XPCS&XSVS Pipeline for Single-(Gi)-SAXS Run

"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"

This notebook begins with a raw time-series of images and ends with $g_2(t)$ for a range of $q$, fit to an exponential or stretched exponential, and a two-time correlation functoin.

Overview

  • Setup: load packages/setup path
  • Load Metadata & Image Data
  • Apply Mask
  • Clean Data: shutter open/bad frames
  • Get Q-Map
  • Get 1D curve
  • Define Q-ROI (qr, qz)
  • Check beam damage
  • One-time Correlation
  • Fitting
  • Two-time Correlation The important scientific code is imported from the chxanalys and scikit-beam project. Refer to chxanalys and scikit-beam for additional documentation and citation information.

CHX Olog NoteBook

CHX Olog (https://logbook.nsls2.bnl.gov/11-ID/)

Setup

Import packages for I/O, visualization, and analysis.


In [2]:
from chxanalys.chx_packages import *
%matplotlib notebook
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams.update({ 'image.origin': 'lower'   })
plt.rcParams.update({ 'image.interpolation': 'none'   })
import pickle as cpk
from chxanalys.chx_xpcs_xsvs_jupyter_V1 import *

In [3]:
Javascript( '''
        var nb = IPython.notebook;
        var kernel = IPython.notebook.kernel;
        var command = "NFP = '" + nb.base_url + nb.notebook_path + "'";        
        kernel.execute(command);
        ''' )


Out[3]:

In [4]:
print( 'The current running pipeline is: %s' %NFP)


The current running pipeline is: /user/yuzhang/analysis/CHX_Results_Pipelines/Beamline_Paper/Pipelines/XPCS_Single_2017_V4_4M.ipynb

In [ ]:
#%reset -f -s dhist in out array

Control Runs Here


In [106]:
scat_geometry = 'saxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
#scat_geometry = 'gi_saxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
#scat_geometry = 'gi_waxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
                           # gi_waxs define a simple box-shaped ROI 
force_compress = False #True   #force to compress data 
bin_frame = False   #generally make bin_frame as False
para_compress = True    #parallel compress
run_fit_form = False    #run fit form factor 
run_waterfall = True   #run waterfall analysis
run_t_ROI_Inten = True  #run  ROI intensity as a function of time
run_one_time = True  #run  one-time
#run_fit_g2 = True       #run  fit one-time, the default function is "stretched exponential"
fit_g2_func = 'stretched'
run_two_time =  True #False    #run  two-time
run_four_time = False #True #False   #run  four-time
run_xsvs=  False #False         #run visibility analysis
att_pdf_report = True    #attach the pdf report to CHX olog
qth_interest = 1 #the intested single qth             
use_sqnorm = True    #if True, use sq to normalize intensity
use_imgsum_norm=True  #if True use imgsum to normalize intensity for one-time calculatoin
pdf_version='_May4_1'     #for pdf report name
run_dose = True #False  #run dose_depend analysis

if scat_geometry == 'gi_saxs':run_xsvs= False;
if scat_geometry == 'gi_waxs':use_sqnorm = False;

In [6]:
taus=None;g2=None;tausb=None;g2b=None;g12b=None;taus4=None;g4=None;times_xsv=None;contrast_factorL=None; lag_steps = None

Make a directory for saving results


In [7]:
#CYCLE= '2017_1'  #change clycle here
CYCLE= 'CHX_Results_Pipelines'  #change clycle here
#username =  getpass.getuser()
#username = 'commissioning'
username = 'Beamline_Paper'
data_dir0  = create_user_folder(CYCLE, username)
print( data_dir0 )


Results from this analysis will be stashed in the directory /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/
/XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/

Load Metadata & Image Data

Change this line to give a uid


In [8]:
uid = '337e48' # (scan num: 22072) (Measurement: 750Hz, 5k CoralPor )
#uid = '28dd84' # (scan num: 22073) (Measurement: 10Hz, 2k CoralPor )

uid  = '7521f3' # (scan num: 22095) (Measurement: 750Hz 5k CoralPor )
#uid = '802671d9' #  (scan num: 22097) (Measurement: 20s x2.2k Tr=.000568CoralPor )

uid = '9a2279' # (scan num: 17422) (Measurement: approx. 9kHz 20k (mbs:.1x.4) E9: SiO2 250nm in tween/water 1:2 )

uid = 'a230e1' # (scan num: 17423) (Measurement: 750Hz, 2k E8: SiO2 250nm in tween/water 1:5 )

uid = '701d0d'# (scan num: 17420) (Measurement: approx. 9kHz 10k (mbs:.1x.4) E7: SiO2 250nm in water (diluted from stock) )

uid = 'cb99bd' # (scan num: 19287) (Measurement: E72 fresh prepared in water750Hz 5000fra att=0.1 )

uid = '006b1a' # (scan num: 17547) (Measurement: Silica 250 nm stock solution 10k frames 750Hz )'

########################For Brownian Motion, 4M
uid = 'c8a1fb1f' # (scan num: 17087) (Measurement: 1ms x 2k A5: 15nm citric acid Au in Twee 20 )
#################################################

#uid = '7deec4f4' # (scan num: 19085) (Measurement: D2, AuCit15nm in Wat:Tween=1:1 750Hz 20000fra for dose analysis)

In [10]:
sud = get_sid_filenames(db[uid])
print ('scan_id, full-uid, data path are:  %s--%s--%s'%(sud[0], sud[1], sud[2][0] ))
#start_time, stop_time = '2017-2-24  12:23:00', '2017-2-24  13:42:00' 
#sids, uids, fuids  = find_uids(start_time, stop_time)


scan_id, full-uid, data path are:  17087--c8a1fb1f-1960-49f8-927a-c29fca8aaafa--/XF11ID/data/2017/02/21/90fbdb6c-9a59-4923-b44a_807

In [ ]:


