + 'XX_qmap_June4.pkl' #dump qr_map, qz_map, ticks_, Qrs, Qzs, Qr, Qz, inc_x0
print(fp)
cpk.dump( [qr_map, qz_map, ticks_, Qrs, Qzs, Qr, Qz, inc_x0, refl_x0, refl_y0 ], open(fp, 'wb' ) )
In [ ]:
In [ ]:
In [ ]: