In [1]:
# header for 2018-1 kernel
from pyCHX.chx_packages import *
%matplotlib notebook
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams.update({ 'image.origin': 'lower' })
plt.rcParams.update({ 'image.interpolation': 'none' })
import pickle as cpk
from pyCHX.chx_xpcs_xsvs_jupyter_V1 import *
#%run /home/yuzhang/pyCHX_link/pyCHX/chx_generic_functions.py
%matplotlib inline
In [2]:
# import database -> should be hidden from user in same package....
import datetime
import pymongo
from bson import ObjectId
import matplotlib.patches as mpatches
from IPython.display import clear_output
cli = pymongo.MongoClient('xf11id-ca')
samples_2 = cli.get_database('samples').get_collection('samples_2')
data_acquisition_collection = cli.get_database('samples').get_collection('data_acquisition_collection')
from databroker import Broker
db = Broker.named('temp') # for real applications, 'temp' would be 'chx'
print('available databases:')
print(cli.database_names())
print('\n available collection in database samples:')
print(cli.samples.collection_names())
In [3]:
%run -i /nsls2/xf11id1/analysis/2018_3/commissioning/debug_dataacq.py
In [4]:
# JUST FOR TESTING: clear collection:
#samples_2.delete_many({})
#x=samples_2.insert_one(sam)
#x.acknowledged
#print(x.inserted_id)
#samples_2.find_one({'_id':x.inserted_id})
#data_acquisition_collection = cli.get_database('samples').get_collection('data_acquisition_collection')
In [ ]:
# explanation of available holders and their parameters:
#['flat_cell',1.5,1.] -> flat cell holder, R=1.5mm clear aperture (fixed design), sample thickness \n
#['capillary',1.0,[-4,-1],'horizontal'] -> glass capillary, diameter, [useful area min|max, relative to center of holder (mark), orientation: 'vertical' for multi sample holder, 'horizontal for sample chamber']
In [112]:
sam = {
'sample':{
'sample name':'EG-CNC4-noGel', # mandatory field
'label':'S18', # label on sample cell, 'none' if sample is provided to BL 'unmounted'
# standards for automated data acquisition: 'flat_cell', 'capillary', 'none' if sample is provided to BL 'unmounted'
#'holder':['flat_cell', 1.0, 2.0 ], #-> flat cell holder, R=1.5mm clear aperture (fixed design), sample thickness \n
'holder':['capillary',1, [-3,3],'vertical'], # diameter, [useful area min|max, relative to center of holder (mark),
'concentration wt%': 4.0, #weight faction
'solvent': 'ethylene glycol',
'size': 'approx. 200 x 10 nm',
'material': 'Cellulose',
'dummy':1,
},
'info':{
'owner':'Trosen', # mandatory field
'date entered': str(datetime.datetime.now()),
'new_spot_method':'random', #'none' (let BL staff decide, recommended for underfilled capillaries), 'from_center' (use points closest to center), 'consecutive' (just go though the list), 'random' (recommended for samples with micro-bubbles), 'static (will not use fresh spot)' '
'uids':{}, # will be added automatically
'points':[], # will be added later
'timestamp':datetime.datetime.now() # this one is not nice to read, but searchable...
}
}
In [ ]:
In [ ]:
In [ ]:
In [113]:
obid=sample_to_database(sam)
In [114]:
obid
Out[114]:
In [ ]:
#add_sampling_grid(obid)
#add_sampling_grid(obid,interactive=True)
In [115]:
#add_sampling_grid(obid)
add_sampling_grid(obid,interactive=False,x_step=0.05, y_step=0.05,
holder= ['capillary',1, [-3,3],'vertical'] )
#holder = ['flat_cell',1.0, 2.0] )
# holder= ['capillary',1, [-5,5],'vertical'] )
In [40]:
#obid = ObjectId('5bc77d71412c27b926e790ee')
#add_new_spot_method(obid)
In [14]:
#S1 ObjectId('5cdb0756f4fa2d46d7846f46')
#S2 ObjectId('5cdb07d6f4fa2d46d7846f47')
#S3 ObjectId('5cdb0821f4fa2d46d7846f48')
#S4 ObjectId('5cdb084bf4fa2d46d7846f49')
#S5 ObjectId('5cdb0861f4fa2d46d7846f4a')
#S6 ObjectId('5cdb0884f4fa2d46d7846f4b')
#S7 ObjectId('5cdb089af4fa2d46d7846f4c')
#S8 ObjectId('5cdb08aef4fa2d46d7846f4d')
#S9 ObjectId('5cdb08c3f4fa2d46d7846f4e')
#S10 ObjectId('5cdb08d5f4fa2d46d7846f4f')
#S11 ObjectId('5cdb08ebf4fa2d46d7846f50')
#S12 ObjectId('5cdb0905f4fa2d46d7846f51')
#S13 ObjectId('5cdb0919f4fa2d46d7846f52')
#S14 ObjectId('5cdb0933f4fa2d46d7846f53')
#S15 ObjectId('5cdb0957f4fa2d46d7846f54')
#S16 ObjectId('5cdb0968f4fa2d46d7846f55')
#S17 ObjectId('5cdb097bf4fa2d46d7846f56')
#S18 ObjectId('5cdb0991f4fa2d46d7846f57')
#S19 ObjectId('5cdb00aaf4fa2d46d7846f44')
In [116]:
search_sample_database({'info.owner':'Trosen'},show_points=False) # search by owner
#search_sample_database({'info.owner':'ChengHungLin'},show_points=False) # search by owner
In [117]:
#search_sample_database({ "$and": [ { 'sample.sample name': { "$ne": 'Some liquid' } }, { 'sample.label': { "$exists": False } } ] }) # Search for sample name NOT 'Some liquid' AND the key 'label' exists
In [ ]:
#search_sample_database({"$and": [{'info.owner':'lwiegart'},{'sample.sample name':{'$regex':'rubber'}}]}) # search for: owner = lwiegart & sample name contains 'rubber'
In [ ]:
# search for entries made between two time points.
# Note: search is on 'timestamp' NOT on 'date entered' ('date entered' is a string that's nice to read, but not to search...)