In [11]:
data_dir = os.path.join(data_dir0, '%s/'%uid)
os.makedirs(data_dir, exist_ok=True)
print('Results from this analysis will be stashed in the directory %s' % data_dir)
uidstr = 'uid=%s'%uid


Results from this analysis will be stashed in the directory /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/

Don't Change these lines below here

  • get metadata

In [12]:
md = get_meta_data( uid )
  • get data

In [13]:
imgs = load_data( uid, md['detector'], reverse= True  )
md.update( imgs.md );Nimg = len(imgs);
#if 'number of images'  not in list(md.keys()):
md['number of images']  = Nimg
pixel_mask =  1- np.int_( np.array( imgs.md['pixel_mask'], dtype= bool)  )
print( 'The data are: %s' %imgs )

md['acquire period' ] = md['cam_acquire_period']
md['exposure time'] =  md['cam_acquire_time']


The data are: Sliced and/or processed EigerImages2. Original repr:
    <Frames>
    Length: 2000 frames
    Frame Shape: 2167 x 2070
    Pixel Datatype: uint16

In [14]:
print_dict( md,  ['suid', 'number of images', 'uid', 'scan_id', 'start_time', 'stop_time', 'sample', 'Measurement',
                  'acquire period', 'exposure time',  
         'det_distance', 'beam_center_x', 'beam_center_y', ] )


suid--> c8a1fb1f
number of images--> 2000
uid--> c8a1fb1f-1960-49f8-927a-c29fca8aaafa
scan_id--> 17087
start_time--> 2017-02-21 09:38:07
stop_time--> 2017-02-21 09:39:19
sample--> A5: 15nm citric acid Au in Twee 20
Measurement--> 1ms x 2k A5: 15nm citric acid Au in Twee 20
acquire period--> 0.00134
exposure time--> 0.0013299999991431832
det_distance--> 16.075637705000002
beam_center_x--> 1085.0
beam_center_y--> 1041.0

Overwrite Some Metadata if Wrong Input


In [15]:
md['beam_center_x']= 1085#1016 #1085
md['beam_center_y']=  1041# 1007 #1041
md['det_distance']= 16.0756*1000 #16.0359 *1000 #16.0756*1000

#md['exposure_time'] = md['count_time']
inc_x0 =  None
inc_y0=   None

dpix, lambda_, Ldet,  exposuretime, timeperframe, center = check_lost_metadata(
    md, Nimg, inc_x0 = inc_x0, inc_y0=   inc_y0, pixelsize = 7.5*10*(-5) )

setup_pargs=dict(uid=uidstr, dpix= dpix, Ldet=Ldet, lambda_= lambda_, exposuretime=exposuretime,
        timeperframe=timeperframe, center=center, path= data_dir)

print_dict( setup_pargs )


Ldet--> 16075.600000000002
dpix--> 0.0750000035623
exposuretime--> 0.0013299999991431832
timeperframe--> 0.00134
center--> [1041, 1085]
uid--> uid=c8a1fb1f
lambda_--> 1.28494
path--> /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/

In [ ]:

Apply Mask

  • load and plot mask if exist
  • otherwise create a mask using Mask pipeline
  • Reverse the mask in y-direction due to the coordination difference between python and Eiger software
  • Reverse images in y-direction
  • Apply the mask

Change the blow line to give mask filename


In [16]:
mask_path = '/XF11ID/analysis/2017_1/masks/'
#mask_name = 'Apr10_4M_SAXS16m_mask2.npy'

mask_name = 'Feb23_500K_SAXS6_mask.npy'
mask_name = 'Mar20_4M_SAXS_mask.npy'

mask_name = 'Feb27_4M_SAXS_mask.npy'

mask_name = 'Feb21_4M_SAXS2_mask.npy'  #for uid=c8a1fb1f

#mask_name = 'Mar20_4M_SAXS_mask.npy'

In [18]:
mask = load_mask(mask_path, mask_name, plot_ =  False, image_name = uidstr + '_mask', reverse= True ) 
mask *= pixel_mask
show_img(mask,image_name = uidstr + '_mask', save=True, path=data_dir, aspect=1)
mask_load=mask.copy()
imgsa = apply_mask( imgs, mask )


Check several frames average intensity


In [19]:
img_choice_N = 3
img_samp_index = random.sample( range(len(imgs)), img_choice_N) 
avg_img =  get_avg_img( imgsa, img_samp_index, plot_ = False, uid =uidstr)
if avg_img.max() == 0:
    print('There are no photons recorded for this uid: %s'%uid)
    print('The data analysis should be terminated! Please try another uid.')

In [ ]:
#show_img( imgsa[1000],  vmin=.1, vmax= 1e1, logs=True, aspect=1,
#         image_name= uidstr + '_img_avg',  save=True, path=data_dir,  cmap = cmap_albula )

In [20]:
show_img( avg_img,  vmin=.1, vmax= 1e1, logs=True, aspect=1,
         image_name= uidstr + '_img_avg',  save=True, path=data_dir,  cmap = cmap_albula )


Compress Data

  • Generate a compressed data with filename
  • Replace old mask with a new mask with removed hot pixels
  • Do average image
  • Do each image sum
  • Find badframe_list for where image sum above bad_pixel_threshold
  • Check shutter open frame to get good time series

In [21]:
compress=True
photon_occ = len( np.where(avg_img)[0] ) / ( imgsa[0].size)
#compress =  photon_occ < .4  #if the photon ocupation < 0.5, do compress
print ("The non-zeros photon occupation is %s."%( photon_occ))
print("Will " + 'Always ' + ['NOT', 'DO'][compress]  + " apply compress process.")


The non-zeros photon occupation is 0.033674640913661.
Will Always DO apply compress process.

In [22]:
good_start = 5  #5  #make the good_start at least 0

In [23]:
bin_frame = False #True # False # True  #generally make bin_frame as False
if bin_frame:
    bin_frame_number=4
    timeperframe = acquisition_period * bin_frame_number
else:
    bin_frame_number =1

In [24]:
import time
t0= time.time()
if bin_frame_number==1:
    filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s.cmp'%md['uid']
else:
    filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s_bined--%s.cmp'%(md['uid'],bin_frame_number) 
mask, avg_img, imgsum, bad_frame_list = compress_eigerdata(imgs, mask, md, filename, 
         force_compress= force_compress,  para_compress= para_compress,  bad_pixel_threshold = 1e14,
                        bins=bin_frame_number, num_sub= 100, num_max_para_process= 500, with_pickle=True  )
min_inten = 10    
good_start = max(good_start, np.where( np.array(imgsum) > min_inten )[0][0] )    
print ('The good_start frame number is: %s '%good_start)
FD = Multifile(filename, good_start, len(imgs)//bin_frame_number)
#FD = Multifile(filename, good_start, 100)
uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
print( uid_ )
plot1D( y = imgsum[ np.array( [i for i in np.arange(good_start, len(imgsum)) if i not in bad_frame_list])],
       title =uidstr + '_imgsum', xlabel='Frame', ylabel='Total_Intensity', legend='imgsum'   )
Nimg = Nimg/bin_frame_number

run_time(t0)


Using already created compressed file with filename as :/XF11ID/analysis/Compressed_Data/uid_c8a1fb1f-1960-49f8-927a-c29fca8aaafa.cmp.
The good_start frame number is: 5 
uid=c8a1fb1f_fra_5_2000
Total time: 0.571 sec

In [26]:
show_img( avg_img,  vmin=0.0001, vmax= 1e2, logs=True, aspect=1, #save_format='tif',
         image_name= uidstr + '_img_avg',  save=True, path=data_dir,  cmap = cmap_albula )


Get bad frame list by a polynominal fit


In [27]:
good_end= None # 2000  
if good_end is not None:
    FD = Multifile(filename, good_start, min( len(imgs)//bin_frame_number, good_end) )
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [28]:
re_define_good_start =False
if re_define_good_start:
    good_start = 10
    good_end = 19700
    FD = Multifile(filename, good_start, good_end) 
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( FD.beg, FD.end)

In [29]:
bad_frame_list =  get_bad_frame_list( imgsum, fit=True, plot=True,polyfit_order = 30, 
                        scale=1.,  good_start = good_start, good_end=good_end, uid= uidstr, path=data_dir)

print( 'The bad frame list length is: %s'%len(bad_frame_list) )


/opt/conda_envs/analysis/lib/python3.5/site-packages/numpy/lib/polynomial.py:595: RankWarning: Polyfit may be poorly conditioned
  warnings.warn(msg, RankWarning)
The bad frame list length is: 12

Creat new mask by masking the bad pixels and get new avg_img


In [30]:
imgsum_y = imgsum[ np.array( [i for i in np.arange( len(imgsum)) if i not in bad_frame_list])]
imgsum_x = np.arange( len( imgsum_y))
save_lists(  [imgsum_x, imgsum_y], label=['Frame', 'Total_Intensity'],
           filename=uidstr + '_img_sum_t', path= data_dir  )

Plot time~ total intensity of each frame


In [31]:
plot1D( y = imgsum_y, title = uidstr + '_img_sum_t', xlabel='Frame',
       ylabel='Total_Intensity', legend='imgsum', save=True, path=data_dir)


Load ROI


In [81]:
#fp = 'Au15_roi_16m_4M.pkl'
#fp = 'Au15_roi_16m_4M_dose.pkl'

fp = 'uid=c8a1fb1f_roi_16m.pkl'  #16 rings
#fp =   'uid=c8a1fb1f_roi_16m_refined.pkl'

fp = data_dir0 + fp
roi_mask,qval_dict = cpk.load( open(fp, 'rb' )  )  #for load the saved roi data

if scat_geometry =='gi_saxs':
    fp = data_dir0 + 'gisaxs_test.pkl'
    qr_map, qz_map, ticks, Qrs, Qzs,  Qr, Qz, inc_x0 = cpk.load( open(fp, 'rb' )  )

Static Analysis

SAXS Scattering Geometry


In [82]:
if scat_geometry =='saxs':
    ## Get circular average| * Do plot and save q~iq
    hmask = create_hot_pixel_mask( avg_img, threshold = .1, center=center, center_radius= 400)
    qp_saxs, iq_saxs, q_saxs = get_circular_average( avg_img, mask * hmask, pargs=setup_pargs  )
    plot_circular_average( qp_saxs, iq_saxs, q_saxs,  pargs=setup_pargs, 
                      xlim=[q_saxs.min(), q_saxs.max()*0.9], ylim = [iq_saxs.min(), iq_saxs.max()] )
#mask =np.array( mask * hmask, dtype=bool)



In [83]:
if scat_geometry =='saxs':    
    if run_fit_form:        
        form_res = fit_form_factor( q_saxs,iq_saxs,  guess_values={'radius': 2500, 'sigma':0.05, 
         'delta_rho':1E-10 },  fit_range=[0.0001, 0.015], fit_variables={'radius': T, 'sigma':T, 
         'delta_rho':T},  res_pargs=setup_pargs, xlim=[0.0001, 0.015])  
        
    qr = np.array( [qval_dict[k][0] for k in sorted( qval_dict.keys())] )
    print(len(qr))
    show_ROI_on_image( avg_img, roi_mask, center, label_on = False, rwidth = 840, alpha=.9,  
                     save=True, path=data_dir, uid=uidstr, vmin= np.min(avg_img),
                      vmax= 16, #np.max(avg_img),
                     aspect=1) 
    plot_qIq_with_ROI( q_saxs, iq_saxs, qr, logs=True, uid=uidstr, xlim=[0.0001,0.03],
                  ylim = [iq_saxs.min(), iq_saxs.max()],  save=True, path=data_dir)