start = datetime.datetime(2018, 8, 31, 12, 51, 4)
end = datetime.datetime(2018, 8, 31, 15, 52, 4)
print('searching for database entries from '+str(start)+' to '+ str(end))
search_sample_database({'$and': [{'info.timestamp':{'$lt': end, '$gte': start}},{'sample.sample name':{'$regex':'rubber'}}]})
In [ ]:
search_sample_database({"$or": [{'info.owner': {'sample.sample name':'ice cream'}},{'sample.holder':'flat_cell'}]}) #search for sample name 'ice cream' OR sample.holder 'flat_cell'
In [118]:
if False:
pass
#samples_2.find_one( {'info.owner':'chx'} )
#samples_2.find_one_and_delete( {'info.owner':'chx'} )
#samples_2.find_one_and_delete( {'info.owner':'chx'} )
In [ ]:
#obj = ObjectId('5bbf68be412c273ebb3672e0')
#samples_2.find_one_and_delete( { '_id': ObjectId('5bbe3db2412c278b1521fbb0') } )
#samples_2.find_one_and_delete( { '_id': obj } )
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [120]:
multi_sample={
'sample_mount':'multi',
'owner':'chx',
'slot2':{
'sample_id': ObjectId('5cdb0756f4fa2d46d7846f46'),
# SAMPLE S1
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot3':{
'sample_id': ObjectId('5cdb07d6f4fa2d46d7846f47'),
# SAMPLE S2
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot4':{
'sample_id': ObjectId('5cdb0821f4fa2d46d7846f48'),
# SAMPLE S3
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot5':{
'sample_id': ObjectId('5cdb084bf4fa2d46d7846f49'),
# SAMPLE S4
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot6':{
'sample_id': ObjectId('5cdb0861f4fa2d46d7846f4a'),
# SAMPLE S5
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot7':{
'sample_id': ObjectId('5cdb0884f4fa2d46d7846f4b'),
# SAMPLE S6
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
##################Keep this refrence sample#############
'slot8':{ # center of multi sample holder -> reserved for alignment
'sample_id':ObjectId('5b8c868f7fd7d080b86a9bab'),
'data_series':'none',
'data_acq_seq':'none'
},
######################################################
'slot9':{
'sample_id': ObjectId('5cdb089af4fa2d46d7846f4c'),
# SAMPLE S7
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot10':{
'sample_id': ObjectId('5cdb08aef4fa2d46d7846f4d'),
# SAMPLE S8
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot11':{
'sample_id': ObjectId('5cdb08c3f4fa2d46d7846f4e'),
# SAMPLE S9
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'slot12':{
'sample_id': ObjectId('5cdb0905f4fa2d46d7846f51'),
# SAMPLE S12
#'data_acq_seq':myfunc
'data_series':{
'fast_T1': ['4m',.00134,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T2': ['4m',.00134,1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T3': ['4m',.00134,1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'fast_T4': ['4m',.00134,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T1': ['4m',.01,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T2': ['4m',.01, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T3': ['4m',.01, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'medium_T4': ['4m',.01,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T1': ['4m',.1,1000, 1, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T2': ['4m',.1, 1000, 0.2, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T3': ['4m',.1, 1000, 0.036, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
'slow_T4': ['4m',.1,1000, 0.0068, {'series_options':{'feedback_on':True,'analysis':'iso'}} ],
},
'data_acq_seq':{'1':[2,'fast_T1', 'fast_T2', 'fast_T3','fast_T4',
'medium_T1', 'medium_T2','medium_T3','medium_T4',
'slow_T1', 'slow_T2', 'slow_T3', 'slow_T4',
],
}
},
'date entered': str(datetime.datetime.now()),
'timestamp':datetime.datetime.now()
}
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [27]:
#[slot1_list,slot1_stats,error_trac] = single_slot_report(multi_sample=multi_sample,slot_key='slot6')
#[slot1_list,slot1_stats,error_trac], ss = single_slot_report2(multi_sample=multi_sample,slot_key='slot11')
In [121]:
png_name= 'Data_Acquistion_Plot_2019_514' #please change the filename here
acq_dict, dastr = multi_slot_report2(multi_sample, png_name= png_name )
In [ ]:
#%run -i debug_dataacq.py
In [122]:
obid = data_acquisition_dictionary_to_database(acq_dict)
In [123]:
obid
Out[123]:
In [ ]:
# how to check the obid
if False:
data_acq_dict=data_acquisition_collection.find_one({'_id': obid })
data_acq_dict
In [ ]:
%run /home/yuzhang/pyCHX_link/pyCHX/chx_olog.py
In [ ]:
#obid = ObjectId('5bbf8d8d412c2745ca4378e1')
In [ ]:
str(obid)
In [ ]:
text = "ObjectId('%s')"%( str(obid) )
logid = create_olog_entry( 'Data acquisition ID: %s'%text )
In [ ]:
filename= '/XF11ID/analysis/Olog_attachments/' + '%s.png'%png_name
update_olog_logid_with_file( logid = logid, text= dastr, filename = filename)
In [ ]:
# copied from error displayed in Report:
add_sampling_grid(ObjectId('5b8ae5067fd7d080b86a9ba9'),interactive=True)
2) adding some label to the sample information:
In [ ]:
update_label_method(ObjectId('5b8ae5067fd7d080b86a9ba9'),interactive=True)