16

In [84]:
if scat_geometry =='saxs':
    Nimg = FD.end - FD.beg 
    time_edge = create_time_slice( Nimg, slice_num= 5, slice_width= 1, edges = None )
    time_edge =  np.array( time_edge ) + good_start
    print( time_edge )
    
    qpt, iqst, qt = get_t_iqc( FD, time_edge, mask, pargs=setup_pargs, nx=1500 )
    plot_t_iqc( qt, iqst, time_edge, pargs=setup_pargs, xlim=[qt.min(), qt.max()],
           ylim = [iqst.min(), iqst.max()], save=True )


Averaging 1 images: 100%|██████████| 1/1 [00:00<00:00, 409.00it/s]
[[   5    6]
 [ 603  604]
 [1002 1003]
 [1401 1402]
 [1999 2000]]
Averaging 1 images: 100%|██████████| 1/1 [00:00<00:00, 75.39it/s]
Averaging 1 images: 100%|██████████| 1/1 [00:00<00:00, 46.78it/s]
Averaging 1 images: 100%|██████████| 1/1 [00:00<00:00, 33.16it/s]
Averaging 1 images: 100%|██████████| 1/1 [00:00<00:00, 24.26it/s]
The file: uid=c8a1fb1f_q_Iqt is saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/

GiSAXS Scattering Geometry


In [56]:
if scat_geometry =='gi_saxs':    
    plot_qzr_map(  qr_map, qz_map, inc_x0, ticks = ticks, data= avg_img, uid= uidstr, path = data_dir   )

Static Analysis for gisaxs


In [57]:
if scat_geometry =='gi_saxs':
    roi_masks, qval_dicts = get_gisaxs_roi( Qrs, Qzs, qr_map, qz_map, mask= mask )
    show_qzr_roi( avg_img, roi_masks, inc_x0, ticks[:4], alpha=0.5, save=True, path=data_dir, uid=uidstr )

In [58]:
if  scat_geometry =='gi_saxs':    
    Nimg = FD.end - FD.beg 
    time_edge = create_time_slice( N= Nimg, slice_num= 3, slice_width= 2, edges = None )
    time_edge =  np.array( time_edge ) + good_start
    print( time_edge )    
    qrt_pds = get_t_qrc( FD, time_edge, Qrs, Qzs, qr_map, qz_map, path=data_dir, uid = uidstr )    
    plot_qrt_pds( qrt_pds, time_edge, qz_index = 0, uid = uidstr, path =  data_dir )

Make a Profile Plot


In [59]:
if  scat_geometry =='gi_saxs':
    if run_waterfall:
        xcorners= [ 1100, 1250, 1250, 1100 ]
        ycorners= [ 850, 850, 950, 950 ]   
        waterfall_roi_size = [ xcorners[1] - xcorners[0],  ycorners[2] - ycorners[1]  ]
        waterfall_roi =  create_rectangle_mask(  avg_img, xcorners, ycorners   )
        #show_img( waterfall_roi * avg_img,  aspect=1,vmin=.001, vmax=1, logs=True, )
        wat = cal_waterfallc( FD, waterfall_roi, qindex= 1, bin_waterfall=True,
                              waterfall_roi_size = waterfall_roi_size,save =True, path=data_dir, uid=uidstr)

In [60]:
if  scat_geometry =='gi_saxs':
    if run_waterfall:
        plot_waterfallc( wat, qindex=1, aspect=None, vmin=1, vmax= np.max( wat), uid=uidstr, save =True, 
                        path=data_dir, beg= FD.beg)

Dynamic Analysis for gi_saxs


In [61]:
if scat_geometry =='gi_saxs':
       
    show_qzr_roi( avg_img, roi_mask, inc_x0, ticks[:4], alpha=0.5, save=True, path=data_dir, uid=uidstr )        
    ## Get 1D Curve (Q||-intensity¶)
    qr_1d_pds = cal_1d_qr( avg_img, Qr, Qz, qr_map, qz_map, inc_x0= None, setup_pargs=setup_pargs )
    plot_qr_1d_with_ROI( qr_1d_pds, qr_center=np.unique( np.array(list( qval_dict.values() ) )[:,0] ),
                    loglog=False, save=True, uid=uidstr, path = data_dir)

GiWAXS Scattering Geometry


In [62]:
if scat_geometry =='gi_waxs':
    badpixel = np.where( avg_img[:600,:] >=300 )
    roi_mask[badpixel] = 0
    show_ROI_on_image( avg_img, roi_mask, label_on = True,  alpha=.5,
                 save=True, path=data_dir, uid=uidstr, vmin=0.1, vmax=5)

In [ ]:

  • Extract the labeled array

In [85]:
qind, pixelist = roi.extract_label_indices(roi_mask)
noqs = len(np.unique(qind))
  • Number of pixels in each q box

In [86]:
nopr = np.bincount(qind, minlength=(noqs+1))[1:]
nopr


Out[86]:
array([ 18850,  59050,  98787, 138193, 177890, 211790, 235903, 268989,
       318025, 359656, 400172, 435210, 423679, 342386, 233012, 161361])

In [ ]:

Check one ROI intensity


In [87]:
roi_inten = check_ROI_intensity( avg_img, roi_mask, ring_number= 2, uid =uidstr )


Do a waterfall analysis


In [92]:
qth_interest = 2  #the second ring.
if scat_geometry =='saxs' or scat_geometry =='gi_waxs':
    if run_waterfall:    
        wat = cal_waterfallc( FD, roi_mask, qindex= qth_interest, save =True, path=data_dir, uid=uidstr)


Get waterfall for q index=2: 100%|██████████| 1995/1995 [00:04<00:00, 404.11it/s]

In [93]:
if scat_geometry =='saxs' or scat_geometry =='gi_waxs':
    if run_waterfall: 
        plot_waterfallc( wat, qth_interest, aspect=None, vmax= 10, uid=uidstr, save =True, 
                        path=data_dir, beg= FD.beg)



In [73]:
ring_avg = None    
if run_t_ROI_Inten:
    times_roi, mean_int_sets = cal_each_ring_mean_intensityc(FD, roi_mask, timeperframe = None,  ) 
    plot_each_ring_mean_intensityc( times_roi, mean_int_sets,  uid = uidstr, save=True, path=data_dir )
    roi_avg = np.average( mean_int_sets, axis=0)


Get ROI intensity of each frame: 100%|██████████| 1995/1995 [00:03<00:00, 545.59it/s]
The file: uid=c8a1fb1f_t_ROIs is saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/

One time Correlation

Note : Enter the number of buffers for Muliti tau one time correlation number of buffers has to be even. More details in https://github.com/scikit-beam/scikit-beam/blob/master/skbeam/core/correlation.py

if define another good_series


In [94]:
define_good_series = False
#define_good_series = True
if define_good_series:
    good_start = 1500
    FD = Multifile(filename, beg = good_start, end = 5000 ) # Nimg)#600)
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [95]:
if use_sqnorm:norm = get_pixelist_interp_iq( qp_saxs, iq_saxs, roi_mask, center)
else:norm=None 
if use_imgsum_norm:imgsum_ = imgsum
else:imgsum_ = None    
import time

In [96]:
if run_one_time: 
    t0 = time.time()    
    g2, lag_steps  = cal_g2p( FD,  roi_mask, bad_frame_list,good_start, num_buf = 8, num_lev= None,
                            imgsum= imgsum_, norm=norm )
    run_time(t0)


In this g2 calculation, the buf and lev number are: 8--10--
12 Bad frames involved and will be discarded!
1989 frames will be processed...
  0%|          | 0/16 [00:00<?, ?it/s]
Starting assign the tasks...
100%|██████████| 16/16 [00:03<00:00,  5.15it/s]
  0%|          | 0/16 [00:00<?, ?it/s]
Starting running the tasks...
100%|██████████| 16/16 [02:49<00:00, 10.58s/it]
G2 calculation DONE!
Total time: 3.067 min


In [97]:
lag_steps = lag_steps[:g2.shape[0]]

In [98]:
if run_one_time: 
    taus = lag_steps * timeperframe    
    g2_pds = save_g2_general( g2, taus=taus,qr=np.array( list( qval_dict.values() ) )[:,0],
                             uid=uid_+'_g2.csv', path= data_dir, return_res=True )


The correlation function is saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/ with filename as uid=c8a1fb1f_fra_5_2000_g2.csv

In [99]:
#g2_pds

Fit g2


In [100]:
if run_one_time:
    g2_fit_result, taus_fit, g2_fit = get_g2_fit_general( g2,  taus, 
                function = fit_g2_func,  vlim=[0.95, 1.05], fit_range= None,  
            fit_variables={'baseline':True, 'beta': True, 'alpha':False,'relaxation_rate':True},                                  
            guess_values={'baseline':1.03,'beta': 0.15,'alpha':1.0,'relaxation_rate':1,},
            guess_limits = dict( baseline =[1, 1.8], alpha=[0, 2],
                        beta = [0, 1], relaxation_rate= [0.001, 5000]) ) 
    g2_fit_paras = save_g2_fit_para_tocsv(g2_fit_result,  filename= uid_  +'_g2_fit_paras.csv', path=data_dir )


The g2 fitting parameters are saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/uid=c8a1fb1f_fra_5_2000_g2_fit_paras.csv

In [101]:
if run_one_time:
    plot_g2_general( g2_dict={1:g2, 2:g2_fit}, taus_dict={1:taus, 2:taus_fit},vlim=[0.95, 1.05],
                qval_dict = qval_dict, fit_res= g2_fit_result,  geometry= scat_geometry,filename= uid_+'_g2', 
                    path= data_dir, function= fit_g2_func,  ylabel='g2', append_name=  '_fit')



In [102]:
if run_one_time:
    if True:
        fs, fe = 0, 9
        fs,fe=0, 12
        qval_dict_ = {k:qval_dict[k] for k in list(qval_dict.keys())[fs:fe]  }
        D0, qrate_fit_res = get_q_rate_fit_general(  qval_dict_, g2_fit_paras['relaxation_rate'][fs:fe], geometry= scat_geometry )
        plot_q_rate_fit_general( qval_dict_, g2_fit_paras['relaxation_rate'][fs:fe],  qrate_fit_res, 
                                geometry= scat_geometry,uid=uid_  , path= data_dir )
    else:
        D0, qrate_fit_res = get_q_rate_fit_general(  qval_dict, g2_fit_paras['relaxation_rate'],
                                    fit_range=[0, 16],   geometry= scat_geometry )    
        plot_q_rate_fit_general( qval_dict, g2_fit_paras['relaxation_rate'],  qrate_fit_res,   
                            geometry= scat_geometry,uid=uid_  , path= data_dir, plot_all_range=False)


The fitted diffusion coefficient D0 is:  8.656e+04   A^2S-1

In [ ]:
#plot1D( x= qr, y=g2_fit_paras['beta'], ls='-', m = 'o', c='b', ylabel=r'$\beta$', xlabel=r'$Q( \AA^{-1} ) $' )

For two-time


In [103]:
define_good_series = False
#define_good_series = True
if define_good_series:
    good_start = 5
    FD = Multifile(filename, beg = good_start, end = 1000)
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [104]:
data_pixel = None
if run_two_time:    
    data_pixel =   Get_Pixel_Arrayc( FD, pixelist,  norm= norm ).get_data()


100%|██████████| 1995/1995 [00:45<00:00, 44.26it/s]

In [105]:
import time
t0=time.time()
g12b=None
if run_two_time:     
    g12b = auto_two_Arrayc(  data_pixel,  roi_mask, index = None   )
    if run_dose:
        np.save( data_dir + 'uid=%s_g12b'%uid, g12b)
run_time( t0 )


100%|██████████| 16/16 [05:43<00:00, 23.73s/it]
Total time: 5.776 min

In [107]:
if run_two_time:
    show_C12(g12b, q_ind= 1, N1= FD.beg,logs=False, N2=min( FD.end,5000), vmin= 0.98, vmax=1.25, 
             timeperframe=timeperframe,save=True, path= data_dir, uid = uid_ )



In [108]:
multi_tau_steps = True
if run_two_time:
    if lag_steps is None:
        num_bufs=8
        noframes = FD.end - FD.beg
        num_levels = int(np.log( noframes/(num_bufs-1))/np.log(2) +1) +1
        tot_channels, lag_steps, dict_lag = multi_tau_lags(num_levels, num_bufs)
        max_taus= lag_steps.max()
        
    #max_taus= lag_steps.max()  
    max_taus = Nimg    
    t0=time.time()
    #tausb = np.arange( g2b.shape[0])[:max_taus] *timeperframe
    if multi_tau_steps:
        lag_steps_ = lag_steps[   lag_steps <= g12b.shape[0] ]
        g2b = get_one_time_from_two_time(g12b)[lag_steps_]
        tausb = lag_steps_ *timeperframe
    else:
        tausb = (np.arange( g12b.shape[0]) *timeperframe)[:-200]
        g2b = (get_one_time_from_two_time(g12b))[:-200]
    run_time(t0)
         
    g2b_pds = save_g2_general( g2b, taus=tausb, qr= np.array( list( qval_dict.values() ) )[:,0],
                              qz=None, uid=uid_ +'_g2b.csv', path= data_dir, return_res=True )


Total time: 0.608 sec
The correlation function is saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/ with filename as uid=c8a1fb1f_fra_5_2000_g2b.csv

In [109]:
if run_two_time:
    
    g2b_fit_result, tausb_fit, g2b_fit = get_g2_fit_general( g2b,  tausb, 
                function = fit_g2_func,  vlim=[0.95, 1.05], fit_range= None,  
            fit_variables={'baseline':True, 'beta': True, 'alpha':False,'relaxation_rate':True},                                  
            guess_values={'baseline':1.03,'beta': 0.15,'alpha':1.0,'relaxation_rate':1,},
            guess_limits = dict( baseline =[1, 1.8], alpha=[0, 2],
                        beta = [0, 1], relaxation_rate= [0.001, 5000]) ) 
    g2b_fit_paras = save_g2_fit_para_tocsv(g2b_fit_result,  filename= uid_  +'_g2b_fit_paras.csv', path=data_dir )


The g2 fitting parameters are saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/uid=c8a1fb1f_fra_5_2000_g2b_fit_paras.csv

In [110]:
#plot1D( x = tausb[1:], y =g2b[1:,0], ylim=[0.95, 1.46], xlim = [0.0001, 10], m='', c='r', ls = '-',
#       logx=True, title='one_time_corelation', xlabel = r"$\tau $ $(s)$",    )

In [111]:
if run_two_time:
    plot_g2_general( g2_dict={1:g2b, 2:g2b_fit}, taus_dict={1:tausb, 2:tausb_fit}, vlim=[0.95, 1.05],
                qval_dict=qval_dict, fit_res= g2b_fit_result,  geometry=scat_geometry,filename=uid_+'_g2', 
                    path= data_dir, function= fit_g2_func,  ylabel='g2', append_name=  '_b_fit')



In [112]:
if run_two_time:    
    if True:
        fs, fe = 0,9
        fs, fe = 0,12
        qval_dict_ = {k:qval_dict[k] for k in list(qval_dict.keys())[fs:fe]  }
        D0b, qrate_fit_resb = get_q_rate_fit_general(  qval_dict_, g2b_fit_paras['relaxation_rate'][fs:fe], geometry= scat_geometry )
        plot_q_rate_fit_general( qval_dict_, g2b_fit_paras['relaxation_rate'][fs:fe],  qrate_fit_resb, 
                            geometry= scat_geometry,uid=uid_ +'_two_time' , path= data_dir )
    else:
    
        D0b, qrate_fit_resb = get_q_rate_fit_general(  qval_dict, g2b_fit_paras['relaxation_rate'],
                                        fit_range=[1, 10],          geometry= scat_geometry )
        plot_q_rate_fit_general( qval_dict, g2b_fit_paras['relaxation_rate'],  qrate_fit_resb,   
                            geometry= scat_geometry,uid=uid_ +'_two_time' , path= data_dir, plot_all_range= True )


The fitted diffusion coefficient D0 is:  8.450e+04   A^2S-1

In [113]:
if run_two_time and run_one_time:
    plot_g2_general( g2_dict={1:g2, 2:g2b}, taus_dict={1:taus, 2:tausb},vlim=[0.99, 1.007],
                qval_dict=qval_dict, g2_labels=['from_one_time', 'from_two_time'],
            geometry=scat_geometry,filename=uid_+'_g2_two_g2', path= data_dir, ylabel='g2', )


Run Dose dependent analysis


In [114]:
if run_dose:
    get_two_time_mulit_uids( [uid], roi_mask,  norm= norm,  bin_frame_number=1, 
                        path= data_dir0, force_generate=False )


UID: c8a1fb1f is in processing...
The two time correlation function for uid=c8a1fb1f is already calculated. Just pass...

In [115]:
try:
    print( md['transmission'] )
except:
    md['transmission'] =1

In [116]:
if run_dose:
    N = len(imgs)
    print(N)
    exposure_dose = md['transmission'] * exposuretime* np.int_([  N/32, N/16, N/8, N/4 ,N/2, 3*N/4, N*0.99 ])
    print( exposure_dose )


2000
[ 0.08246  0.16625  0.3325   0.665    1.33     1.995    2.6334 ]

In [117]:
if run_dose:
    taus_uids, g2_uids = get_series_one_time_mulit_uids( [ uid ],  qval_dict, good_start=good_start,  
                    path= data_dir0, exposure_dose = exposure_dose,  num_bufs =8, save_g2= False,
                                                   dead_time = 0, trans = [ md['transmission'] ] )


UID: c8a1fb1f is in processing...
uid: c8a1fb1f--> fra_num_by_dose: [  62  125  250  500 1000 1500 1980]

In [118]:
if run_dose:    
    plot_dose_g2( taus_uids, g2_uids, ylim=[.95, 1.3], vshift= 0.00,
                 qval_dict = qval_dict, fit_res= None,  geometry= scat_geometry,
                 filename= '%s_dose_analysis'%uid_, 
                path= data_dir, function= None,  ylabel='g2_Dose', g2_labels= None, append_name=  '' )



In [120]:
if run_dose:
    qth_interest = 1
    plot_dose_g2( taus_uids, g2_uids, qth_interest= qth_interest, ylim=[0.99, 1.26], vshift= 0.00,
                 qval_dict = qval_dict, fit_res= None,  geometry= scat_geometry,
                 filename= '%s_dose_analysis'%uidstr, 
                path= data_dir, function= None,  ylabel='g2_Dose', g2_labels= None, append_name=  '' )


Four Time Correlation


In [121]:
if run_four_time:
    t0=time.time()
    g4 = get_four_time_from_two_time(g12b, g2=g2b)[:max_taus]
    run_time(t0)

In [122]:
if run_four_time:
    taus4 = np.arange( g4.shape[0])*timeperframe        
    g4_pds = save_g2_general( g4, taus=taus4, qr=np.array( list( qval_dict.values() ) )[:,0],
                             qz=None, uid=uid_ +'_g4.csv', path= data_dir, return_res=True )

In [123]:
if run_four_time:
    plot_g2_general( g2_dict={1:g4}, taus_dict={1:taus4},vlim=[0.95, 1.05], qval_dict=qval_dict, fit_res= None, 
                geometry=scat_geometry,filename=uid_+'_g4',path= data_dir,   ylabel='g4')

Speckle Visiblity


In [124]:
run_xsvs = False #True

In [125]:
if run_xsvs:    
    max_cts = get_max_countc(FD, roi_mask )    
    max_cts = 15 #for eiger 500 K
    qind, pixelist = roi.extract_label_indices(   roi_mask  )
    noqs = len( np.unique(qind) )
    nopr = np.bincount(qind, minlength=(noqs+1))[1:]
    #time_steps = np.array( utils.geometric_series(2,   len(imgs)   ) )
    time_steps = [0,1]  #only run the first two levels
    num_times = len(time_steps)    
    times_xsvs = exposuretime + (2**(  np.arange( len(time_steps) ) ) -1 ) * timeperframe   
    print( 'The max counts are: %s'%max_cts )

Do historam


In [126]:
if run_xsvs:
    if roi_avg is  None:
        times_roi, mean_int_sets = cal_each_ring_mean_intensityc(FD, roi_mask, timeperframe = None,  ) 
        roi_avg = np.average( mean_int_sets, axis=0)
    
    t0=time.time()
    spec_bins, spec_his, spec_std  =  xsvsp( FD, np.int_(roi_mask), norm=None,
                max_cts=int(max_cts+2),  bad_images=bad_frame_list, only_two_levels=True )    
    spec_kmean =  np.array(  [roi_avg * 2**j for j in  range( spec_his.shape[0] )] )
    run_time(t0)
    spec_pds =  save_bin_his_std( spec_bins, spec_his, spec_std, filename=uid_+'_spec_res.csv', path=data_dir )

Do historam fit by negtive binominal function with maximum likehood method


In [127]:
if run_xsvs:    
    ML_val, KL_val,K_ = get_xsvs_fit(  spec_his, spec_kmean,  spec_std, max_bins=2, varyK= False ) #True  )
    #print( 'The observed average photon counts are: %s'%np.round(K_mean,4))
    #print( 'The fitted average photon counts are: %s'%np.round(K_,4)) 
    print( 'The difference sum of average photon counts between fit and data are: %s'%np.round( 
            abs(np.sum( spec_kmean[0,:] - K_ )),4))
    print( '#'*30)
    qth=   0 
    print( 'The fitted M for Qth= %s are: %s'%(qth, ML_val[qth]) )
    print( K_[qth])
    print( '#'*30)

Plot fit results


In [ ]:


In [128]:
if run_xsvs:   
    qr = [qval_dict[k][0] for k in list(qval_dict.keys()) ]
    plot_xsvs_fit(  spec_his, ML_val, KL_val, K_mean = spec_kmean, spec_std=spec_std,
                  xlim = [0,10], vlim =[.9, 1.1],
        uid=uid_, qth= qth_interest, logy= True, times= times_xsvs, q_ring_center=qr, path=data_dir)
    
    plot_xsvs_fit(  spec_his, ML_val, KL_val, K_mean = spec_kmean, spec_std = spec_std,
                  xlim = [0,15], vlim =[.9, 1.1],
        uid=uid_, qth= None, logy= True, times= times_xsvs, q_ring_center=qr, path=data_dir )

Get contrast


In [129]:
if run_xsvs:
    contrast_factorL = get_contrast( ML_val)
    spec_km_pds = save_KM(  spec_kmean, KL_val, ML_val, qs=qr, level_time=times_xsvs, uid=uid_, path = data_dir )
    #spec_km_pds

Plot contrast with g2 restuls


In [130]:
if run_xsvs:    
    plot_g2_contrast( contrast_factorL, g2b, times_xsvs, tausb, qr, 
                     vlim=[0.8,1.2], qth = qth_interest, uid=uid_,path = data_dir, legend_size=14)

    plot_g2_contrast( contrast_factorL, g2b, times_xsvs, tausb, qr, 
                     vlim=[0.8,1.2], qth = None, uid=uid_,path = data_dir, legend_size=4)

In [131]:
#from chxanalys.chx_libs import cmap_vge, cmap_albula, Javascript

Export Results to a HDF5 File


In [ ]:


In [132]:
md['mask_file']= mask_path + mask_name
md['mask'] = mask
md['NOTEBOOK_FULL_PATH'] =  data_dir + get_current_pipeline_fullpath(NFP).split('/')[-1]
md['good_start'] = good_start
md['bad_frame_list'] = bad_frame_list
md['avg_img'] = avg_img
md['roi_mask'] = roi_mask
md['setup_pargs'] = setup_pargs
if scat_geometry == 'gi_saxs':        
    md['Qr'] = Qr
    md['Qz'] = Qz
    md['qval_dict'] = qval_dict
    md['beam_center_x'] =  inc_x0
    md['beam_center_y']=   inc_y0
    md['beam_refl_center_x'] = refl_x0
    md['beam_refl_center_y'] = refl_y0

elif scat_geometry == 'gi_waxs':
    md['beam_center_x'] =  center[1]
    md['beam_center_y']=  center[0]
else:
    md['qr']= qr
    #md['qr_edge'] = qr_edge
    md['qval_dict'] = qval_dict
    md['beam_center_x'] =  center[1]
    md['beam_center_y']=  center[0]            

md['beg'] = FD.beg
md['end'] = FD.end
md['qth_interest'] = qth_interest
md['metadata_file'] = data_dir + 'uid=%s_md.pkl'%uid
psave_obj(  md, data_dir + 'uid=%s_md.pkl'%uid ) #save the setup parameters
save_dict_csv( md,  data_dir + 'uid=%s_md.csv'%uid, 'w')

Exdt = {} 
if scat_geometry == 'gi_saxs':  
    for k,v in zip( ['md', 'roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list', 'qr_1d_pds'], 
                [md,    roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list, qr_1d_pds] ):
        Exdt[ k ] = v
elif scat_geometry == 'saxs': 
    for k,v in zip( ['md', 'q_saxs', 'iq_saxs','iqst','qt','roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list'], 
                [md, q_saxs, iq_saxs, iqst, qt,roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list] ):
        Exdt[ k ] = v
elif scat_geometry == 'gi_waxs': 
    for k,v in zip( ['md', 'roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list'], 
                [md,       roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list] ):
        Exdt[ k ] = v
        
if run_waterfall:Exdt['wat'] =  wat
if run_t_ROI_Inten:Exdt['times_roi'] = times_roi;Exdt['mean_int_sets']=mean_int_sets
if run_one_time:
    for k,v in zip( ['taus','g2','g2_fit_paras'], [taus,g2,g2_fit_paras] ):Exdt[ k ] = v
if run_two_time:
    for k,v in zip( ['tausb','g2b','g2b_fit_paras', 'g12b'], [tausb,g2b,g2b_fit_paras,g12b] ):Exdt[ k ] = v
    #for k,v in zip( ['tausb','g2b','g2b_fit_paras', ], [tausb,g2b,g2b_fit_paras] ):Exdt[ k ] = v    
if run_four_time:
    for k,v in zip( ['taus4','g4'], [taus4,g4] ):Exdt[ k ] = v
if run_xsvs:
    for k,v in zip( ['spec_kmean','spec_pds','times_xsvs','spec_km_pds','contrast_factorL'], 
                   [ spec_kmean,spec_pds,times_xsvs,spec_km_pds,contrast_factorL] ):Exdt[ k ] = v

In [133]:
export_xpcs_results_to_h5( 'uid=%s_Res.h5'%md['uid'], data_dir, export_dict = Exdt )
#extract_dict = extract_xpcs_results_from_h5( filename = 'uid=%s_Res.h5'%md['uid'], import_dir = data_dir )


The xpcs analysis results are exported to /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/ with filename as uid=c8a1fb1f-1960-49f8-927a-c29fca8aaafa_Res.h5

In [134]:
#extract_dict = extract_xpcs_results_from_h5( filename = 'uid=%s_Res.h5'%md['uid'], import_dir = data_dir )

Creat PDF Report


In [ ]:
#pdf_version='_@Mar24_2'     #for pdf report name

In [136]:
pdf_out_dir = os.path.join('/XF11ID/analysis/', CYCLE, username, 'Results/')

pdf_filename = "XPCS_Analysis_Report_for_uid=%s%s.pdf"%(uid,pdf_version)
if run_xsvs:
    pdf_filename = "XPCS_XSVS_Analysis_Report_for_uid=%s%s.pdf"%(uid,pdf_version)

In [137]:
#%run chxanalys_link/chxanalys/Create_Report.py

In [138]:
make_pdf_report( data_dir, uid, pdf_out_dir, pdf_filename, username, 
                    run_fit_form,run_one_time, run_two_time, run_four_time, run_xsvs, run_dose,
                report_type= scat_geometry, 
               md = md )


****************************************
The pdf report is created with filename as: /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/XPCS_Analysis_Report_for_uid=c8a1fb1f_May4_1.pdf
****************************************

Attach the PDF report to Olog


In [139]:
if att_pdf_report:     
    os.environ['HTTPS_PROXY'] = 'https://proxy:8888'
    os.environ['no_proxy'] = 'cs.nsls2.local,localhost,127.0.0.1'
    pname = pdf_out_dir + pdf_filename 
    atch=[  Attachment(open(pname, 'rb')) ] 
    try:
        update_olog_uid( uid= md['uid'], text='Add XPCS Analysis PDF Report', attachments= atch )
    except:
        print("I can't attach this PDF: %s due to a duplicated filename. Please give a different PDF file."%pname)


I can't attach this PDF: /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/XPCS_Analysis_Report_for_uid=c8a1fb1f_May4_1.pdf due to a duplicated filename. Please give a different PDF file.

The End!


In [140]:
uid


Out[140]:
'c8a1fb1f'

Save the current pipeline in Results folder


In [141]:
save_current_pipeline( NFP, data_dir)


This pipeline: XPCS_Single_2017_V4_4M.ipynb is saved in /XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Results/c8a1fb1f/.

In [142]:
get_current_pipeline_fullpath(NFP)


Out[142]:
'/XF11ID/analysis/CHX_Results_Pipelines/Beamline_Paper/Pipelines/XPCS_Single_2017_V4_4M.ipynb'

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: